
Networked Agents in the Dark: Team Value Learning under
Partial Observability

Guilherme S. Varela
Instituto Superior Técnico, INESC-ID

Lisbon, Portugal
guilherme.varela@tecnico.ulisboa.pt

Alberto Sardinha
PUC-Rio

Rio de Janeiro, Brazil
sardinha@inf.puc-rio.br

Francisco S. Melo
Instituto Superior Técnico, INESC-ID

Lisbon, Portugal
fmelo@inesc-id.pt

ABSTRACT
We propose a novel cooperative multi-agent reinforcement learn-
ing (MARL) approach for networked agents. In contrast to pre-
vious methods that rely on complete state information or joint
observations, our agents must learn how to reach shared objectives
under partial observability. During training, they collect individ-
ual rewards and approximate a team value function through local
communication, resulting in cooperative behavior. To describe our
problem, we introduce the networked dynamic partially observable
Markov game framework, where agents communicate over a switch-
ing topology communication network. Our distributed method,
DNA-MARL, uses a consensus mechanism for local communication
and gradient descent for local computation. DNA-MARL increases
the range of the possible applications of networked agents, being
well-suited for real world domains that impose privacy and where
the messages may not reach their recipients. We evaluate DNA-
MARL across benchmark MARL scenarios. Our results highlight
the superior performance of DNA-MARL over previous methods.

KEYWORDS
Artificial Intelligence; Multi-agent Systems; Reinforcement Learn-
ing; Deep Learning; Partial Observability

ACM Reference Format:
Guilherme S. Varela, Alberto Sardinha, and Francisco S. Melo. 2025. Net-
worked Agents in the Dark: Team Value Learning under Partial Observ-
ability. In Proc. of the 24th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,
2025, IFAAMAS, 9 pages.

1 INTRODUCTION
Cooperative multi-agent reinforcement learning involves rational
agents learning how to behave under uncertainty in a shared envi-
ronment to maximize a single utility function. While distributed
training has once been the dominating paradigm in learning for
MARL [2] systems, the community’s focus has shifted to centralized
training and decentralized execution (CTDE) in recent years. The
fundamental reason is that centralized training agents benefit from
a either a single loss function to train a common policy, e.g., param-
eter sharing [8], or from agent-wise policies that can be factorized
between agents, e.g., Q-MIX [17].

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

Centralized training is ideal in settings where data is centralized.
During training, agents benefit from sharing information, such as
joint observations for partial observability mitigation, joint actions
for modeling teammates and team rewards for cooperation. How-
ever, CTDE has its limitations. It assumes the existence of a central
node (or entity) that actually trains the agents, knows all system
information, performs all the necessary computations, and then
distributes the resulting individual policies to agents for execution.

Distributed trainingwith decentralized execution has re-emerged,
e.g, [26] and [3], as an alternative to CTDE systems in real world
domains where there is no central entity capable of performing
computations in behalf of the agents. For instance, in scenarios like
distributed economic dispatch [22], where agents collaborate to
determine optimal power generation, it is crucial to preserve the
privacy of agents’ observations–their power generation and cost
curves. This privacy protection is essential for the fair bidding in
the sale or purchase of energy. Hence agents collaborate to achieve
a common goal, but they are less forthcoming about sharing their
own observations. Another example of application is distributed
packet routing in a dynamically changing networks [1]. Agents
are nodes and by using local observations and collecting individual
rewards, must balance the selection of routes that minimize the
number of "hops" of a given packet, against the risk of overflowing
links along popular routes.

In this work, we advance upon the decentralized training and
decentralized execution (DTDE) [7] paradigm, wherein networked
agents use peer-to-peer communication during training and operate
in isolation during execution. Prior work has produced networked
agents under relaxed assumptions: Zhang et al. [26] assumed a fully
observable state while the rewards are kept private, and Chen et al.
[3] proposed networked agents that choose when and to whom
request observations. In contrast, we introduce a novel approach
that is not bound by the same restrictions and our agents learn
under partial observability. The key to our method is the use of
a consensus mechanism to force agents to agree on a team value,
resulting in cooperative value function learning under the partial
observability setting.

In summary, our key contributions can be outlined as follows.
First, we formalize the networked dynamic partially observable
Markov game (ND-POMG), a specialized framework derived from
partially observable Markov gamewhere agents communicate over a
switching topology network. Second, we present a novel approach,
DNA-MARL, for solving ND-POMG problems with a team policy
gradient. This approach is implemented in an actor-critic algorithm
and extended to the deep𝑄-network algorithm, showing its general-
ity. Finally, we evaluate our approach and show that it outperforms
other decentralized training, decentralized execution systems.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2087

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2 BACKGROUND
Partially observable Markov game (POMG): We define a par-
tially observable Markov game [14] for 𝑁 agents as the tuple:

(N ,S, {A𝑖 }𝑖∈N , {O𝑖 }𝑖∈N ,P, {𝑟 𝑖 }𝑖∈N , 𝛾),
where N = {1, . . . , 𝑁 } denotes a set of 𝑁 agents. S represents the
state space describing the system, which is not observed. Instead, at
each time step 𝑡 , each agent 𝑖 ∈ N observes 𝑜𝑖𝑡 ∈ O𝑖 , that depends
on the true system state 𝑠 ∈ S. The set of actions available to agent 𝑖
is denoted byA𝑖 . The joint action setA is the Cartesian product of
the individual action spaces, i.e.,A = A1×· · ·×A𝑁 . The transition
probability P : S×A → Δ(S) denotes the probability distribution
over the next state, they depend on the joint action 𝑎 ∈ A and the
current state 𝑠 . The instantaneous individual reward for agent 𝑖 is
given by 𝑟 𝑖 : S × A → R; 𝛾 ∈ [0, 1) is a discount factor.

Actor-critic: is a class of model-free reinforcement learning (RL)
algorithms aimed at optimizing the policy 𝜋𝜃 , parameterized by
𝜃 ∈ Θ. Particularly, the actor component updates the policy 𝜋𝜃 , and
the critic component evaluates the actor’s policy performance by
using the 𝑄-function:

𝑄 (𝑠, 𝑎;𝜃) = E𝜋𝜃

[∞∑︁
𝑘=𝑡

𝛾𝑘−𝑡𝑟𝑘+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎
]
.

