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ABSTRACT
Conversational repair is a mechanism used to detect and resolve mis-
communication and misinformation problems when two or more
agents interact. One particular and underexplored form of repair in
emergent communication is the implicit repair mechanism, where
the interlocutor purposely conveys the desired information in such
a way as to prevent misinformation from any other interlocutor.
This work explores how redundancy can modify the emergent
communication protocol to continue conveying the necessary in-
formation to complete the underlying task, even with additional
external environmental pressures such as noise. We focus on ex-
tending the signaling game, called the Lewis Game, by adding noise
in the communication channel and inputs received by the agents.
Our analysis shows that agents add redundancy to the transmitted
messages as an outcome to prevent the negative impact of noise
on the task success. Additionally, we observe that the emerging
communication protocol’s generalization capabilities remain equiv-
alent to architectures employed in simpler games that are entirely
deterministic. Additionally, our method is the only one suitable
for producing robust communication protocols that can handle
cases with and without noise while maintaining increased gener-
alization performance levels. Our code and appendix are available
at https://fgmv.me/projects/noisy-emcom. First author correspon-
dence: fabiovital@tecnico.ulisboa.pt.
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1 INTRODUCTION
Emergent Communication (EC) is a field that recently gained at-
tention in Machine Learning (ML) research. The progress of lan-
guage evolution research [4, 5, 9, 43, 51, 53] and the conceptual-
ization of artificial languages for robot and human-robot commu-
nication [3, 17, 23, 34] are some of the fundamental motivations

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

behind the recent rise in interest. Mainly, EC focuses on devel-
oping experiments where a group of agents must learn how to
communicate without prior knowledge to achieve a common goal,
where coordination and cooperation are essential for the group’s
success [29, 36, 55]. This approach differs from the current state of
the art in natural language processing (NLP), where large language
models (LLMs) dominate the field. LLMs are supervised statisti-
cal models that optimize the prediction of the next token given a
context (textual input) [10, 12, 22, 38]. It is still an open question
whether working only in the language space (as LLMs do) is enough
to create agents with an intrinsic and deeper meaning about the
world that are capable of adapting to novel circumstances effec-
tively [2]. As such, we argue that exploring different approaches,
like EC, is crucial to continue advancing the field of NLP.

The main focus of this work comprises the study of a specific
topic in language evolution called conversational repair [46]. In lin-
guistics, conversational repair is already a known topic that plays an
important role in establishing complex and efficient communication
protocols [1]. In short, conversational repair aggregates any com-
munication mechanism employed by any interlocutor to initiate a
process to detect and clarify some information being transferred
by any other interlocutor. To give more context on how our work
relates to previous literature, we divide repair mechanisms into
two broad categories: implicit and explicit, a coarser partitioning of
the one introduced by Lemon [28]. Explicit repair mechanisms hap-
pen when an interlocutor distinctly starts a follow-up interaction
(communication) in order to clarify some conveyed past informa-
tion, e.g., “Is it the blue one?” (confirmation); “Is it the first or the
second one?” (clarification). On the other hand, implicit mecha-
nisms happen in a subtle way where the interlocutor, conveying
the original information, intentionally expresses it in such a way
as to minimize misinformation and preemptively avoid posterior
conversational repair phases altogether. The implicit conversational
repair mechanism also has connections to the concept of redun-
dancy in linguistics and communication analysis [8]. Redundancy
appears in every human language, at the semantic and syntax level,
and appears in the form of repetition or extra content to send. Ad-
ditionally, the sending interlocutor may apply different levels of
redundancy that she/he finds necessary to convey the information
given the target audience and medium used for communication.

