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ABSTRACT
Wepropose aminimax-Bayes approach to AdHoc Teamwork (AHT)

that optimizes policies against an adversarial prior over partners,

explicitly accounting for uncertainty about partners at time of de-

ployment. Unlike existing methods that assume a specific distribu-

tion over partners, our approach improves worst-case performance

guarantees. Extensive experiments, including evaluations on coordi-

nated cooking tasks from the Melting Pot suite, show our method’s

superior robustness compared to self-play, fictitious play, and best

response learning. Our work highlights the importance of select-

ing an appropriate training distribution over teammates to achieve

robustness in AHT.
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1 INTRODUCTION
Domain generalisation is often crucial in Reinforcement Learning

(RL) and is typically assessed by placing an agent in novel envi-

ronments [13]. Likewise, in Multi-Agent Reinforcement Learning

(MARL), generalisation to new agents can be evaluated by pairing

a trained policy with unseen actors [1, 5, 21, 26]. While zero-shot

domain adaptation is a valuable property [20, 40], it is equally im-

portant to ensure proper transfer to new behaviours in multi-agent

settings, especially in situations where undesired interactions may

arise [17]. More specifically, Ad Hoc Teamwork (AHT) occurs when

an agent, initially unfamiliar with its teammates, must collaborate

to achieve a common goal. In a world where autonomous agents

are being progressively introduced in such tasks, cooperation with

humans is becoming a major concern [23, 43].

Efforts in AHT have primarily focused on learning and inferring

behavioural models or teammates types [2, 3, 5, 12, 33], adapting to

behaviour shifts [37], and enhancing generalisation by encouraging

diversity in partners during training [11, 21, 22, 30, 44]. However,

these methods provide limited guarantees on the worst-case AHT

performance.

A multi-agent system can encompass numerous and diverse sce-
narios, each characterised by its actors. For example, autonomous
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cars operate alongside human drivers and other autonomous vehi-

cles. Similarly, in a surgical setting, a robot may need to cooperate

with surgeons who have a wide range of different habits and ex-

pertise. In each of these scenarios, we can adopt the perspective

that the focal actors are controlled by an automated agent, whereas

the other actors are viewed as fixed, forming the background of

the task [1, 26]. These scenarios can be viewed as distinct environ-

ments, as each combination of background actors induces different

transition dynamics and reward functions. A common practice in-

volves constructing representative scenarios and training a policy

on a uniform distribution over them [30, 44]. However, this only

optimises performance for that specific distribution.

Recent studies in zero-shot domain transfer showed that se-

lecting an appropriate prior over training environments is key to

learning robust policies [8, 14, 16, 24, 27, 36]. Intuitively, this insight

should apply to the AHT setting as well, suggesting that choosing a

specific prior over scenarios/partners may improve the robustness

of learned policies. Assuming that no information is available about

the teammates at test time (and their distribution), we consider

the worst possible prior over the training set of partners given our

policy, an idea adopted from the minimax-Bayes concept [6].

Contributions. We make the following contributions:

(1) We adapt Minimax-Bayes Reinforcement Learning (MBRL) [8]

to the AHT setting, reasoning about uncertainty with respect

to partners rather than environments (Section 4).

(2) We examine the advantages of using utility and regret for AHT

robustness, and provide solutions to target either metric (Sec-

tion 5).

(3) We study out-of-distribution robustness guarantees (Section 6).

(4) We propose a Gradient Descent-Ascent (GDA) [29] based algo-

rithm, in conjunction with policy-gradient methods, and discuss

its convergence for softmax policies (Section 7).

(5) We conduct extensive experiments to evaluate our approach.

We deploy learned policies on both seen and unseen scenarios

for cooperative problems, including a partially observable cook-

ing task from the Melting Pot suite [1, 26]. We compare our

approach against Self-Play (SP), Fictitious Play (FP) [7, 19] as

well as learning a policy w.r.t. a fixed uniform distribution over

scenarios [30], which is related to fictitious co-play [44], as both

learn the best response to a population of policies (Section 8).

(6) Our results confirm the theory and empirically demonstrate

that our approach leads to the most robust solutions for both

simple and deep RL coordination tasks, even when teammates

are adaptive.

2 RELATEDWORK
Ad Hoc Teamwork. In AHT, we are interested in developing

agents capable of cooperating with other unfamiliar agents without
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any form of prior coordination [3, 5, 39, 43]. Popular approaches

usually involve some form of Population Play (PP), where policies

forming a population are learning by interacting with each other

[1, 26, 30, 32]. Key strategies for ensuring generalisation to new

partners include promoting policy diversity within the training

population [11] and preventing overfitting to training partners [25].

Both Lupu et al. [30] and Strouse et al. [44] previously showed that

learning a best response to a more diverse population leads to im-

proved generalisation. Additionally, Jaderberg et al. [22] showed the

effectiveness of PP when diversity is encouraged through evolving

pseudo-rewards. However, PP still struggles with producing policies

that are robustly collaborative with new partners and sometimes

exhibits overfitting [1, 10, 26].

To further improve AHT, several works suggest inferring the

teammates’ models/types, maintaining a belief about ad hoc part-

ners based on previous interactions within an episode [2, 5]. This

was shown to help substantially in the partially observable setting

[15, 18, 38]. Efforts have also been made to improve the learning

and generalisation of such models to new partners [3, 4, 33].

An alternative approach proposed by Li et al. [28] involves a

robust formulation of deep deterministic policy gradients, assuming

worst-case teammates. Unlike our setup, they train a joint policy

that remains consistent throughout learning, and design their algo-

rithm specifically for deep deterministic policy gradients, whereas

our approach is compatible with any policy-gradient algorithm.

Even though the aforementioned methods attempt to improve

cooperative robustness, they always assume specific distributions

for the partners. For example, Jaderberg et al. [22] used a distribu-

tion favoring the matchmaking of policies of similar levels with the

intuition that the reward signal is stronger in those cases. However,

it does not provide any insights on its effects on AHT robustness.

As a result, the actual impact of the training partner distribution

on robustness is left under-explored. This holds significant poten-

tial, as it can be exploited in conjunction with previously studied

mechanisms to substantially enhance AHT robustness.