The 𝑄-function yields the expected discounted return by taking
action 𝑎 on state 𝑠 at time 𝑡 , and then following 𝜋𝜃 thereafter. In the
single agent setting, the policy gradient theorem [21] prescribes the
direction for the gradient updates to maximize the total discounted
return:

∇𝜃 𝐽 (𝜋𝜃) = E𝜋𝜃
[
∇𝜃 log

(
𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃)

)
𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜃)

]
, (1)

Actor-critic with advantage (A2C) [5], in the single agent
episodic setting, the history of the interactions with the environ-
ment are collected into trajectories. A mini-batch is the concatena-
tion of many trajectories, drawn from the same policy using parallel
processing. A2C maintains one neural network for the actor, and
one another for the critic, their weights are adjusted via gradient
descent. The critic updates its parameters𝜔 by minimizing the least
mean squares loss function:

L
(
𝜔 ;𝜏

)
=

1
𝑇

∑︁
(𝑠,𝑎) ∈𝜏

| |𝐴(𝑠, 𝑎;𝜔) | |22, (2)

where𝑇 is the length of an episode,𝐴(𝑠, 𝑎;𝜔) = 𝑄 (𝑠, 𝑎;𝜔) −𝑉 (𝑠 ;𝜔)
is the advantage function, and the value function

𝑉 (𝑠;𝜔) = E𝜋𝜃

[
𝑇∑︁
𝑘=𝑡

𝛾𝑘−𝑡𝑟𝑘+1 |𝑠𝑡 = 𝑠, 𝜔
]
,

captures the discounted return for being on state 𝑠 at time 𝑡 , and then
following 𝜋𝜃 thereafter until the episode’s end at 𝑇 . The advantage
function reduces the variance of the actor-critic gradient updates.
The actor updates its parameters 𝜃 by minimizing the loss function:

L
(
𝜃 ;𝜏

)
= −

∑︁
(𝑠,𝑎) ∈𝜏

log
(
𝜋 (𝑎 |𝑠;𝜃)

)
𝐴(𝑠, 𝑎;𝜔). (3)

Consensus: The goal of randomized consensus algorithms is
to asymptotically reach an agreement on the global average of
individual parameters held by nodes in a switching topology com-
munication network through local communication. Formally, the

switching topology communication network is defined by an undi-
rected graph G𝑘 (N , E𝑘), where N = {1, . . . , 𝑁 } is the node set,
and E𝑘 ⊆ N ×N denotes the time-varying edge set with respect
to communication step 𝑘1. Nodes 𝑛 and 𝑚 can communicate at
communication step 𝑘 , if and only if, (𝑛,𝑚) ∈ E𝑘 . Each node 𝑛,
initially holding a parameter 𝜙𝑛 (0), has the opportunity at each
communication step 𝑘 , to synchronously interact with its neighbors,
updating its parameter value by replacing its own parameter with
the average of its parameter and the parameters from neighbors.
The distributed averaging consensus algorithm [24] prescribes the
updates:

𝜙𝑛 (𝑘 + 1) =
∑︁

𝑚∈N𝑛
𝑘

𝑊
𝑛,𝑚

𝑘
· 𝜙𝑚 (𝑘), (4)

where N𝑛
𝑘

= {𝑚 | (𝑛,𝑚) ∈ E𝑘 } represents the neighborhood of
agent 𝑛 at time 𝑘 . For a switching topology dynamic with random
link dropouts, it is possible to show that in the limit, the values of
the parameters for each node 𝑛 converge to the network’s average,
i.e.:

lim
𝑘→∞

𝜙𝑛 (𝑘) = 1
𝑁

𝑁∑︁
𝑛

𝜙𝑛 (0). (5)

Moreover, for an arbitrary graph G𝑘 (N , E𝑘), it is possible to derive
the weights𝑊 𝑛,𝑚

𝑘
that guarantee consensus locally. For instance,

theMetropolis weightsmatrix [24] in (Appendix A [23]2) is a matrix
that guarantee consensus, requiring only that each node be aware
of its closest neighbor degree.

Networked agents is a class of distributed reinforcement learn-
ing agents that combines consensus iterations in (4) for localized
approximations and actor-critic updates in (3) and (2). Relevant
previous works include:

Critic consensus: Zhang et al. [26] introduce networked agents
where the critic network 𝑉 (·, ·;𝜔), parameterized with 𝜔 , approxi-
mates the value-function 𝑉 𝜋 (·). The distributed critic emulates a
central critic. Agents observe the transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), perform
critic the update in (2), then agents average the parameter using
consensus:

𝜔𝑖 (𝑘 + 1) =
∑︁
𝑗∈N𝑖

𝑘

𝑊
𝑖, 𝑗

𝑘
· 𝜔 𝑗 (𝑘) ∀𝑖 ∈ N . (6)

Policy consensus: Chen et al. [3] introduce the class of homo-
geneous Markov games wherein there is no suboptimality incurred
by performing consensus on the actor parameters. Their motivation
is to emulate parameter sharing under the decentralized setting,
while minimizing the number of communication rounds. Agents
perform the actor update in (3), then average the parameters using
consensus:

𝜃𝑖 (𝑘 + 1) =
∑︁
𝑗∈N𝑖

𝑘

𝑊
𝑖, 𝑗

𝑘
· 𝜃 𝑗 (𝑘) ∀𝑖 ∈ N . (7)

1In this work 𝑡 represents timesteps in episodic interactions with the environment,
while 𝑘 represents communication timesteps (rounds) that occur between episodes.
Communication only happens during training, in between episodes. During execution
agents are fully decentralized.
2This article’s preprint version.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2088

3 NETWORKED DYNAMIC POMG
In this section, we present the first key contribution, which is a
formalization of networked dynamic partially observable Markov
game, ND-POMG. We define the ND-POMG as the septuple:

M = (G𝑘 ,S, {O𝑖 }𝑖∈N , {A𝑖 }𝑖∈N ,P, {𝑟 𝑖 }𝑖∈N , 𝛾),

where G𝑘 (N , E𝑘) represents a switching topology communication
network, and the latter six elements represent the POMG elements.

In this work, we fix the agents set 𝑁 = |N |, to ensure that no
agent is added or removed from the network. We also introduce
the hyperparameter 𝐶 = |E𝑘 | for all 𝑘 , that shapes the topology
of the communication network by fixing the cardinality of every
possible edge set E𝑘 . Moreover, we let E𝑘 change according to an
uniform distribution at each communication round. The uniform
distribution over the edge sets is the least specific distribution that
guarantees that over a sufficiently long round of communications
agents will reach consensus (Appendix B.1 [23]).

4 DOUBLE NETWORKED AVERAGING MARL
This section presents our second key contribution which is the
DNA-MARL an approach to solve ND-POMG problems. Since our
method requires an extra consensus iteration step, we call it double
networked averagingMARL (DNA-MARL). Any single agent rein-
forcement learning algorithm can be cast as a DNA-MARL with our
method, we elaborate the case for the A2C, an on-policy method
(Sec. 4.1) and extend to the deep 𝑄-network (DQN) (Sec. 4.2), an
off-policy method.

4.1 Double Networked Averaging A2C
In order to make agents cooperate with decentralized training, we
factorize the shared objective between agents. Hence, it is possi-
ble to maximize performance via local communication and local
gradient descent updates.