Most previous works in EC employ variations of a signaling
game called the Lewis Game (LG) [29], with the primary purpose of
analyzing how a communication protocol emerges as the result of
achieving cooperation to solve the game [9, 16, 23]. In the LG, the
Speaker describes an object to the Listener, who then has to discrim-
inate it against a set of distractor objects. We call the union of the
assigned object and distractors the candidates. Regarding this study,
we extend a variation introduced by Chaabouni et al. [6], where real
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images are used as the objects to discriminate instead of categorical
inputs, and the number of candidates given to the Listener increases
in several orders of magnitude, conveying a more complex game
than in previous works [4, 5, 26, 34, 44, 51]. In the original work, the
authors propose a supervised training routine where the Listener
receives the correct answer after each game. However, this imple-
mentation diverges from human communication, where there is
usually no direct supervision on how effective a particular dialogue
can be [18]. We propose modeling both agents as RL agents. As
such, the only (semi) supervised information given to the agents is
the outcome of the game. Similar to previous works [17, 26, 30, 44],
we model both agents using Reinforce [54].

Furthermore, as a means to study implicit repair mechanisms,
we define a new game variation with faulty communication chan-
nels that can introduce noise into the messages. This new game
setup has the necessary conditions to study if agents can detect and
overcome miscommunication/misinformation to solve the game co-
operatively. Our analysis shows that the emerging communication
protocols have redundancy built in to prevent the adverse effects
of noise, where even partial messages have enough information
for the Listener to select the correct candidate. Additionally, we
show that the training in the noisy game produces communication
protocols that are highly robust to noise, being effective in different
noise levels, even without noise, at test time.

Previous literature has already addressed the problem of explicit
conversational repair. Lemon [28] propose new research directions
on how to embed conversational repair into EC tasks, where the re-
pair mechanism acts as a catalyst to fix misalignments, for example,
in the language learned by each agent for a specific cooperative task.
Moreover, another recent work develops an extended version of
the Lewis Game to enable a feedback mechanism from the Listener
to the Speaker, mimicking the initialization of an external repair
mechanism phase [35]. However, some limitations compromise the
co-relation to human languages. First, the feedback sent by the
Listener contains minimal information (single binary token), and
such feedback is sent after every token in the message, breaking the
turn-taking nature of the dialogue. Compared to our work, we de-
signed a more challenging game where we prevent cyclic feedback
(from the Listener to the Speaker), meaning the Speaker does not
receive direct feedback about how noise affects the messages being
transferred. In our case, the Speaker only knows the result of the
game. Consequently, the Speaker needs to understand through trial
and error how to convey information to facilitate the Listener’s job,
inducing an implicit repair mechanism, as explained previously.

To summarize, our contributions are 3-fold. First, although pre-
vious works introduce game designs featuring noisy channels, we
contribute with a rigorous mathematical derivation on how to ag-
gregate noise into the LG. We found such inference lacking in the
literature. Furthermore, we define a new noisy game variant where
the input objects to discriminate are injected with noise. We use
this new variant as an out-of-distribution game to evaluate how
the trained protocols react to new forms of noise. Secondly, we
demonstrate the effectiveness of employing RL agents on complex
LG variants featuring the discrimination of natural images and
noisy communication channels. Additionally, we showcase that the
RL variant achieves better results than the original architecture
with a supervised Listener. We emphasize that our objective is not

to benchmark different RL algorithms but to show that implement-
ing the Listener as an RL agent can bring advantages against the
Supervised counterpart, where even a straightforward implemen-
tation of Reinforce is enough to observe substantial gains already.
Third, we analyze and show how more complex game designs, such
as introducing noise to the LG, guide the agents to resort to re-
dundancy measures to complete the game efficiently, mimicking
implicit conversational repair mechanisms. We show how the proto-
cols emerging to communicate through noisy channels have better
generalization capabilities and robustness to different noise levels
at test time. Additionally, we illustrate that these improvements are
a side-effect of resorting to redundancy in the messages sent.