Zero-shot Domain Transfer. AHT can be seen as a form of zero-

shot domain transfer. Each possible team composition involving the

focal agent can be considered a different environment. In the single-

agent setting, Jiang et al. [24] demonstrated that adapting the train-

ing environment distribution by prioritising environments with

higher prediction loss (a measure of the policy’s lack of knowledge)

leads to improved sample efficiency and generalisation. Building

on this idea, Garcin et al. [16] prioritised environments where the

mutual information between the learning policy’s internal represen-

tation and the environment identity was lower, using information

theory to achieve similar results. The idea of tampering with the

environment distribution was also explored by Pinto et al. [36], who

employed a maximin utility formulation to choose continuous ad-

versarial environment perturbations throughout learning. Instead

of utility, Dennis et al. [14] stressed the advantages of using regret

by proposing a training environment sampling scheme avoiding

entirely unsolvable and uninformative environments. Most relevant

to this work, Buening et al. [8] conducted a study over worst-case

priors (for both utility and regret) over training environments, and

proved that worst-case distributions are well-suited for domain

transfer. Li et al. [27] later reaffirmed those results, learning worst-

case distributions within ambiguity sets of subjective priors. Finally,

there exist works on domain transfer in the MARL setting [40], but

this differs from our focus on transferring to new partners. This

related work is consistently in favor of caring about environment

distributions for robustness, providing strong motivation to bring

this concern to AHT.

3 PROBLEM FORMULATION
3.1 Preliminaries
An𝑚-player Partially Observable Markov Game (POMG) is given

by a tuple 𝜇 = ⟨S,X,A,O, 𝑃, 𝜌,𝑇 ⟩ defined on finite sets of states S,
observations X and actions A. The observation function O : S ×
{1, . . . ,𝑚} → X provides a state space view for each player. In each

state, each player 𝑖 chooses an action 𝑎𝑖 ∈ A. Following their joint

action a = (𝑎1, . . . , 𝑎𝑚) ∈ A𝑚
, the state is updated according to the

transition function 𝑃 : S × A𝑚 → Δ(S). After a transition, each
player receives a reward defined by 𝜌 : S × A𝑚 × {1, . . . ,𝑚} → R.
The game ends after 𝑇 transitions. Permuting player indices does

not have any effect on 𝜇. We denote ∥𝜌 ∥∞ the maximum absolute

step reward.

A policy 𝜋 : X × A × X × A × · · · × X → Δ(A) is a probabil-
ity distribution over a single agent’s actions, conditioned on that

agent’s history of observations and actions. We denote Π the set of

all policies and ΠD ⊂ Π the set of deterministic policies.

3.2 Scenarios
Let a scenario 𝜎 = (𝑐, 𝝅𝑏 ) be defined by its number of focal players
𝑐 , and its background players 𝝅𝑏 = (𝜋𝑏

1
, . . . , 𝜋𝑏𝑚−𝑐 ) ∈ Π𝑚−𝑐

. We

say we deploy a policy 𝜋 𝑓
in scenario 𝜎 if the 𝑐 focal players are

equal to 𝜋 𝑓
. Hence, in addition to the 𝑚 − 𝑐 many background

policies 𝝅𝑏
, there are 𝑐 many focal policies 𝝅 𝑓 = (𝜋 𝑓 , . . . , 𝜋 𝑓 ). We

denote a𝑓 ∈ A𝑐
and a𝑏 ∈ A𝑚−𝑐

the joint actions of the focal and

background players, respectively. A background population B ⊂ Π
is a finite set of policies, to which we assign a set of scenarios:

1

Σ(B) B {(𝑐, 𝝅𝑏 ) | 1 ≤ 𝑐 ≤ 𝑚, 𝝅𝑏 ∈ B𝑚−𝑐 }. (1)

A scenario 𝜎 on 𝜇 can be viewed as its own 𝑐-player POMG, through

the marginalisation of the policies of its background players.
2
We

denote 𝜇 (𝜎) = ⟨S,X,A,O𝜎 , 𝑃𝜎 , 𝜌𝜎 , 𝛾,𝑇 ⟩ the POMG induced by

scenario 𝜎 , where O𝜎 : S×{1, . . . , 𝑐} → X is the corresponding ob-

servation function, 𝑃𝜎 : S ×A𝑐 → Δ(S) is the transition function

given by

𝑃𝜎 (𝑠′ | 𝑠, a𝑓 ) =
{
𝑃 (𝑠′ | 𝑠, a𝑓 ), 𝑐 =𝑚∑

a𝑏
(
𝑃 (𝑠′ | 𝑠, a𝑓 , a𝑏 )∏𝑖 𝝅

𝑏
𝑖
(a𝑏

𝑖
| ℎ𝑖 )

)
, 𝑐 < 𝑚

1
The definition of background populations in (1) is largely inspired from the work of

Leibo et al. [26] and Agapiou et al. [1]. This is the most general formulation of the

problem and will be used as is throughout this work. Depending on the game 𝜇, a

restricted set may make more sense, such as limiting to 𝑐 = 1.

2
Each scenario can be seen as a decentralised partially observable Markov decision

process [34] constrained by the fact that the 𝑐 players are copies.
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and 𝜌𝜎 : S × A𝑐 × {1, . . . , 𝑐} → R is the induced reward function

with:

𝜌𝜎 (𝑠, a𝑓 , 𝑖) =
{
𝜌 (𝑠, a𝑓 , 𝑖), 𝑐 =𝑚∑
a𝑏

(
𝜌 (𝑠, a𝑓 , a𝑏 , 𝑖)∏𝑗 𝝅

𝑏
𝑗
(a𝑏

𝑗
|ℎ 𝑗 )

)
, 𝑐 < 𝑚

where ℎ 𝑗 is the history of observations and actions of the 𝑗-th

policy and a𝑏
𝑗
its action in a𝑏 . We denote the scenario that only

involves the focal policy, i.e. the universalisation scenario [26], by

𝜎SP = (𝑚, ∅). This setup is closely related to N-agent AHT [46], in

that the proportion of focal/background players can vary and is not

known in advance.