The total discounted team return, 𝐽 (𝜋𝜃), serves as a measure of
the joint policy 𝜋𝜃 performance:

𝐽 (𝜃) = E 𝑠0∼𝜇 (·)
𝑎∼𝜋𝜃 (· |𝑠)

[
𝑇∑︁
𝑡=0

𝛾𝑡𝑟𝑡+1

]
, (8)

where 𝑟𝑡+1 = 1
𝑁

∑
𝑖∈N 𝑟

𝑖
𝑡+1 is the instantaneous team reward. The

expectation is taken by drawing the initial state 𝑠0 from the initial
state distribution 𝜇 and taking actions from 𝜋𝜃 , thereafter. For
simplicity, we follow the convention of writing 𝐽 (𝜋𝜃) as 𝐽 (𝜃).

4.1.1 Team Policy Gradient. To obtain the team policy gradient,
we replace the team reward in (4.1) by the average of individual
rewards.

𝐽 (𝜃) = E 𝑠0∼𝜇 (·)
𝑎∼𝜋𝜃 (· |𝑠)

[
𝑇∑︁
𝑡=0

𝛾𝑡
(1
𝑁

∑︁
𝑖∈N

𝑟 𝑖𝑡+1
)]

=
∑︁
𝑖∈N

E 𝑠0∼𝜇 (·)
𝑎∼𝜋𝜃 (· |𝑠)

[
𝑇∑︁
𝑡=0

𝛾𝑡

𝑁
𝑟 𝑖𝑡+1

]
=
∑︁
𝑖∈N

𝐽 𝑖 (𝜃)

The result above suggests how the cooperative system’s objective
can be distributed across the participating agents, thus the total
discounted team return is computed as the weighted sum of the

discounted individual rewards. However, the behaviors of the agents
are still coupled, depending on the joint policy parameterized by 𝜃 ∈
Θ and on the common system state 𝑠𝑡 . Formally, the objective of the
cooperative distributed system is to maximize the total discounted
team return:

max
𝜃

∑︁
𝑖∈N

𝐽 𝑖 (𝜃) with 𝐽 𝑖 (𝜃) = E𝜏∼P(· |𝜃)

[
𝑇∑︁
𝑡=0

𝛾𝑡𝑟 𝑖𝑡+1

]
. (9)

We drop the scaling constant 𝑁 as it does not change the stationary
points of the maximization. P(·|𝜃) is the short hand notation for
the probability distribution of the trajectories,

𝜏 =
(
𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, . . . , 𝑠𝑇

)
,

generated from system dynamics P under the joint policy 𝜋𝜃 (𝑎 |𝑠).
The maximization can be achieved through iterative gradient search
methods. More specifically, the policy gradient theorem (1) pre-
scribes the direction of the parameter updates:

∇𝜃 𝐽 (𝜃) = E𝜏∼P(· |𝜃)
[
∇𝜃 log

(
𝜋𝜃 (𝑎 |𝑠)

)
𝐴𝜃 (𝑠, 𝑎)

]
,

that maximize the total discounted team return. We replaced the
𝑄-function by the advantage function (2) to mitigate the variance on
the weight updates. We note that the single agent policy gradient
update in (1) serves as the policy gradient for a centralized agent in
control of all agents. Departing from the centralized setting, we use
the fact that the joint policy 𝜋𝜃 factorizes between agents, to set:

∇𝜃 𝐽 (𝜃) = E𝜏∼P(· |𝜃)
[
∇𝜃 log

(
Π𝑖∈N𝜋

𝑖
𝜃𝑖
(𝑎𝑖 |𝑠)

)
𝐴𝜃 (𝑠, 𝑎)

]
= E𝜏∼P(· |𝜃)

[(∑︁
𝑖∈N

∇𝜃𝑖 log
(
𝜋𝑖
𝜃𝑖
(𝑎𝑖 |𝑠)

))
𝐴𝜃 (𝑠, 𝑎)

]
=
∑︁
𝑖∈N

E𝜏∼P(· |𝜃)
[
∇𝜃𝑖 log

(
𝜋𝑖
𝜃𝑖
(𝑎𝑖 |𝑠)

)
𝐴𝜃 (𝑠, 𝑎)

]
. (10)

There are two limitations in (10) preventing its use for conducting
local updates. In the context of partial observability, the states 𝑠 are
unavailable in trajectory 𝜏 . Second, the gradient update depends
on global 𝜃 ∈ Θ, and no agent has access to 𝜃 .

4.1.2 Distributed Reinforcement Learning. We address the limita-
tions in (10) by considering the information structure of the problem,
or what do agents know [25]. We propose localized approximations
that allow agents to perform local updates: considering a synchro-
nous system where agents interact with the environment to collect
their individual trajectories 𝜏𝑖 . Distributed learning requires a lo-
calized approximation ∇𝜃 𝐽 𝑖 (𝜃) for gradient of the discounted team
return ∇𝜃 𝐽 (𝜃) in (10). Moreover, each agent maximizes its policy 𝜋𝑖

𝜃

which is parameterized by 𝜃𝑖 , i.e., 𝜋𝑖
𝜃
= 𝜋𝑖

𝜃𝑖
and∇𝜃 𝐽 𝑖 (𝜃) = ∇𝜃𝑖 𝐽 𝑖 (𝜃).

By combining these three facts, the localized approximation for (10)
can be rewritten as:

∇𝜃𝑖 𝐽 (𝜃𝑖) = E𝜏𝑖∼P(· |𝜃)
[
∇𝜃𝑖 log

(
𝜋𝑖
𝜃𝑖
(𝑎𝑖 |𝑜𝑖)

)
𝐴𝑖
𝜃
(𝑜𝑖 , 𝑎𝑖)

]
, (11)

where 𝜏𝑖 =
(
𝑜𝑖0, 𝑎

𝑖
0, 𝑟

𝑖
1, 𝑜

𝑖
1, 𝑎

𝑖
1, 𝑟

𝑖
2, . . . , 𝑜

𝑖
𝑇

)
is available locally for agent

𝑖 . The replacement 𝑠𝑖𝑡 with 𝑜𝑖𝑡 under the partially observability
setting is standard practice in MARL literature [3, 17, 20]. The
system’s dynamics still depend on the joint behavior, parameterized
by 𝜃 , but the gradient in (11) is locally defined. Straightforward
application of the actor-critic updates in (3) and (2), with individual

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2089

rewards over local parameters lead to independent learners, which
evaluate their individual policies. Individual learners assume that
the approximation 𝐴𝑖

𝜃𝑖
(𝑜𝑖 , 𝑎𝑖) ≈ 𝐴𝜃 (𝑜, 𝑎) holds.