2 METHODOLOGY
We start this section by defining a noisy variation of the LG ,called
the Noisy Lewis Game (NLG). The main change in the NLG incorpo-
rates a faulty communication channel where noise interferes with
the transmitted messages by masking a subset of the tokens. This
game variation is more complex than the LG, where the (RL) game
environment becomes stochastic. We further note that the original
LG is a simplification of the NLG where we fix the noise level at
zero. Afterward, we detail how the Speaker converts the received
input into a message, a sequence of discrete tokens, and how the
Listener processes the message and candidates to make decisions.
We impose a RIAL setting [13], where agents are independent and
perceive the other as part of the environment. Hence, we describe
the learning strategy for both agents independently, explaining the
loss composition and the importance of each loss term to guide
training where functional communications protocols can emerge.

2.1 Noisy Lewis Game (NLG)
The Noisy Lewis Game (NLG) is a discrimination game in which
one of the agents, the Speaker, must describe an object by sending
a message to the other agent, the Listener. When the game starts,
the Speaker receives a target image 𝒙 retrieved from a fixed dataset
𝒙 ∈ X and describes it by generating a message,𝑚 : X×R𝐾 →W𝑁 ,
whereW is a finite vocabulary, and 𝜽 ∈ R𝐾 parametrizes𝑚. The
message comprises 𝑁 discrete tokens, 𝑚 (𝒙 ;𝜽 ) = (𝑚𝑡 (𝒙 ;𝜽 ))𝑁𝑡=1,
where 𝑚𝑡 (𝒙;𝜽 ) ∈ W. Due to the noisy nature of the communi-
cation channel, the Listener can receive a message with unex-
pected modifications. We model this perturbation with the function
𝑛 :W𝑁 →W′𝑁 , where the function processes each token indepen-
dently and converts it into a default unknown token with a given
probability. As such,W′ is the union of the original vocabulary plus
the unknown token,W′ =W ∪ {unk}. We describe introduce 𝑛 as :

𝑛 (𝑚 (𝒙 ;𝜽 )) = (𝑛𝑡 (𝑚𝑡 (𝒙 ;𝜽 )))𝑁𝑡=1

s.t. 𝑛𝑡 (𝑚𝑡 (𝒙 ;𝜽 )) =
{
𝑚𝑡 (𝒙 ;𝜽 ), if p > 𝜆

unk, otherwise,

(1)

where p is sampled from a uniform distribution, p ∼ U (0, 1), and
𝜆 ∈ [0, 1) is a fixed threshold, indicating the noise level present in
the communication channel. By definition, the Speaker is agnostic
to this process and will never know if the message was modified.
For simplicity, we define 𝒎 to describe a (noisy) message given
some input, 𝒎 = 𝑚 (𝒙, 𝜽 ) or 𝒎 = 𝑛 (𝑚 (𝒙, 𝜽 )). We also refer each
message token as𝑚𝑡 instead of𝑚𝑡 (𝒙 ;𝜽 ), omitting the domain.
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Figure 1: Visual Representation of the Noisy Lewis Game
(NLG). In this illustration, the message, 𝒎, contains three
tokens (𝑁 = 3), where the last one is masked.

Subsequently, the Listener receives the message along with a set
of candidate images, C ∈ [X]𝐶 , where [X]𝐶 defines the set of all
subsets with𝐶 elements fromX. With both inputs, the Listener tries
to identify the image the Speaker received, 𝒙 . We define choice :
W′𝑁 × [X]𝐶 × R𝑘 ′ → J to specify the Listener’s discrimination
process, where J ⊂ N is a particular enumeration of C, such that
C =

⋃
𝑗∈J C𝑗 , |J| = 𝐶 , and 𝝓 ∈ R𝑘 ′ parametrizes choice. Therefore,

the index outputted by the Listener, 𝑗 = choice (𝒎,C; 𝝓), is the 𝑗-th
element in C, denoting the final guess �̂� = C𝑗 .