3.3 Evaluation
The expected utility of a policy 𝜋 in scenario 𝜎 is the mean return

of the focal policies given by the expected focal-per-capita return
[1, 26]:

𝑈 (𝜋, 𝜎) B
𝑇∑︁
𝑡=1

1

𝑐

𝑐∑︁
𝑖=1

E𝜋
𝜇 (𝜎 )

[
𝜌𝜎 (𝑠𝑡 , a𝑓𝑡 , 𝑖)

]
. (2)

𝑈 ∗ (𝜎) B max𝜋∈Π𝑈 (𝜋, 𝜎) denotes the maximal utility achievable

in scenario 𝜎 . This definition for utility represents the need for

autonomous agents to always maximise the mean joint rewards

of its copies, regardless of the scenario. We can further define the

notion of regret incurred by deploying some policy 𝜋 on scenario

𝜎 , as the gap between the maximal utility and the utility of 𝜋 on 𝜎 :

𝑅(𝜋, 𝜎) B 𝑈 ∗ (𝜎) −𝑈 (𝜋, 𝜎) . (3)

To assess a learning method in terms of AHT, we use the evaluation

protocol of Leibo et al. [26]. This has two phases:

(1) Training phase: A background population Btest
is kept hidden.

The policy learner has access to the game 𝜇 with no restrictions,

apart from accessing Btest
. For example, the learner is free to

use a modified instance 𝜇′ of 𝜇, where the observation function,

O, may be adjusted to include information about other players,

or where the reward function, 𝜌 , could be altered to provide

joint rewards instead of individual ones.

(2) Testing phase: The obtained policy is fixed and cannot be

trained any further. We compute the performance of the policy

on 𝜇 by taking its average expected utility across a series of

unseen test scenarios Σtest ⊂ Σ(Btest):

𝑈avg (𝜋, Σ) B
1

|Σ|
∑︁
𝜎∈Σ

𝑈 (𝜋, 𝜎), (4)

In addition, we consider twometrics related to robustness, namely

worst-case utility and worst-case regret:

𝑈min (𝜋, Σ) B min

𝜎∈Σ
𝑈 (𝜋, 𝜎), 𝑅max (𝜋, Σ) B max

𝜎∈Σ
𝑅(𝜋, 𝜎) . (5)

Maximising 𝑈min is typically preferable when falling below a

certain utility threshold must be avoided at all costs; for instance

minimising casualties in a surgical context. Conversely, min-

imising 𝑅max avoids decisions that lead to significantly worse

utility than the optimal utility.

The final objective is to design a learning process outputting a policy

that reliably maximises utility or minimises regret on possibly

unseen scenarios.

3.4 General Assumptions
To ensure our setting aligns with the AHT literature, we must

adhere to three assumptions [31]: a) the absence of prior coordi-

nation. The learner must be capable of cooperating with the team

on-the-fly, without relying on previously established collaboration

strategies. b) There is no control over teammates, the learner can

control its own copies but not other agents in the configuration. c)

All agents (focal and background) are assumed to have a partially

shared objective. Their reward function may be slightly different,

reflecting varying preferences. In this work, we choose to address

this last point by assuming a class of possible reward functions for

the background players.

4 ACHIEVING ROBUST AHT
To learn a policy able to cooperate with new partners, a straight-

forward idea is to reconstruct scenarios that would be encountered

in nature. A roadblock to this approach however is that it requires

two main ingredients: a) a diverse pool of partners, and b) a prior

distribution over them. The prior, often neglected, is important

as it captures our uncertainty about the true partners observed in

nature.

In Section 4.1, we reflect on motivating previous work on di-

verse behaviour generation, before describing our own adopted

approach. Section 4.2 then introduces the Minimax-Bayes idea to

AHT, by stating the connections of our setting to Minimax-Bayes

Reinforcement Learning (MBRL).

4.1 Constructing Training Scenarios
Before learning any robust policy, we need to construct a diverse

set of scenarios. A background population that encompasses a wide

range of behaviours is needed in order to reconstruct scenarios

existing in nature. Previous work on AHT tackled the issue in var-

ious manners, such as using genetic algorithms [33], rule-based

policies generated with MAP Elites [9], SP policies [44], explicit

behavior diversification through regularisation [30], or through

evolved pseudo-rewards [22]. Based on real-life examples and aim-

ing to thoroughly assess the effects of partner priors, we adopt the

following approach:

• We assume a class of reward functions for background policies:

𝜌
social+risk

(𝑠, a, 𝑖) = 𝜌+
social

(𝑠, a, 𝑖) − 𝛿𝑖𝜌
−
social

(𝑠, a, 𝑖),
with 𝜌

social
defined as

𝜌
social

(𝑠, a, 𝑖) = 𝜆𝑖𝜌 (𝑠, a, 𝑖) + (1 − 𝜆𝑖 )
𝑚∑︁
𝑗=1

𝜌 (𝑠, a, 𝑗),

where 𝜌+ and 𝜌− are the positive and negative parts of 𝜌 , and

𝜆𝑖 and 𝛿𝑖 denoting levels of prosociality [35] and risk-aversion,

respectively. In other words, each background policy has their

own preferences (𝜆𝑘 , 𝛿𝑘 ).

• Policies are organised into sub-populations B =
⋃

𝑘 B𝑘 of vary-

ing sizes.

• Each sub-populations are separately trained using PP.

Given the diverse preferences and varying sizes of the sub-populations,

distinct habits and established conventions aremore likely to emerge

from each group [44]. This choice for constructing scenarios en-

sures a diverse generation of scenarios, important to ablate the
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Figure 1: Illustration of the framework used in this paper.
Prior to training the focal policy 𝜋 , background policies with
different preferences (𝜆𝑖 , 𝛿𝑖 ) learn by interacting within sub-
populations of varying sizes. These sub-populations are then
combined to form a background population, Btrain, used as
a common ‘training dataset’ for all algorithms.
Our primary focus is on the training phase, where the focal
policy 𝜋 is trained while the distribution 𝛽 over scenarios
is tuned according to the proposed minimax game. These
scenarios mix copies of 𝜋 with policies from Btrain, where
the self-play scenario 𝜎SP has the policy interacting only
with copies of itself.

effects of various scenario priors on AHT robustness. Note that this

choice for constructing scenarios remains arbitrary and is not the

main focus of our work.