4.1.3 Distributed Cooperation. We propose a better approximation
for the gradient of the discounted team return by performing the
updates in the direction of the team advantage 𝐴𝜃 (𝑠, 𝑎) in (10),
rather than the local advantage 𝐴𝑖

𝜃
(𝑜𝑖 , 𝑎𝑖) in (11). However, since

the team advantage is unavailable, agents should instead perform
local updates in the direction of the team advantage under the
partially observable setting 𝐴𝜃 (𝑜, 𝑎). Since 𝑜 =

[
𝑜1, . . . , 𝑜𝑁

]
is the

concatenation of observations, 𝐴𝜃 (𝑜, 𝑎) can be defined by:

𝐴𝜃 (𝑜, 𝑎) = 𝑄 (𝑜, 𝑎;𝜔) −𝑉 (𝑜 ;𝜔) ≈ 𝑟 + 𝛾𝑉 (𝑜′;𝜔−) −𝑉 (𝑜 ;𝜔), (12)

where, 𝑟 and 𝑜′ are respectively the rewards and the joint observa-
tions on the next time step. The parameter 𝜔− is a periodic copy
of the critic’s parameters 𝜔 ∈ Ω, which serves to stabilize learn-
ing. Decentralized learning agents neither observe 𝑜 nor collect
𝑟 , but may resort to local communication schemes to obtain fac-
torized representations for 𝑉 (𝑜, 𝑎;𝜔). The local critic update is a
straightforward adaptation of the single agent critic in (2):

L
(
𝜔𝑖 ;𝜏𝑖

)
=

1
𝑇

𝑇−1∑︁
𝑡=0

(
𝑦𝑖𝑡 −𝑉 (𝑜𝑖𝑡 ;𝜔𝑖)

)2, (13)

with
𝑦𝑖𝑡 = 𝑟

𝑖
𝑡+1 + 𝛾𝑉 (𝑜𝑖𝑡+1;𝜔𝑖

−).
We propose to use communication to combine 𝑦𝑖𝑡 by performing
team-𝑉 consensus:

𝑦𝑖𝑡 (𝑘 + 1) =
∑︁
𝑗∈N𝑖

𝑘

𝑊
𝑖, 𝑗

𝑘
· 𝑦 𝑗𝑡 (𝑘) ∀𝑖 ∈ N , 𝑘 = 1, . . . , 𝐾 . (14)

After each training episode, agents concurrently approximate the
team-𝑉 using𝑦𝑖𝑡 based on their individual rewards and observations.
Then, we let 𝐾 consensus updates per mini-batch aimed at approx-
imating the team-𝑉 . At each communication round, a connected
agent averages its team-𝑉 estimation with team-𝑉 s from neighbors.
Ideally, the following approximation will hold:

𝑦𝑖𝑡 =
∑︁
𝑖=1

1
𝑁

[
𝑟 𝑖𝑡+1 + 𝛾𝑉 (𝑜𝑖𝑡+1;𝜔𝑖

−)
]
≈
∑︁
𝑖=1

1
𝑁
𝑉 (𝑜𝑖𝑡 ;𝜔𝑖

−). (15)

We empirically test for suitable values of 𝐾 . The consensus steps in
(14) result in a flexible degree of cooperation: When 𝐾 = 0, agents
behave as independent learning agents. For a high enough values
of 𝐾 , the approximation error should be small enough, such that
agents recover the same team-𝑉 .

This section concludes a core contribution to our method: dis-
tributed cooperation whereby agents produce localized approxi-
mations for a team-𝑉 (or team-𝑄) using consensus. Cooperation
requires that each agent approximates the same critic, and this
critic must evaluate the joint policy, so that the actor updates its pa-
rameters in the direction of the team-𝑉 , thus the best local actions
for the team will be reinforced. Moreover, the updates in (15) do
not require agents to be homogeneous. Previous networked agents
works [3, 26] provide asymptotic convergence guarantees for linear
function approximation on the state-action space. Under the lin-
earity approximation on the critic and fully observable setting the
update in (6) is sufficient to guarantee cooperation. Under partial

observability and/or non-linear function observation agents are
unable to obtain localized approximations for the team-𝑉 /team-𝑄
by the averaging of critic parameters.

4.1.4 Algorithm. To design our algorithm, we combine the local-
ized approximations for the team-𝑉 in (15) with critic consensus
in (6) [26]. And actor consensus in (7) [3] for improving sample
efficiency. Hence, the updates comprising the double networked
averaging actor critic with advantage are given by:

𝑦𝑖𝑡 (𝑘 + 1) =
∑︁
𝑗∈N𝑖

𝑘

𝑊
𝑖, 𝑗

𝑘
· 𝑦 𝑗𝑡 (𝑘) 𝑘 = 1, . . . , 𝐾 (i)

𝑦𝑖𝑡 = 𝑦
𝑖
𝑡 (𝐾 + 1) (ii)

Every agent interacts locally with the environment to collect the
individual trajectories 𝜏𝑖 . Then, in (i) agents use localized approx-
imation for team-𝑉 , 𝑦𝑖𝑡 , by performing 𝐾 consensus steps; (ii) the
final approximation for the team-𝑉 is defined; The next steps consist
of local weight updates:

L
(
𝜔𝑖 ;𝜏𝑖 , 𝑦𝑖

)
=

1
𝑇

𝑇−1∑︁
𝑡=0

(
𝑦𝑖𝑡 −𝑉 (𝑜𝑖𝑡 ;𝜔𝑖)

)2 (iii)

L
(
𝜃𝑖 ;𝜏𝑖 , 𝑦𝑖

)
= − 1

𝑇

𝑇−1∑︁
𝑡=0

log𝜋 (𝑎𝑖𝑡 |𝑜𝑖𝑡 ;𝜃𝑖) (𝑦𝑖𝑡 −𝑉 (𝑜𝑖𝑡 ;𝜔𝑖)) (iv)

In (iii) the local critic updates its parameters using𝑦𝑖𝑡 instead of their
own estimations 𝑦𝑖𝑡 ; (iv) Similarly, actor updates its parameters in
the direction of team-𝑉 ; Finally, periodically agents perform actor
and critic parameter consensus, represented by steps (v) and (vi):

𝜔𝑖 (𝑘 + 1) =
∑︁
𝑗∈N𝑖

𝑘

𝑊
𝑖, 𝑗

𝑘
· 𝜔 𝑗 (𝑘) 𝑘 = 1, . . . , 𝐾 (v)

𝜃𝑖 (𝑘 + 1) =
∑︁
𝑗∈N𝑖

𝑘

𝑊
𝑖, 𝑗

𝑘
· 𝜃 𝑗 (𝑘) 𝑘 = 1, . . . , 𝐾 (vi)

We note that actor-critic parameters can be concatenated to avoid
extra communication rounds, and that (v) utilizes (6) and that (vi)
utilizes (7). The consensus updates in (v) require agents to have
homogeneous observation spaces, while updates in (vi) require
agents to have homogeneous action spaces.