Both agents receive a positive reward if the Listener correctly
identifies the target image 𝒙 and a negative reward otherwise:

𝑅(𝒙, �̂�) =
{

1, if �̂� = 𝒙

−1, if otherwise.
(2)

Lastly, note that the original LG is a specification of the NLG where
we set 𝜆 = 0. Figure 1 depicts a visual representation of NLG. For
completeness, the LG is depicted in Appendix B.

2.2 Agent Architectures
We now describe the architectures implemented for both agents, the
Speaker and the Listener (Figure 2). We design both architectures
to be able to model policy gradient RL algorithms [49].

As an overview, the Speaker’s objective is to encode a discrete
message, 𝒎, describing an input image, 𝒙 , see Section 2.1. First,
we encode the image using a pre-trained image encoder [15], 𝑓 , to
reduce its dimensionality and extract valuable features, 𝒙′ = 𝑓 (𝒙).
Subsequently, a trainable encoder 𝑔 processes the new sequence of
features, outputting the initial hidden and cell values, (𝒛0,𝜽 , 𝒄0,𝜽 ) =
𝑔 (𝒙′;𝜽 ), used by the recurrent module ℎ, in this case, an LSTM [20].

Subsequently, the Speaker will select each token𝑚𝑡 to add to the
message iteratively, using ℎ. On this account, we define a comple-
mentary embedding module, 𝑒 , to convert the previous discrete to-
ken𝑚𝑡−1 into a dense vector 𝒅𝑡,𝜽 = 𝑒 (𝑚𝑡−1;𝜽 ). Then, the recurrent
module, ℎ, consumes the new dense vector and previous internal
states to produce the new ones, (𝒛𝑡,𝜽 , 𝒄𝑡,𝜽 ) = ℎ

(
𝒅𝑡,𝜽 , 𝒛𝑡−1,𝜽 , 𝒄𝑡−1,𝜽 ;𝜽

)
.

We then pass 𝒛𝑡,𝜽 through two concurrent heads: (i) The actor
head yields the probability of choosing each token as the next one,
𝑚𝑡 ∼ 𝜋𝑆

(
·|𝒛𝑡,𝜽 ;𝜽

)
; (ii) The critic head estimates the expected re-

ward 𝑉 (𝒙) := 𝑣
(
𝒛𝑡,𝜃 ;𝜃

)
. After the new token is sampled, we feed

it back to 𝑒 (· ;𝜃 ), and the process repeats itself until we generate
𝑁 tokens. The first token𝑚0 is a predefined start-of-string token

and is not included in the message. Following [6], we maintain the
original vocabulary and message sizes, where |W| = 20, and 𝑁 = 10,
making the set of all possible message much larger than the size
of the dataset used (|X| ≈ 106 for ImageNet [45]). We depict the
Speaker’s architecture in Figure 2a.

The Listener architecture has two different modules to process
the message, sent from the Speaker, 𝒎 and the images obtained as
candidates C. Additionally, a third module combines the output of
both input components and provides it to the actor and critic heads.
We now describe each component.

To process the candidate images C, the Listener uses the same
pre-trained encoder 𝑓 combined with the network 𝑐 to embed the
candidate images, 𝒍 𝑗 = 𝑐 (𝒙′

𝑗
; 𝝓), where 𝒙′

𝑗
= 𝑓 (𝒙 𝑗 ) and 𝒙 𝑗 ∈ C.

Concerning the message received, the Listener uses the recurrent
model ℎ (an LSTM) to handle each token,𝑚𝑡 , iteratively. Similarly
to the Speaker, there is an embedding layer, 𝑒 (· ; 𝝓), to convert the
discrete token into a dense vector before giving it to ℎ, where we
have (𝒛𝑡,𝝓 , 𝒄𝑡,𝝓 ) = ℎ(𝑒 (𝑚𝑡 ; 𝝓), 𝒛𝑡−1,𝝓 , 𝒄𝑡−1; 𝝓). The initial internal
states of ℎ are initialized as 𝒛0,𝝓 = 0 and 𝒄0,𝝓 = 0. After processing
all message tokens, the final hidden state, 𝒛𝑁,𝝓 , goes through a final
network 𝑔 to output the message’s hidden value 𝒍m = 𝑔(𝒛𝑁,𝝓 ; 𝝓).
Finally, the generated hidden values for the message and all candi-
dates flow through to the head module.