4.2 Minimax-Bayes AHT
In the standard single-agent Bayesian RL setting, the learner se-

lects a subjective belief 𝛽 over candidate Markov Decision Pro-

cesses (MDPs)M for the unknown, true environment 𝜇∗ ∈ M. The

learner’s objective is to maximise its expected expected utility with

respect to the chosen prior𝑈 (𝜋, 𝛽) =
∫
M 𝑈 (𝜋, 𝜇) d𝛽 (𝜇), i.e. finding

the Bayes-optimal policy. In MBRL, Buening et al. [8] proposed con-

sidering the worst possible prior for the agent, without knowledge

of the policy that will be chosen. This approach can be interpreted

as nature playing the minimising player against the policy learner

in a simultaneous-move zero-sum normal-form game. Learning

against a worst-case prior intuitively makes the policy more robust,

as it prepares for the worst outcomes.

To transfer this idea to our setting, we remark that any finite

background population B provides a finite set of POMGs MB =

{𝜇 (𝜎) |𝜎 ∈ Σ(B)}. The principal difference here is the use of POMGs

rather than MDPs. We extend the notion of expected utility with

respect to a prior over scenarios, i.e. when 𝛽 ∈ Δ(Σ(B)):

𝑈 (𝜋, 𝛽) B E𝜎∼𝛽 [𝑈 (𝜋, 𝜎)] =
∑︁
𝜎

𝑈 (𝜋, 𝜎)𝛽 (𝜎) . (6)

This allows us to formulate the following maximin game:
3

max

𝜋∈Π
min

𝛽∈Δ(Σ(B) )
𝑈 (𝜋, 𝛽) . (7)

Similarly to Buening et al. [8], we are interested in knowingwhether

such a game has a solution (i.e., a value), assuming that nature and

the agent play simultaneously without knowledge of each other’s

move. This is relevant in our setting because the policy learner

does not know the true distribution of partners available in nature,

while nature’s distribution does not depend on the policy that will

be picked. Fortunately, (7) has a value when B is finite.

Corollary 4.1 (Buening et al. [8]). For an𝑚-player POMG 𝜇

in a finite state-action space, with a known reward function and a
finite horizon, and a background population B, the maximin game
(7) has a value:

max

𝜋∈Π
min

𝛽∈Δ(Σ(B) )
𝑈 (𝜋, 𝛽) = min

𝛽∈Δ(Σ(B) )
max

𝜋∈Π
𝑈 (𝜋, 𝛽). (8)

Proof. First, observe that for any stochastic policy 𝜋 ∈ Π, there
exists a distribution over deterministic policies𝜙 ∈ Δ(ΠD) such that
𝜋 (𝑎𝑡 |ℎ𝑡 ) =

∑
𝑑∈ΠD 𝑑 (𝑎𝑡 |ℎ𝑡 )𝜙 (𝑑). Consequently, we can rewrite

the utility as 𝑈 (𝜋, 𝛽) =
∑
𝑑∈ΠD

∑
𝜎∈Σ(B) 𝑈 (𝑑, 𝜎)𝜙 (𝑑)𝛽 (𝜎). This

demonstrates that𝑈 is bilinear in 𝜙 and 𝛽 , which allows us to apply

the minimax theorem, thus proving the result. □

Importantly, prior work that chooses arbitrarily a fixed prior is

limited in terms of robustness guarantees: it only ensures maximal

utility for their specific prior. In contrast, a policy 𝜋∗
𝑈
solving the

maximin utility problem (7) has its utility lower-bounded on Σ(B):
∀𝛽 ∈ Δ(Σ(B)), 𝑈 (𝜋∗𝑈 , 𝛽) ≥ 𝑈 (𝜋∗𝑈 , 𝛽

∗
𝑈 ), (9)

where 𝛽∗
𝑈

is the worst-case prior for 𝜋∗
𝑈
. Simply put, 𝜋∗

𝑈
performs

the worst when the prior is its worst-case 𝛽∗
𝑈
, but can only improve

when the prior deviates from 𝛽∗
𝑈
. Additionally, it is also optimal on

the worst-case prior:

∀𝜋 ∈ Π, 𝑈 (𝜋∗𝑈 , 𝛽
∗
𝑈 ) ≥ 𝑈 (𝜋, 𝛽∗𝑈 ). (10)

Note that this differs fundamentally from merely finding the best

response to a fixedworst-case prior argmax𝜋 𝑈 (𝜋, 𝛽∗
𝑈
), which once

again, only has a guaranteed optimal utility on 𝛽∗
𝑈
.

Corollary 4.2 (Buening et al. [8]). For any policy 𝜋 ∈ Π and
background population B ⊂ Π, we have

min

𝛽∈Δ(Σ(B) )
𝑈 (𝜋, 𝛽) = 𝑈min (𝜋, Σ(B)). (11)

Proof. This follows directly from the results of Buening et al.

[8], using utility in place of regret and recognising that Dirac dis-

tributions associated with scenarios in Σ(B) are always contained
in Δ(Σ(B)). □

Lemma 4.3. For any background population B ⊂ Π and 𝜋∗
𝑈
the

policy solving the maximin utility game (7), we have

𝑈min (𝜋∗𝑈 , Σ(B)) = max

𝜋∈Π
𝑈min (𝜋, Σ(B)). (12)

Proof. ByCorollary 4.2, we canwrite thatmax𝜋 min𝛽 𝑈 (𝜋, 𝛽) =
max𝜋 𝑈min (𝜋, Σ(B)). However, we also havemax𝜋 min𝛽 𝑈 (𝜋, 𝛽) =
min𝛽 𝑈 (𝜋∗

𝑈
, 𝛽) = 𝑈min (𝜋∗𝑈 , Σ(B)). □

3
If we have a subjective prior, we could learn the distribution within an 𝜖-ball around

that prior [27]. We however consider the full simplex for simplicity.
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Thus, a policy solving the maximin utility game (7) is guaranteed

to have an optimal worst-case utility on its training set.