Figure 1 illustrates the information flow of the algorithm, clock-
wise from the left: (a) Four agents (circles) interact with the environ-
ment and evaluate a team-𝑉 (blue gradient) from their individual
experiences; (b) Consensus on team-𝑉 occurs over the time varying
communication network. At each step, certain agents aggregate
their opinions on the team-𝑉 (14); (c) Agents independently up-
date their parameters using gradient descent, resulting in varying
actor-critic evaluations and policies (orange gradient); (d) Parameter
consensus occurs periodically over the time varying communica-
tion network. At each step, certain agents aggregate their opinions
on the parameters in ([3, 26]). Pseudo codes for double networked

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2090

A

B

C

D

Figure 1: Diagram illustrating the information flow from the
algorithm, clockwise from the left.

agents are provided in (Appendix B.2 [23]) and we open source the
codebase DNA-MARL3.

4.2 Double Networked Averaging Q-learner
We extend the DNA method to the independent 𝑄 learner. To com-
pute the team-𝑄 consensus, which involves the averaging of indi-
vidual 𝑄-function evaluations, agents must first determine locally
the learning target,

𝑦𝑖𝑡 = 𝑟
𝑖
𝑡+1 + 𝛾 max

𝑎′∈A𝑖
𝑄 (𝑜𝑖𝑡+1, 𝑎

′;𝜃𝑖−). (16)

Similarly to single agent DQN [13], the learning target consists
of the sum of the local reward 𝑟 𝑖

𝑡+1 and the 𝑄-value assigned to the
individual action 𝑎′ that yields the highest 𝑄-value over the next
observation 𝑜𝑖

𝑡+1. Moving from the𝑉 -function in (13) to𝑄-function
in (16), the learning target becomes a function of a max operator,
which is performed locally. The consensus updates for the team-𝑄
are then calculated as follows:

𝑦𝑖𝑡 (𝑘 + 1) =
∑︁
𝑗∈N𝑖

𝑘

𝑊
𝑖, 𝑗

𝑘
· 𝑦 𝑗𝑡 (𝑘) ∀𝑡 ∈ 𝜏𝑖 , (17)

which is performed 𝐾 times. We thus assign the result from the
consensus steps 𝑦𝑖𝑡 (𝐾 + 1) to the variable 𝑦𝑖𝑡 . The third step is the
parameter update:

L
(
𝜃𝑖 ;𝜏𝑖 , 𝑦𝑖

)
=

1
|𝜏𝑖 |

∑︁
𝜏𝑖 ∈𝜏𝑖

(
𝑦𝑖𝑡 −𝑄 (𝑜𝑖𝑡 , 𝑎𝑖𝑡 ;𝜃)

)2
. (18)

Finally, the fourth step consists in parameter consensus:

𝜃𝑖 (𝑘 + 1) =
∑︁
𝑗∈N𝑖

𝑘

𝑊
𝑖, 𝑗

𝑘
· 𝜃 𝑗 (𝑘),

for 𝐾 rounds. As a result, agents obtain a local approximation of
a common average 𝜃 . However, for a finite number of consensus
steps 𝐾 , it is impossible to guarantee that agents will obtain iden-
tical copies 𝜃1 = · · · = 𝜃𝑁 = 𝜃 . Hence, agents are left with the
parameters from this finite step approximation.

5 EXPERIMENTS
We evaluate the performance of DNA-MARL following the method-
ology outlined by Papoudakis et al. [16] for benchmarking multi-
agent deep reinforcement learning algorithms in cooperative tasks.
This section presents the scenarios, baselines, and evaluation met-
rics.
3https://github.com/GAIPS/DNA-MARL

5.1 Scenarios
Multi-agent environments are typically designed for the cooper-
ative setting [15], but they can also be configured for the mixed
setting. In the mixed setting, individual rewards are emitted, and
the team reward is obtained by averaging all individual rewards.
With minor adaptations which we outline briefly, the multi-agent
particle environment (MPE) [12] scenarios were adjusted for partial
observability and individual rewards. The scenarios include:

Adversary4: The first MPE adaptation has two teammates pro-
tecting a target landmark from a third adversary agent. Teammates
are rewarded the adversary’s distance from the target and penal-
ized with their negative distance to the landmark. The teammates
observations include the position and color from the closest agent
(either adversary or teammate), their relative distance to landmark,
and the position of the two landmarks.

Spread4: The second MPE adaptation has three agents that must
navigate to three landmarks while incurring a penalty for collisions.
We adapt the observation and reward for the partially observable
and decentralized setting. Each agent’s observation contains its
own absolute location, the relative locations of the nearest agent,
and the relative location of the nearest landmark. The reward is the
negative distance of the agent to the closest landmark.

Tag4: The third MPE adaptation has three big predators (agents)
that rewarded for catching a smaller and faster fleeing agent that fol-
lows a pre-trained policy. Additionally, two landmarks are placed as
obstacles. Agents navigate a two-dimensional grid with continuous
coordinates. The reward is sparse, and we adapt the environment
for partial observability and decentralization. Each agent’s obser-
vation includes its own position and velocity, the closest predator’s
position, and the prey’s position and velocity. The reward is indi-
vidual where the agent that catches the prey is the one receiving a
reward of ten points.

Level-Based Foraging (LBF) [16]5: In this scenario, agents can
move on a two-dimensional discrete position grid and collect fruits.
Since both agents and fruits have associated levels, successful fruit
loading occurs only if the total level of the agents attempting to
load it exceeds the fruit’s level. Observations consist of relative
positions of agents and fruits within a two-block radius centered
around the agent. The rewards are sparse, and only the agents that
successfully load a fruit receive positive reward. We configure three
instances in the partially observable setting, in increasing levels of
difficulty: (i) Easy: 10 x 10 grid, 3 players, and 3 fruits (ii) Medium:
15 x 15 grid, 4 players, and 5 fruits (iii) Hard: 15 x 15 grid, 3 players,
and 5 fruits.

5.2 Baselines
Following Papoudakis et al. [16], we divide our experiments into
the on-policy and off-policy settings. Furthermore, for each scenario,
we compare three different approaches: (i) individual learners (IL),
(ii) decentralized training and fully decentralized execution (DTDE)
and (iii) the centralized training and decentralized execution (CTDE)
algorithms. ILs are always self interested and CTDE are always fully
cooperative as they have access to the team reward. For the on-
policy setting, the baselines include:

4https://github.com/GAIPS/multiagent-particle-envs.
5https://github.com/semitable/lb-foraging.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2091

https://github.com/GAIPS/DNA-MARL
https://github.com/GAIPS/multiagent-particle-envs
https://github.com/semitable/lb-foraging

0.0 0.5 1.0 1.5 2.0
Environment Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

di
c

Re
tu

rn

DNAA2C
DVA2C
INDA2C
MAA2C

(a) (on-policy) LBF Hard

0 1 2 3 4
Environment Timesteps 1e7

0

5

10

15

20

25

30

Ep
iso

di
c

Re
tu

rn

DNAA2C
DVA2C
INDA2C
MAA2C

(b) (on-policy) MPE Tag

0 1 2 3 4 5
Environment Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

di
c

Re
tu

rn

DNAQL
INDQL
PIC
VDN

(c) (off-policy) LBF Hard

0 1 2 3 4 5
Environment Timesteps 1e6

0

5

10

15

20

25

Ep
iso

di
c

Re
tu

rn

DNAQL
INDQL
PIC
VDN

(d) (off-policy) MPE Tag

Figure 2: From left to right, episodic returns for on-policy setting and episodic returns for the off-policy setting, for two
selected tasks. We plot the 95% bootstrap CI for each algorithm. In chestnut, CTDE algorithms that establish the upper bound
of performance. In grey, DTDE algorithms that are DNA-MARL’s closest competitors. In orange, IL algorithms that establish a
lower bound on performance. We can see that for three algorithms-environments combinations, (a), (b), (c), DNA-MARL (in
blue) has the closest performance to the upper bound.