The first operation in the head module executes an attention
mechanism to combine the message features with each candidate’s
counterpart. The output includes a value per candidate which we
concatenate into a vector 𝒔 =

[
𝒍m · 𝒍1 . . . 𝒍m · 𝒍 |C |

]𝑇 , called the
candidates’ score. We define the actor head as 𝜋𝐿 (·|𝒔; 𝝓) to output
the Listener’s policy �̂� ∼ 𝜋𝐿 (·|𝒎,C), which is a valid approximation
since 𝒔 holds information from the message and candidates. Paral-
lelly, the critic head 𝑣 (· ; 𝝓) receives the same scores 𝒔 and estimates
the expected cumulative reward, as detailed in Section 2.3.

2.3 Learning Strategy
As described at the start of Section 2.1, the agents can only transmit
information via the communication channel, which has only one
direction: from the Speaker to the Listener. Additionally, agents
learn how to communicate following the RIAL protocol, where
agents are independent and treat others as part of the environment.
As such, we have a decentralized training scheme where the agents
improve their own parameters solely by maximizing the game’s
reward, see equation 2.

To perform well and consistently when playing the NLG, the
Speaker must learn how to utilize the vocabulary to distinctively
encode each image into a message to obtain the highest expected
reward possible. We use Reinforce [54], a policy gradient algorithm,
to train the Speaker. Given a target image 𝒙 and the corresponding
Listener’s action �̂� , we have a loss, 𝐿S,A, to fit the actor’s head and
another one, 𝐿S,C, for the critic’s head. We define,

𝐿S,A (𝜽 ) = −
𝑁∑︁
𝑡=1

sg
(
𝑅(𝒙, �̂�) − 𝑣

(
𝒛𝑡,𝜽 ;𝜽

) )
· log𝜋𝑆

(
𝑚𝑡 |𝒛𝑡,𝜽 ;𝜽

)
,

where sg (·) is the stop-gradient function, in order to optimize the
policy. Note that the Speaker is in a sparse reward setting [39],
where the sum of returns is the same as the game reward 𝑅 (𝒙, �̂�).
Further, we subtract a baseline (critic head’s value 𝑣

(
𝒛𝑡,𝜽

)
) from
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(a) (b)

Figure 2: Graphical representation of Speaker, Figure 2a, and Listener, Figure 2b, architectures for the NLG. In this illustration,
the message, 𝒎, contains only two tokens, 𝑁 = 2.

the returns to reduce variance. Regarding the critic loss, we devise

𝐿S,C (𝜽 ) =
𝑁∑︁
𝑡=1

(
𝑅(𝒙, �̂�) − 𝑣 (𝒛𝑡,𝜽 ;𝜽 )

)2
,

to approximate the state-value function 𝑉 (𝒙) = E𝜋𝑆 [𝑅(𝒙, �̂�)].
We also use an additional entropy regularization term, 𝐿S,H , to

make sure the language learned by the Speaker will not entirely
stagnate by encouraging new combinations of tokens that increase
entropy, further incentivizing exploration. Moreover, we define a
target policy for the Speaker to minimize an additional KL diver-
gent term, 𝐿S,KL, between the online and target policies, 𝜽 and 𝜽 ,
respectively. We update 𝜽 using an exponential moving average
(EMA) over 𝜽 , i.e. 𝜽 ← (1 − 𝜂)𝜽 + 𝜂𝜽 where 𝜂 is the EMA weight
parameter. With 𝐿S,KL, we prevent steep changes in the parameter
space, which helps stabilize training [7, 42]. We refer to Chaabouni
et al. [6] for a complete analysis on the impact of 𝐿S,KL. Finally, we
weigh each loss term and average the resulting sum given a batch
of input images, X′ ⊂ X, to obtain the overall Speaker loss:

𝐿S (𝜽 ) =
1
|X′ |

∑︁
𝒙∈X′

𝛼S,A𝐿S,A (𝜽 ) + 𝛼S,C𝐿S,C (𝜽 )

+ 𝛼S,H𝐿S,H (𝜽 ) + 𝛼S,KL𝐿S,KL (𝜽 ),
where 𝛼S,A, 𝛼S,C, 𝛼S,H , 𝛼S,KL are constants.

We also use Reinforce [54] to train the Listener. We define the
loss 𝐿L,A to train the Listener’s policy:

𝐿L,A (𝝓) = − sg (𝑅(𝒙, �̂�) − 𝑣 (𝒔; 𝝓)) · log𝜋𝐿 (�̂� |𝒔; 𝝓),
where cumulative returns is again the game reward 𝑅(𝒙, �̂�) since
the Listener is in a single-step episode format where the game ends
after choosing a candidate, �̂� ∈ C. Identically to the Speaker, we
subtract the Listener critic’s value 𝑣 (𝑠; 𝝓) from the game reward.
The critic sub-network optimizes

𝐿L,C (𝝓) = (𝑅(𝒙, �̂�) − 𝑣 (𝑠; 𝝓))2 .
Similarly to the Speaker loss, we add an entropy loss term 𝐿L,H (𝝓)
to encourage exploration. The final Listener loss for a batch of
images X′ is:

𝐿L (𝝓) =
1
|X′ |

∑︁
𝑥∈X′

𝛼L,A𝐿L,A (𝝓) + 𝛼L,C𝐿L,C (𝝓) + 𝛼L,H𝐿𝐿,H (𝝓),

where 𝛼L,A, 𝛼L,C, and 𝛼L,H are constants.

A detailed analysis of the learning strategy, for both agents, can
be found in Appendix E.1. Additionally, due to the complexity and
non-stationarity of NLG, we define a scheduler for the noise level in
the communication channel, during training. Namely, we linearly
increase the noise level from 0 to 𝜆 at the beginning of training.
This phase is optional and only helps with data efficiency (we refer
to Appendix E.4 for more details).

3 EVALUATION
We provide an extensive evaluation of NLG and variants. For com-
pleteness, we also consider the original architecture proposed by
Chaabouni et al. [6] and our novel agent architecure to play the
original LG (without message noise) as baselines. In this game vari-
ant, our model surpasses the original architecture at a slight cost
of data efficiency. This trade-off is expected and fully explained in
Section 3.2. At a glance, this happens because the baseline version
can retrieve more information than our implementation, during
training. Having a progressive sequence of LG variants enables us
to assess how each modification influences the emergent communi-
cation protocol learned by the agents.

We continue this section by introducing all LG variants, giving
a broader view of each game, agent architectures, and learning
strategy. Next, we evaluate the generality of the emerging language
for each game variant when providing new and unseen images.
We compare LG and NLG variants when testing with and without
noise in the communication channel. Additionally, we investigate
how the candidate set, C, impacts the generalization capabilities
of the message protocols. Moreover, we investigate the internal
message structure to understand how robust communication proto-
cols emerge when agents play in the NLG. Finally, we perform an
out-of-distribution evaluation to discern how each variant reacts
to novel forms of noise. We always report results using the average
(plus SD) over 10 different seeds.