5 UTILITY OR REGRET?
Optimising for the worst-case utility (7) might be problematic. Na-

ture could resort to only picking scenarios where the focal play-

ers achieve the worst possible score. Then, the distribution triv-

ially minimises utility for any chosen policy, preventing the lat-

ter to learn anything. Buening et al. [8] addresses this issue by

instead considering the regret of a policy. The difference is that

‘impossible’ scenarios will always yield zero regret for any policy,

thus becoming irrelevant for a regret-maximising nature. Letting

𝐿(𝜋, 𝛽) B ∑
𝜎 𝑅(𝜋, 𝜇)𝛽 (𝜎) be the Bayesian regret with respect to a

prior 𝛽 , we now formulate the following minimax regret game:

min

𝜋∈Π
max

𝛽∈Δ(Σ(B) )
𝐿(𝜋, 𝛽) . (13)

One can also prove that this above game has a value. Moreover,

a solution (𝜋∗
𝑅
, 𝛽∗

𝑅
) to (13) exhibits properties analogous to those

in equations (9), (10) and (12), but in terms of regret. 𝜋∗
𝑅
has its

Bayesian regret upper-bounded by 𝐿(𝜋∗
𝑅
, 𝛽∗

𝑅
) on Σ(B). It is also

optimal under the worst-case prior 𝛽∗
𝑅
and achieves optimal worst-

case regret 𝑅max on Σ(B).
Should utility or regret be used as an objective? Exploiting regret

ensures that scenarios on which you can improve the most are

sampled more often. It also ensures that degenerate scenarios get

discarded as their regret is always zero. However, it demands the

calculation of best responses for each scenario, which becomes

taxing as the number of scenarios or problem complexity grows. To

reduce the computational burden, we can approximate those best

responses, or subsample the set of scenarios. An alternative way is

to make use of the utility notion under some additional conditions.

Definition 5.1 (Non-degenerative population). A background pop-

ulation of policies B ⊂ Π is non-degenerative if and only if for

any scenario 𝜎 ∈ Σ(B), there exists two distinct policies 𝜋1 and

𝜋2 ∈ Π, 𝜋1 ≠ 𝜋2 such that𝑈 (𝜋1, 𝜎) ≠ 𝑈 (𝜋2, 𝜎).

Lemma 5.2. If a background populationB ⊂ Π is non-degenerative,
then for any scenario 𝜎 ∈ Σ(B), there exists a policy 𝜋 ∈ Π such that
𝑅(𝜋, 𝜎) > 0.

Proof. B is non-degenerative, for any scenario 𝜎 ∈ Σ(B) there
must exist two policies 𝜋1 and 𝜋2 such that 𝑈 (𝜋1, 𝜎) > 𝑈 (𝜋2, 𝜎).
We have by definition 𝑈 ∗ (𝜎) ≥ 𝑈 (𝜋1, 𝜎), hence 𝑅(𝜋2, 𝜎) > 0. □

Making the assumption that a background population is non-

degenerative is in general realistic for cooperative tasks. This trans-

lates into only considering reasonable behaviors for the background

population, or tasks where teammates cannot completely cancel

out the actions of the focal players. Under the assumption of a non-

degenerative background population, no distribution can deadlock

the policy learner into stale scenarios. Hence, the utility-minimising

opponent in Equation 7 can no longer trivially minimise utility. For

the remainder of the paper, background populations are assumed

to be non-degenerative.

6 OUT-OF-DISTRIBUTION ROBUSTNESS
As already stated in Section 4.1, having a diverse set of scenarios that

adequately represents the true set of scenarios is crucial. However,

since it is often impractical to perfectly replicate the true set, the

prior used during training may not have the same support as the

true distribution observed in nature. In such cases, the guarantees

outlined in Section 4.2 no longer hold on the true distribution. In

order to state further robustness guarantees, an option is to assume

that scenarios in the true scenario set are close to the training

scenarios. To quantify the closeness between scenarios, we first

define the distance between two policy vectors as their maximum

total variation across all states:

𝑑 (𝝅 , 𝝅 ′) = max

𝑠∈S

∑︁
𝑖

∑︁
𝑎

��𝝅𝑖 (𝑎 |𝑠) − 𝝅 ′
𝑖 (𝑎 |𝑠)

��. (14)

We define the scenario distance as the minimum distance between

policy vectors across permutations of the background policies:

𝑑 (𝜎, 𝜎′) = min

𝝅 ,𝝅 ′∈Perm(𝝅𝑏 )×Perm(𝝅𝑏′ )
𝑑 (𝝅 , 𝝅 ′), (15)

This metric measures the similarity between the background poli-

cies of two scenarios. Scenarios can only be compared if they

have the same number of focal players (e.g., 𝜎 = (𝑐, 𝝅𝑏 ) and

𝜎′ = (𝑐, 𝝅𝑏′ )).

Definition 6.1 (𝜖-net of a scenario set). A finite set of scenarios Σ
is called an 𝜖-net of a scenario set 𝑆 if and only if, for every scenario

𝜎 ∈ 𝑆 , there exists a scenario 𝜎′ ∈ Σ such that 𝑑 (𝜎, 𝜎′) < 𝜖 .

Lemma 6.2. Let Σ be an 𝜖-net for a scenario set 𝑆 . For any policy
𝜋 ∈ Π and scenario 𝜎 ∈ 𝑆 , there is a scenario 𝜎′ ∈ Σ that verifies:��𝑈 (𝜋, 𝜎) −𝑈 (𝜋, 𝜎′)

�� < 𝜖𝑇 2∥𝜌 ∥∞
2

. (16)

Proof Sketch. The result is obtained by using the fact that

for any pairs of 𝜖-close scenarios 𝜎, 𝜎′ and any 𝑠, a𝑓 , 𝑖 , we have∑
𝑠′ |𝑃𝜎 (𝑠′ |𝑠, a𝑓 ) −𝑃𝜎 ′ (𝑠′ |𝑠, a𝑓 ) | < 𝜖 and |𝜌𝜎 (𝑠, a𝑓 , 𝑖) − 𝜌𝜎 ′ (𝑠, a𝑓 , 𝑖) |

< 𝜖 ∥𝜌 ∥∞. The proof is concluded by showing by induction that for

all 𝑡 and 𝑠 , |𝑈𝑡 (𝜋, 𝜎, 𝑠)−𝑈𝑡 (𝜋, 𝜎′, 𝑠) | < 1

2
𝜖 (𝑇−𝑡+1) (𝑇−𝑡)∥𝜌 ∥∞. □

Lemma 6.3. Let Σ be an 𝜖-net for some scenario set 𝑆 . For any
policy 𝜋 ∈ Π and scenario 𝜎 ∈ 𝑆 , there is a scenario 𝜎′ ∈ Σ such that��𝑅(𝜋, 𝜎) − 𝑅(𝜋, 𝜎′)