Multi-Agent Actor-Critic with Advantage (MAA2C) [16]:
This is a CTDE algorithm with a central critic that has more in-
formation during training: (i) it has access to the joint reward, (ii)
the central critic has access to the concatenation of the all agents’
observation, and (iii) uses parameter sharing. Hence, it can compute
the team advantage under partial observability in (12) precisely.

Distributed-V with Advantage (DVA2C): This DTDE algo-
rithm implements networked agents in Algorithm 2, of Zhang et al.
[26], where it performs a consensus on the critic’s network param-
eters. Moreover, it is a model-based algorithm, whereby it has a
neural network that estimates the discounted team return.

Independent Actor-Critic with Advantage (INDA2C): This
IL algorithm implements updates in (3) and (2) and generates self-
interested agents.

In addition, for the off-policy setting, we specifically use the
following baselines:

Value Decomposition Networks (VDN) [20]: A CTDE algo-
rithm that learns a central𝑄-function that can be factorized among
agents.

Permutation Invariant Critic (PIC) [11]: Since the DTDE im-
plementation of Chen et al. [3] is not open-sourced, we represent its
implementation using the CTDE algorithm in which it was based.
PIC has a central critic that employs a graph convolution neural
network [10] that learns from joint observations, joint actions and
joint rewards. Resulting in 𝑄-function representations that remain
unchanged regardless of the ordering of the concatenation of obser-
vations and actions from the agents. Since PIC sets an upper bound
in performance for the networked agents proposed by Chen et al.
[3] the comparison is fair.

Independent Q-Learner (INDQL): This IL algorithm imple-
ments deep 𝑄-network updates [13] and generates self-interested
agents.

5.3 Evaluation
In this section we establish the performance metric, the deviation
metric and the hypothesis test to discriminate results.

Performance metrics: We evaluate the performance of the al-
gorithms using the maximum average episodic returns [16] criteria.

For each algorithm, we perform forty one evaluation checkpoints
during training each comprising of a hundred rollouts. Then we
identify the evaluation time step at which the algorithm achieves
the highest average evaluation returns across ten random seeds.
Moreover, for each algorithm-scenario combination we report the
95% bootstrap confidence interval (CI) constructed by resampling
the empirical maximum average episodic returns ten thousand
times.

Bootstrap hypothesis test [4]: In addition to reporting 95%
bootstrap confidence interval, we gauge how similar two results
are by evaluating a bootstrap hypothesis test6. The test’s null hy-
pothesis is that the means of both samples are the same. The test
is performed by drawing an observation from each sample and
computing their difference. This procedure is repeated a thousand
times. Finally, from the resulting sample of differences we perform
the 95% bootstrap confidence interval. If the CI doesn’t contain
zero, than we must reject the null hypothesis that both means are
equal. We refer to Appendix C [23] for a detailed description of the
experimental methodology, hyperparameters, and supplementary
results.

6 RESULTS
Figure 2 presents a comparative analysis of DNA-MARL’s perfor-
mance for the on-policy and off-policy settings for two selected
tasks from the LBF and MPE environments. The CTDE algorithms
serve as an upper benchmark for other methods, while the IL algo-
rithms establish a lower performance boundary. Notably, in three
specific algorithm-task pairings – (a), (b), and (c) – DNA-MARL
demonstrates superior results compared to its nearest competitors
when utilizing decentralized training combined with decentralized
execution strategies. These results indicate that our double net-
worked averaging A2C (DNAA2C), an algorithm that learns using
local observations, can indeed emulate a central critic that uses
system-wide observations. In spite of having information loss due
to randomized communication. For the off-policy setting, in the

6https://github.com/flowersteam/rl_stats

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2092

https://github.com/flowersteam/rl_stats

DV TV DNA
Groups

0.38

0.40

0.42

0.44

0.46

0.48

0.50

M
ax

 R
et

ur
n

(a) LBF Hard

DV TV DNA
Groups

14

16

18

20

22

24

26

M
ax

 R
et

ur
n

(b) MPE Tag

Figure 3: Ablation for DNAA2C: From left to right, DV
(distributed-V) group has critic consensus. TV (team-V) group
has team-𝑉 consensus and critic consensus. DNA group has
team-𝑉 consensus and both actor and critic consensus. We
can see a performance improvement moving from DV to TV
which highlights the impact of our contribution.

MPE environment for the Tag task, our double networked averag-
ing 𝑄-learner (DNAQL) has the performance comparable to the IL
algorithm, while the alternative decentralized training algorithm
has the worst performance. To improve the analysis of these re-
sults, we present the maximum average episodic return obtained
per algorithm-scenario combination in Table 1.

In Table 1, results are separated into on-policy and off-policy
settings, and the CTDE algorithms is outlined for each method.
For each algorithm-scenario pairings, the values highlighted in
bold represent the best results for the scenario. The asterisk shows
the results of the bootstrap hypothesis test cannot reject the null
hypothesis (i.e., the performance is equal to the best performing
algorithm for the scenario). The double asterisk indicates results
that are worse than the highlighted result but still outperform the
other algorithms, according to the bootstrap hypothesis test.

For the on-policy setting, we note, from six scenarios, there are
four scenarios that the results are comparable to MAA2C’s perfor-
mance. In addition, in the remaining two scenarios, both results
are very close. For the off-policy setting and LBF environment we
observe similar outcomes: DNAQL ranks as second best. Moving
to MPE environment for the off-policy setting, the IL method out-
performs the CTDE for two scenarios, followed by DNAQL. This
is not a surprising result, since Papoudakis et al. [16] state that for
most MPE scenarios, VDN’s assumption of additive value function
decomposition is mostly violated for this environment. However,
for the third scenario, Tag, VDN outperforms other decentralized
algorithms by a wide margin. Here, additive value decomposition
seems to have played a major role in the performance. Additive
value decomposition limits the range of representable functions, but
simplifies the learning over a large combined observation and ac-
tions spaces. Neither DNAQL or INDQL are guaranteed to generate
additive value decomposition.