Due to space constraints, Appendix F contains the results ob-
tained in all experiments, for both ImageNet [45] and CelebA [32]
datastes, used to devise the analyses detailed in this section. Ad-
ditionally, we report a supplementary evaluation to assess the ca-
pacity of each game variant to adapt to new tasks in a transfer
learning manner, called ease and transfer learning (ETL) [6] (see
Appendix G). This supplementary evaluation gives yet another
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frame of reference to evaluate the generality and robustness of the
learned languages. Finally, we also refer to the appendix for further
details regarding related work (Appendix A), every game variant
(Appendix B), model architectures (Appendix D), and datasets used
(Appendix E.2).

3.1 Lewis Game Variants
We briefly report essential aspects of each game variant, while re-
ferring to supplementary information when necessary. We consider
three variants of the LG, all of which share the same Speaker ar-
chitecture. The Listener architecture differs in all games. We refer
to Appendix D for a detailed description of the implementation of
these architectures. Additionally, all variants except for LG (S) are
a contribution of this work. The LG variants considered are:
• LG (S): Original LG variant introduced in Chaabouni et al. [6].
The Listener trains under supervised data by using InfoNCE
loss [11, 37] to find similarities between the message and the
correct candidate, see Appendix C.
• LG (RL): LG with a deterministic communication channel
(no noise) where both agents implement RL architectures.
The only semi-supervised information given to both agents
is whether the game ended successfully or not. We refer to
Sections 2.2 and 2.3 for a comprehensive description of the
agents’ architectures and learning strategies, respectively.
• NLG: LG variant introduced in Section 2.1, where we apply
an external environmental pressure by adding noise to the
message during transmission. Both agents function as RL
agents, as in LG (RL). Agents’ architectures and learning
strategies appear in Sections 2.2 and 2.3, respectively. For an
overall understanding of NLG, we define 3 different versions:
NLG (0.25), NLG (0.5), and NLG (0.75); where NLG (𝑥 ) means
that, during training, we fix the noise threshold at 𝜆 = 𝑥 .

3.2 Robust Communication Protocols
This section analyzes the performance of all LG variants described
above. Since there is the possibility to apply different hyper-parameters
depending on the current phase (training or testing phase), we de-
fine two extra variables, 𝜆test andCtest, to define the noise threshold
and candidate set applied during the test phase, respectively.

Starting by comparing LG (S) with LG (RL), we can see an ap-
parent performance boost for the LG when the Listener is an RL
agent. Figure 3 shows that, during training, the RL version performs
better than the supervised version. Equivalent results occur in the
testing phase. From Figures 4 and 5, and focusing on the results
obtained with a deterministic communication channel, 𝜆test = 0,
the RL version surpasses the accuracy achieved by the supervised
counterpart. This performance gap becomes more predominant as
we increase game complexity, as seen in Section 3.2.2. From Fig-
ure 3, we also observe a trade-off between performance and sample
efficiency, where the RL version is less sample efficient. We can
trace these differences back to the loss function employed by each
version. For instance, the supervised version employs the InfoNCE
loss (Appendix D.2.2), which we can see as a Reinforce variant with
only a policy to optimize and, particularly, with access to an oracle
giving information about which action (candidate) is the right one
for each received message. As such, the Listener (S) can efficiently

learn how to map messages to the correct candidates. On the other
hand, the RL version has no access to such oracle and needs to in-
teract with the environment to build this knowledge. The decrease
in sample efficiency from supervised to RL is, therefore, a natural
phenomenon. Nonetheless, the RL version introduces a critic loss
term whose synergy with the policy loss term helps to improve the
final performance when compared to the supervised version.

One disadvantage of employing, at inference time, the commu-
nication protocols learned by playing default LG variants (LG (S)
and LG (RL)) is that they are not robust to deal with message per-
turbations. Since agents train only with perfect communication,
they never experience noisy communication. When testing the per-
formance of LG (S) and LG (RL) with noisy communication chan-
nels 𝜆test > 0, we observe a noticeable dominance of RL against
S. Nonetheless, there is a massive drop in performance for both
variants compared to the noiseless case 𝜆test = 0, see Figures 4
and 5.