�� < 𝜖𝑇 2∥𝜌 ∥∞ . (17)

Proof Sketch. The result is obtained by both using the identity

|𝑈 ∗ (𝜎)−𝑈 ∗ (𝜎′) | ≤ max𝜋 |𝑈 (𝜋, 𝜎)−𝑈 (𝜋, 𝜎′) | and noticing that for
any policy 𝜋 , |𝑅(𝜋, 𝜎) − 𝑅(𝜋, 𝜎′) | ≤ |𝑈 ∗ (𝜎) −𝑈 ∗ (𝜎′) | + |𝑈 (𝜋, 𝜎) −
𝑈 (𝜋, 𝜎′) |. □

Lemma 6.4. Let Σ be an 𝜖-net for some scenario set 𝑆 , and 𝜋∗
𝑈
the

optimal policy for the maximin utility problem (7) on Σ, then

𝑈min (𝜋∗𝑈 , 𝑆) > max

𝜋∈Π

(
𝑈min (𝜋, Σ) −

𝜖𝑇 2∥𝜌 ∥∞
2

)
. (18)

Proof Sketch. We denote 𝜎wc (Σ) and 𝜎wc (𝑆) the worst-case
scenarios for 𝜋∗

𝑈
on Σ and 𝑆 , and reason on the distance between

𝜎wc (Σ) and 𝜎wc (𝑆). If 𝑑 (𝜎wc (Σ), 𝜎wc (𝑆)′) < 𝜖 , then Lemma 6.2

applies. Otherwise, since Σ is an 𝜖-net, we can find another scenario

𝜎𝜖 ∈ Σ that is 𝜖-close to 𝜎wc (𝑆) and use the fact that the utility of

𝜋∗
𝑈
is by definition higher on 𝜎𝜖 than on 𝜎wc (Σ). □
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Algorithm 1 Background-Focal GDA

1: Input Background policies B, and learning rates (𝜂𝜋 , 𝜂𝛽 ).

2: Simplex projector P
3: Initialise the main policy parameters 𝜃0 randomly

4: Initialise the distribution as uniform 𝛽0 = U(Σ(B))
5: for 𝑡 = 0, . . . , 𝑁 − 1 do
6: Compute 𝑈 (𝜋𝜃𝑡 , 𝜎) for all 𝜎 ∈ Σ(B)
7: Compute 𝑈 (𝜋𝜃𝑡 , 𝛽𝑡 ) =

∑
𝜎 𝑈 (𝜋𝜃𝑡 , 𝜎)𝛽𝑡 (𝜎)

8: Compute 𝑅(𝜋𝜃𝑡 , 𝜎) = 𝑈 ∗ (𝜎) −𝑈 (𝜋𝜃𝑡 , 𝜎) for all 𝜎 ∈ Σ(B)
9: Obtain 𝐿(𝜋𝜃𝑡 , 𝛽𝑡 ) =

∑
𝜎 𝑅(𝜋𝜃𝑡 , 𝜎)𝛽𝑡 (𝜎)

10: if solving maximin utility (7) then
11: Update distribution 𝛽𝑡+1 = P(𝛽𝑡 − 𝜂𝛽∇𝛽𝑈 (𝜋𝜃𝑡 , 𝛽𝑡 ))
12: if solving minimax regret (13) then
13: Update distribution 𝛽𝑡+1 = P(𝛽𝑡 + 𝜂𝛽∇𝛽𝐿(𝜋𝜃𝑡 , 𝛽𝑡 ))
14: Update policy parameters 𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝜃∇𝜃𝑈 (𝜋𝜃𝑡 , 𝛽𝑡 )
15: return 𝜃∗, 𝛽∗ uniformly sampled from {(𝜃1, 𝛽1), . . . , (𝜃𝑁 , 𝛽𝑁 )}

Lemma 6.5. Let Σ be an 𝜖-net for some scenario set 𝑆 , and 𝜋∗
𝑅
the

optimal policy for the minimax regret problem (13) on Σ, then

𝑅max (𝜋∗𝑅, 𝑆) < min

𝜋∈Π

(
𝑅max (𝜋, Σ) + 𝜖𝑇 2∥𝜌 ∥∞

)
. (19)

Proof Sketch. We prove, analogically to Lemma 6.4, the result

using Lemma 6.3 in place of Lemma 6.2. □

Lemmas 6.4 and 6.5 provide worst-case guarantees on arbitrary

sets of scenarios, for policies solving the minimax problems. This

also means that we can have those guarantees on non-finite sets

of scenarios. Importantly, as long as we have an 𝜖-net of training

scenarios for the true set, the policy solving the maximin utility

(or minimax regret) problem has a strong worst-case utility (or

regret) guarantee. In contrast, it is impossible to guarantee anything
additional about the average utility𝑈avg on the true set, as the latter

could very well include scenarios that are all 𝜖-close to the worst-

case scenarios of the training set. For this reason, the average utility

on the true set can be as low as the worst-case utility.

7 COMPUTING SOLUTIONS
We now desire to calculate the solution pairs for both the maximin

utility (7) and minimax regret (13) games. Buening et al. [8] theoret-

ically proved that GDA has convergence guarantees when the game

is played between a policy learned with softmax parameterisation

and nature learning its distribution over a finite set of MDPs. These

results apply if all scenarios induce single-agent POMGs, as partial

observability does not interfere with proving the required proper-

ties. However, when the focal policy is deployed in a scenario with

𝑐 > 1 copies, the game is no longer single-agent. To approximate

the reduction of these multi-agent POMGs to single-agent POMGs

during training, we propose using delayed versions 𝜋𝑡−𝑑 of the fo-

cal policy 𝜋𝑡 for the 𝑐 − 1 remaining copies. This common practice

smooths the behavior of the copies and favours proper convergence

by treating the copies as fixed policies.