6.1 Ablations
To assess the impact of consensus steps within the DNA-MARL
framework, we conducted ablations regarding the discounted return
consensus outlined in (14), specifically focusing on both the critic
parameters and actor parameters.

Figure 3 presents the ablation results for DNAA2C in the tasks
LBF Hard and MPE Tag. The bars represent the averages within a

neighborhood of size two around the maximum average episodic re-
turns, while the intervals denote the 95% bootstrap confidence inter-
val. Moving from left to right, we have three groups: (i) Distributed-
V (DV) which conducts consensus on the critic parameters, (ii)
Team-V (TV) which performs consensus on both the 𝑉 -values and
critic parameters, and (iii) DNA which carries out consensus on
both the 𝑉 -values and actor-critic parameters. Due to space restric-
tions the remaining ablation plots are reported in (Appendix D [23]).
Here, we highlight how this ablation study connects DNA-MARL
to previous works: Zhang et al. [26] propose critic parameter con-
sensus (DV group). Our original contribution proposes consensus
on the team-𝑉 (14) in addition to consensus update on the critic’s
parameters (TV group): While Fig. 3 (a) shows that team-𝑉 provides
an improvement in overall performance for LBF Hard task, Fig. 3
(b) shows that team-𝑉 consensus provides a significant improve-
ment in performance for the MPE Tag task. Finally, DNA-MARL
combines team-𝑉 consensus with consensus on the agents’ policies
proposed by Chen et al. [3] emulating parameter sharing in the
decentralized setting.

7 RELATEDWORK
We relate our work with five other lines of research, two of which
we present herein. Due to space restrictions, we further discuss
related works in Appendix D [23].

Central Training and Decentralized Execution: CTDE is the
prevailing approach in multi-agent reinforcement learning, where
a central critic learns a system action-value function to mitigate the
risk of non-stationarity. The policies are factorized and executed
by individual actors, utilizing only local information to address the
large state space problem. Examples from works that learn a central
critic include MADDPG [12], COMA [6] and PIC [11]. Furthermore,
actors benefit from parameter sharing as proposed by [8], wherein
agents use a single neural network to approximate a policy trained
with experiences collected from the behavior policies of all agents.
Parameter sharing reduces wall clock time and increases sample-
efficiency, enabling faster agent learning [9]. Another possibility
is building utility functions that factorize into agent-wise func-
tion. Sunehag et al. [20] propose value decomposition networks,
where the team-𝑄 function is recovered by adding the agent-wise
𝑄-functions. Finally, QMIX [17] extend VDN by proposing a mixing
network, that has a dynamic set of parameters that vary according
to the system state. The mixing network produces more expressive
team-𝑄 function decomposition, requiring that the joint action that
minimizes the team 𝑄-value be the same as the combination of the
individual actions maximizing the agent-wise 𝑄-values.

Networked agents with multi-agent reinforcement learn-
ing. Zhang et al. [26] is DTDE MARL system that apply the con-
sensus mechanism over the critic’s parameters to obtain a joint
policy evaluation. However, their system requires full observability
of both state and action spaces. In contrast Zhang and Zavlanos
[27] propose DTDE MARL system that performs consensus on the
actor’s parameters while the critics are individual. As a limitation
the policies must represent the joint action space. Chen et al. [3]
apply networked agents to homogeneous Markov games, a subclass
of Markov game, where agents observe different permutations of
the state space but share the same action space, making individual

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2093

Table 1: Results for level-based foraging and multiagent particle environments: Maximum average episodic returns over ten
independent runs and 95% bootstrap confidence interval. Highlighted results indicate the best performing algorithm. The
asterisk indicates results that are not significantly different from the best result. Double asterisks indicate the second best
result.

LBF MPE
Methods Algorithm Easy Medium Hard Adv. Spread Tag

on
-p
ol
ic
y

MAA2C (CTDE) 0.96
(−0.01, 0.01)

0.76
(−0.04, 0.04)

0.53
(−0.04, 0.04)

17.39∗
(−0.56, 0.62)

−92.19∗
(−0.35, 0.36)

26.63
(−1.68, 1.70)

DNAA2C (ours) 0.93∗∗
(−0.01, 0.01)

0.75∗
(−0.02, 0.02)

0.52∗
(−0.02, 0.02)

17.68
(−0.67, 0.68)

−91.96
(−0.28, 0.24)

26.09∗
(−2.11, 2.01)

DVA2C 0.83
(−0.01, 0.01)

0.67
(−0.04, 0.04)

0.41
(−0.02, 0.02)

16.46
(−0.89, 0.70)

−93.49
(−0.78, 0.78)

19.63
(−1.17, 1.07)

INDA2C (IL) 0.89
(−0.02, 0.01)

0.69
(−0.03, 0.03)

0.45
(−0.03, 0.03)

16.30
(−0.68, 0.67)

−94.39
(−0.52, 0.52)

19.10
(−1.74, 1.90)

off
-p
ol
ic
y

VDN (CTDE) 0.94
(−0.01, 0.01)

0.79
(−0.02, 0.02)

0.56
(−0.02, 0.02)

9.64
(−0.64, 0.77)

−94.77
(−0.26, 0.28)

23.27
(−2.69, 2.69)

DNAQL (ours) 0.88∗∗
(−0.01, 0.01)

0.75∗∗
(−0.02, 0.02)

0.51∗∗
(−0.02, 0.02)

12.51∗
(−1.05, 0.92)

−93.06∗
(−0.45, 0.48)

15.77
(−1.70, 1.88)

PIC 0.48
(−0.03, 0.04)

0.48
(−0.02, 0.02)

0.31
(−0.02, 0.02)

11.10
(−0.96, 0.92)

−93.94
(−0.41, 0.39)

13.76
(−3.72, 3.94)

INDQL (IL) 0.86
(−0.02, 0.01)

0.70
(−0.01, 0.01)

0.42
(−0.02, 0.02)

13.61
(−1.13, 1.02)

−92.69
(−0.33, 0.32)

15.54
(−1.10, 1.27)

Table 2: MARL settings. The codes for reward column: Individual (I), or team (T). The codes for state space observability
(Observ.): Fully observable (FO), joint fully observable (JFO), and partially observable (PO). The codes for training (Train.)
column: Centralized (C), or decentralized (D). The codes for the base Markov decision problem framework [14]: Markov
game (MG), decentralized Partially observable Markov decision process (dec-POMDP), homogenous Markov game (HMG), and
partially observable Markov game (POMG). The is homogeneous column requires a special structure on agents.