Algorithm 1, a GDA algorithm adapted to our setting, can be em-

ployed to learn solutions for both the maximin utility and minimax

regret problems. Furthermore, in case the POMG is not known, one

can straightforwardly adapt the algorithm to a stochastic version,

Table 1: Payoff matrix of the Prisoner’s Dilemma.

Cooperate Defect

Cooperate (4, 4) (0, 5)
Defect (5, 0) (1, 1)

by resorting to sampling scenarios and performing policy rollouts

to estimate utility, regret, and gradients.

8 EXPERIMENTS
The aim of our experiments is to highlight the importance of part-

ner distribution in the learning process. To achieve this, we evaluate

our proposed strategies, Maximin Utility (MU) and Minimax Regret

(MR), on two distinct problems. First, we consider the fully known

and observable Iterated Prisoner’s Dilemma to validate the theoret-

ical results. Following this, we test our approaches on a deep-RL

task, the Collaborative Cooking (Overcooked) game [1, 10, 26, 44].

We remind that we want to optimise policies with respect to the

focal-per-capita return (2) rather than individual returns. Naturally,

across all of our experiments, we reward focal policies with av-

erage focal step rewards. For each scenario 𝜎 , this is defined as

𝜌train𝜎 (𝑠, a𝑓 , 𝑖) = 1

𝑐

∑𝑐
𝑗=1 𝜌𝜎 (𝑠, a𝑓 , 𝑗). Throughout our experiments,

we benchmark against three distribution management strategies:

• Population Best Response (PBR): uniform distribution over sce-

narios,

• Self-Play (SP): playing solely with copies of the focal policy,

• Fictitious Play (FP): sampling partners uniformly from the his-

tory of focal policies 𝜋0, . . . , 𝜋𝑡 .

8.1 Iterated Prisoner’s Dilemma
In these experiments, all computations can be exact. This includes

the gradient calculation for the prior, as well as for the agent’s

policies. We focus on the Iterated Prisoner’s Dilemma, where two

players play the matrix game (Table 1) repeatedly for 𝑇 = 3 rounds.

Experimental Setup. In the Iterated Prisoner’s Dilemma, play-

ers receive and observe rewards based on their chosen actions,

specified by the payoff matrix. The game has one state, and the

outcomes observed are enough to determine the joint actions, mak-

ing it fully observable. We learn softmax, fully adaptive policies,

where actions depend on the entire history of observations and

actions. Unlike other experiments, we do not use the approach

described in Section 4.1. Instead, the learner interacts with a back-

ground population Btrain
composed of nine ad-hoc policies, such

as pure cooperation/defection, tit-for-tat, cooperate-until-defected,

and fully random. For AHT assessment, we adequately construct a

test background population Btest
, ensuring that its scenarios are

𝜖-close to those in the training phase. Specifically, we uniformly

sample 512 stochastic policies that are 𝜖-close to the policies in the

training background population, setting 𝜖 = 0.5.

Results. Table 2 summarises the performance on both training

and test sets. As expected, on the training set, PBR performs the

best under the uniform prior (𝑈avg), MU has the highest worst-case

utility (𝑈min), and MR exhibits the lowest worst-case regret (𝑅max).
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Table 2: Scores on the Iterated Prisoner’s Dilemma. A higher
value is desired for average utility (𝑈avg) and worst-case util-
ity (𝑈min), while a lower worst-case regret (𝑅max) is better.

Σ(Btrain ) Σ(Btest )

𝑈avg 𝑈min 𝑅max 𝑈avg 𝑈min 𝑅max

Maximin Utility (MU) 7.69 3.00 9.00 8.34 3.00 9.00

Minimax Regret (MR) 8.23 2.26 3.79 7.96 2.78 4.35
Population Best Response (PBR) 8.54 2.00 4.97 8.07 2.48 5.63

Fictitious Play (FP) 7.06 0.14 10.56 6.33 0.56 9.96

Self-Play (SP) 7.25 0.47 10.19 6.49 0.86 9.65

Random 7.40 1.50 5.50 7.47 2.18 5.20

On the test set however, MU outperforms PBR in terms of aver-

age utility and maintains the highest worst-case utility, while MR

continues to excel in minimising worst-case regret. These results

indicate that best responses to populations does not ensure the best

robustness to new partners. SP and FP agents as well, overfit to

their established conventions, leading to poor transferability across

training and test policies. Figure 2 visualises the learned policies

under different distribution regimes, highlighting their disparity.

For example, the population best response is a strategy close to

"cooperate-until-defected", while MU’s policy heavily favors de-

fection. Crucially, this figure points to a potential improvement

for future work: during optimisation, the worst-case distribution

can force policies onto a narrow subset of scenarios, leaving others

unexplored. Due to the MU regime, the policy is forced to face

a pure defecting opponent, its worst-case scenario, entirely cut-

ting its exposure to cooperative strategies. As seen in Figure 2a,

the policy does not know what to do if the opponent chooses to

collaborate. This suggests that it is possible to have a policy with

equal worst-case utility but improved worst-case regret and overall

performance.

8.2 Robust AHT on Collaborative Cooking
For this section, we tackle the Collaborative Cooking game [1],

where two players act as chefs in a gridworld kitchen, working

together to deliver as many tomato soup dishes as possible within a

set time. Each have to collect tomatoes, cook them, prepare dishes,

and deliver the soup. Successful deliveries reward both players

equally.
4
Players must navigate the kitchen, interact with objects

in the right order, and coordinate with each other. Each player has

a local, partial RGB view of the environment. All of our policies in

this section are using deep recurrent (LSTM) neural networks.

Experimental Setup. Two separate background populations,Btrain

and Btest
, are generated according to Section 4.1. Both populations

are trained with an identical setup, differing only in their seed. Each

is partitioned into four sub-populations of sizes 2, 3, and 5, totaling

10 policies. Prosociality and risk-aversion for all background poli-

cies are sampled uniformly in [−0.2, 1.2] and [0.1, 2] respectively.5
For a fair comparison and to focus on scenario distribution learn-

ing, we assume that Btrain
is readily available to all approaches,

4
When training background policies specifically, we only assign a reward of 20 points

to the player who delivers the dish, and 1 point to players who contribute by placing a

tomato into the pot. This incentivises diverse behaviour generation.

5
Those intervals were chosen empirically to ensure diverse and cooperative policies.
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Figure 2: The different policies obtained in function of their
training distribution regime. "c" and "d" stands for the "coop-
erate" and "defect" actions, respectively. The learned policy
action probabilities (rounded to one decimal) are in blue,
while the opponent actions are in red. Players take actions
simultaneously over the course of three rounds (opponent’s
last action is not shown).

(a) Circuit. (b) Cramped.

Figure 3: We consider two kitchen layouts in the Collabo-
rative Cooking environment. The players must collaborate
to deliver tomato soups without blocking each other. Both
players collect a reward of 20 each time a soup is delivered.

which can be exploited for a maximum of 4×10
7
environment steps

to learn a policy with PPO [41]. We run each training procedure

on three different seeds (solely Btrain
and Btest

remain consistent

across runs). We evaluate the approaches on two different kitchen

layouts: Circuit and Cramped [1], which are visualised in Figure 3.

On top of our own test scenarios, we assess the learned policies

on the Melting Pot benchmark scenarios, comparing them against

the baselines reported in the original paper [1]: an Actor-Critic
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Table 3: Scores on the Collaborative Cooking environment training and test sets. The standard error is taken over three random
seeds. The scores are aggregated over the two kitchen layouts. Lower worst-case regret 𝑅max is better. Scores in italic are reported
from Agapiou et al. [1], which were not obtained on the exact same setting.

Σ(Btrain ) Σ(Btest ) Melting pot scenarios

𝑈avg 𝑈min 𝑅max 𝑈avg 𝑈min 𝑅max 𝑈avg 𝑈min 𝑅max

Maximin Utility (MU) 266.9 ± 4.3 225.3 ± 11.5 266.0 ± 7.9 195.7 ± 6.2 66.0 ± 6.8 266.4 ± 10.1 273.8 ± 4.9 224.9 ± 7.1 118.0 ± 7.1
Minimax Regret (MR) 232.0 ± 18.6 144.3 ± 14.4 230.7 ± 28.2 172.2 ± 15.4 65.1 ± 16.0 248.2 ± 28.4 206.8 ± 12.6 148.7 ± 9.1 187.1 ± 13.0

Population Best Response (PBR) 209.7 ± 23.9 96.8 ± 13.4 357.6 ± 16.1 151.4 ± 19.5 33.6 ± 5.9 327.1 ± 14.0 171.8± 21.1 106.3 ± 9.3 228.1 ± 5.8

Fictitious Play (FP) 129.9 ± 13.9 0.2 ± 0.1 483.5 ± 16.1 152.2 ± 16.8 16.7 ± 11.7 369.7 ± 19.7 121.5 ± 15.7 40.7 ± 16.3 294.8 ± 10.7

Self-Play (SP) 124.8 ± 26.4 15.7 ± 10.5 460.8 ± 21.7 117.4 ± 12.5 6.7 ± 3.5 367.5 ± 11.6 101.2 ± 17.8 29.0 ± 17.4 293.4 ± 14.5

Random 42.8 ± 0.0 0.0 ± 0.0 505.4 ± 0.0 32.2 ± 0.0 0.0 ± 0.0 445.0 ± 0.0 60.6 ± 0.0 0.0 ± 0.0 307.3 ± 0.0

PP-ACB n/a n/a n/a n/a n/a n/a 82.4 ± 0.0 0.0 ± 0.0 307.3 ± 0.0
PP-OPRE n/a n/a n/a n/a n/a n/a 102.3 ± 0.0 14.6 ± 0.0 292.7 ± 0.0
PP-VMPO n/a n/a n/a n/a n/a n/a 78.6 ± 0.0 36.1 ± 0.0 306.7 ± 0.0

(a) Circuit.

(b) Cramped.

Figure 4: Learning curves of the average andworst-case utility
metrics over the training set (averaged over 3 runs). The
standard error is shown in shaded colour.

Baseline (ACB), V-MPO [42], and OPRE [45].
6
These baselines were

trained for 10
9
steps without access to our background policies.

In each scenario (including the Melting Pot scenarios), regret was

computed by estimating best responses with PPO for 10
7
steps.

Lastly for MU and MR, we run a stochastic version of Algorithm 1,

and constrain the learned distribution to keep sampling a random

scenario with probability 0.05, effectively allowing us to maintain

utility estimates across all scenarios.

Results. The results in Table 3 clearly show that MU outperforms

all other evaluated methods. Looking at the robustness metrics, the

utility formulation has the best worst-case utility (𝑈min) overall and

the best worst-case regret (𝑅max) on the Melting Pot scenarios. MR

also performs better than any other benchmarked method overall,

6
Since their baseline policies are not publicly available, we were unable to evaluate

them on our scenarios, which explains the missing values in Table 3.

securing the lowest worst-case regrets on both the training set and

our own test set. In terms of average performance (𝑈avg), MU and

MR are consistently the best and second-best, respectively, which

is particularly notable on the training set where PBR was expected

to perform the best.

One possible explanation for the globally lower performance of

the regret approach compared to utility is that the best responses for

training scenarios are too approximate. Figure 4 suggests another

hypothesis for why MU and MR considerably outperform leaning

population best responses and other approaches: their scenario

distributions during training have a similar effect to curriculum

learning, introducing indirect exploration in behaviours compared

to fixed distributions, and a smoother learning curve. In fact, they

appear to speed up learning. In contrast, Figure 4a shows that

training against a uniform distribution of scenarios fails to improve

in at least one scenario on the Circuit layout, with a worst-case

utility close to 0.

9 CONCLUSION
We explored how to compute robust adaptive policies for Ad Hoc

Teamwork. Building onMinimax-Bayes RL, we introduced amethod

to identify minimax distributions over background populations,

which consistently yielded more robust policies compared to train-

ing with a uniform distribution. Surprisingly, we also found that

training on minimax distributions can significantly accelerate learn-

ing. However, utilising regret as an objective to tune the training

distribution proved computationally expensive when best-response

utilities are not readily available. In some special instances, we also

found that the minimax-Bayes training approach w.r.t. utility can

prevent policies from learning certain game dynamics.

Looking forward, we see great potential in extending our ap-

proach to a curriculum learning framework based on partner dis-

tributions, which could dramatically improve sample efficiency,

asymptotic performance, and AHT robustness.
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