Works Reward Observ. Train.
Base

Framework
Communicates

Observ.
Is

Homogeneous

Lowe et al. [12] T/I PO C Dec-POMDP/POMG No Heterogeneous
Sunehag et al. [20] T PO C Dec-POMDP No Heterogeneous
Zhang et al. [26] I FO D MG No Heterogeneous
Chen et al. [3] I JFO D HMG Yes Homogeneous
DNA-MARL I PO D POMG No Homogeneous

agents interchangeable. To improve observability agents choose
when and to whom communicate their observation. Differently
from other approaches our agents obtain team-𝑉 estimation using
consensus. Experimental results indicate that DNA-MARL outper-
forms both [26] and [3] under partially observable settings. Table 2
summarizes the differences between our DNA-MARL method and
previous networked agents systems.

8 CONCLUSION AND FUTUREWORK
We propose the DNA-MARL that learn to cooperate in a ND-POMG
under the decentralized training and fully decentralized execution
paradigm. The key is performing consensus steps on the 𝑉 -values.
Our experiments show that DNA-MARL agents, with limited access

to system information, can often reach the performance of their
centralized training counter parts and outperform previous works.
Moreover, the framework is quite generic, offering opportunities
for extensions of popular single agent algorithms, e.g., TRPO [18],
PPO [19]. And also combine them with multi-agent belief systems.

ACKNOWLEDGMENTS
This work was supported by national funds through Fundação para
a Ciência e a Tecnologia (FCT) through the projects with references
UIDB/50021/2020 (DOI: 10.54499/UIDB/50021/2020), PTDC/CCI-
COM/5060/2021, and the Center for Responsible AI (ref. n. C628696807-
00454142). Guilherme S. Varela is supported by FCT scholarship
2021.05435.BD

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2094

REFERENCES
[1] Justin A. Boyan and Michael L. Littman. 1993. Packet routing in dynamically

changing networks: a reinforcement learning approach. In Proceedings of the
6th International Conference on Neural Information Processing Systems (Denver,
Colorado) (NIPS’93). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
671–678.

[2] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2010. Multi-agent Rein-
forcement Learning: An Overview. Vol. 310. Sp, 183–221.

[3] Dingyang Chen, Yile Li, and Qi Zhang. 2022. Communication-Efficient Actor-
Critic Methods for Homogeneous Markov Games. In International Conference on
Learning Representations.

[4] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. 2019. A Hitchhiker’s
Guide to Statistical Comparisons of Reinforcement Learning Algorithms. (04
2019).

[5] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor, YuhuaiWu, and Peter Zhokhov.
2017. OpenAI Baselines.

[6] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
ShimonWhiteson. 2018. Counterfactual Multi-Agent Policy Gradients. In Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth In-
novative Applications of Artificial Intelligence Conference and Eighth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence (AAAI’18/IAAI’18/EAAI’18).
AAAI Press, 9.

[7] Sven Gronauer and Klaus Diepold. 2022. Multi-agent deep reinforcement learning:
a survey. Artificial Intelligence Review 55, 2 (2022), 895–943.

[8] Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative
Multi-agent Control Using Deep Reinforcement Learning. In Autonomous Agents
and Multiagent Systems. Springer International Publishing, 66–83.

[9] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. 2019. A Survey and
Critique of Multiagent Deep Reinforcement Learning. Autonomous Agents and
Multi-Agent Systems 33 (2019), 750–797.

[10] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations. https://openreview.net/forum?id=SJU4ayYgl

[11] Iou-Jen Liu, Raymond A. Yeh, and Alexander G. Schwing. 2020. PIC: Permutation
Invariant Critic for Multi-Agent Deep Reinforcement Learning. In Proceedings
of the Conference on Robot Learning (Proceedings of Machine Learning Research,
Vol. 100). PMLR, 590–602.

[12] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
Neural Information Processing Systems (NIPS) (2017).

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2015. Playing Atari with
Deep Reinforcement Learning. Nature 518, 7540 (2015), 529–533.

[14] Frans A. Oliehoek and Christopher Amato. 2016. A Concise Introduction to
Decentralized POMDPs. Springer International Publishing.

[15] Afshin Oroojlooy and Davood Hajinezhad. 2022. A Review of Cooperative
Multi-Agent Deep Reinforcement Learning. Applied Intelligence 53, 11 (2022),
13677–13722.

[16] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano Albrecht.
2021. Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in
Cooperative Tasks. In Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, J. Vanschoren and S. Yeung (Eds.), Vol. 1.

[17] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function Factori-
sation for Deep Multi-Agent Reinforcement Learning. In Proceedings of the 35th
International Conference on Machine Learning, Vol. 80. PMLR, 4295–4304.

[18] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel.
2015. Trust Region Policy Optimization. In Proceedings of the 32nd International
Conference on International Conference onMachine Learning - Volume 37 (ICML’15).
JMLR.org, 1889–1897.

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

[20] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl
Tuyls, and Thore Graepel. 2018. Value-Decomposition Networks For Cooper-
ative Multi-Agent Learning Based On Team Reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS
’18). International Foundation for Autonomous Agents and Multiagent Systems,
2085–2087.

[21] R. Sutton, David A. McAllester, Satinder Singh, and Y. Mansour. 1999. Policy
Gradient Methods for Reinforcement Learning with Function Approximation. In
NIPS.

[22] Hao Tu, Yuhua Du, Hui Yu, Xiaonan Lu, and Srdjan Lukic. 2024. Privacy-
Preserving Robust Consensus for Distributed Microgrid Control Applications.
IEEE Transactions on Industrial Electronics 71, 4 (2024), 3684–3697. https:
//doi.org/10.1109/TIE.2023.3274846

[23] Guilherme S. Varela, Alberto Sardinha, and Francisco S. Melo. 2025. Net-
worked Agents in the Dark: Team Value Learning under Partial Observability.
arXiv:2501.08778 [cs.LG] https://arxiv.org/abs/2501.08778

[24] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. 2007. Distributed average consensus
with least-mean-square deviation. J. Parallel and Distrib. Comput. 67, 1 (2007),
33–46.

[25] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2021. Multi-Agent Reinforcement
Learning: A Selective Overview of Theories and Algorithms. Springer International
Publishing, Cham, 321–384.

[26] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. 2018. Fully
Decentralized Multi-Agent Reinforcement Learning with Networked Agents. In
Proceedings of the 35th International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 80). PMLR, 5872–5881.

[27] Yan Zhang and Michael M. Zavlanos. 2019. Distributed off-Policy Actor-Critic
Reinforcement Learning with Policy Consensus. In 2019 IEEE 58th Conference on
Decision and Control (CDC). 4674–4679.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2095

https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1109/TIE.2023.3274846
https://doi.org/10.1109/TIE.2023.3274846
https://arxiv.org/abs/2501.08778
https://arxiv.org/abs/2501.08778

	Abstract
	1 Introduction
	2 Background
	3 Networked Dynamic POMG
	4 Double Networked Averaging MARL
	4.1 Double Networked Averaging A2C
	4.2 Double Networked Averaging Q-learner

	5 Experiments
	5.1 Scenarios
	5.2 Baselines
	5.3 Evaluation

	6 Results
	6.1 Ablations

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