Conversely, NLG puts agents in a more complex environment
where only random fractions of the message are visible during
training time. Despite such modifications, the pair of agents can
still adapt to the environment and learn robust communication
protocols that handle both types of messages (with and without
noise). We notice equivalent accuracy performance for NLG and LG
(RL) when testing with deterministic communication channels, see
Figures 4 and 5. Notably, every NLG version only suffers a negligible
performance loss when testing with 𝜆test = 0.25. This loss starts
to be more noticeable at higher noise levels, where the accuracy
drops to around 80%, and further to the interval between 30%-40%
when 𝜆test is 0.5 and 0.75, respectively. Still, NLG is considerably
more effective than LG (S) and LG (RL) when communicating in
noisy environments, as seen in the considerable performance gap
visible in each tested noise level 𝜆test. This increased performance
suggests that, in NLG, agents can encode redundant information
where communication is still functional when random parts of
the message are hidden. Additionally, the performance obtained
for each test threshold 𝜆test is similar for every NLG version. As
such, each version displays similar capacities to handle noise in
the communication channel, independent of the noise threshold 𝜆
applied during training. Please refer to Appendix F for additional
results on the ImageNet and CelebA datasets.

3.2.1 Comparing Different Noise Levels. Comparing the different
variants of NLG, we observe that the mean accuracy obtained for
NLG (0.75) is slightly lower than NLG (0.25) and NLG (0.5) when
we set 𝜆test to 0 or 0.25, see Figures 4 and 5. When 𝜆test = 0.5, NLG
(0.5) performs slightly better than its counterparts. Finally, NLG
(0.5) and NLG (0.75) seem to perform slightly better than NLG (0.25)
is the extreme noise case (𝜆test is 0.75).

Henceforth, having a threshold of 𝜆 = 0.5 during training ap-
pears to give a good balance for the pair of agents to develop a
communication protocol that can effectively act in a broad range of
noise levels, even when there is no noise during communication.

3.2.2 Scaling the Number of Candidates. We train every game vari-
ant with different candidate sizes |C|. We scale |C| from 16 to 1024,
using a ratio of 4. At test time, we evaluate all experiments using
larger sizes, for the candidates set, to inspect generalization capabil-
ities. In our case, we use |Ctest | = 1024 and |Ctest | = 4096. Looking
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Figure 3: Training accuracy for LG (S) and LG (RL). Trained
on ImageNet dataset and |C| = 1024.

at Tables 1 and 2, we can see an evident generalization boost when
the number of candidates increases for every game. We posit that
increasing the game’s difficulty (increasing the number of candi-
dates) helps the agents to generalize. As the candidates’ set gets
additional images, the input diversity increases, which affects how
agents encode and interpret more information to distinguish the
correct image from all others. Even when adding noise, the agents
can quickly adapt to such changes conveying information in such a
way as to repress the noise mechanism. We argue that agents have
two correlated ways to achieve such adaptation: (1) send redundant
information regarding specific features of the image; and (2) create
a spatial mapping from the image to the message space.

We note that as |C| increases, the test performance also increases,
but at a smaller scale. As an example, consider LG (RL) variant when
𝜆test = 0 and |Ctest | = 4096. In this case, the test performance gap
between |C| = 16 and |C| = 64 is 0.4, and only 0.03 between |C| =
256 and |C| = 1024, see Table 1. Regarding NLG, the accuracy starts
lower for smaller candidate sizes, e.g., 0.27 when |C| = 16, against
0.67 for the LG (RL) counterpart. Nonetheless, as the candidate
set size increases, the noise effect becomes less predominant and
the NLG’s performance reaches the same level as in LG (RL), both
achieving an accuracy of 0.97 when |C| = 1024.

Equivalently to the results introduced in the beginning of Sec-
tion 3.2, we observe low accuracy for LG (RL) when testing with
noisy communication channels (Table 2), regardless of the candidate
size. In respect to NLG, there is an apparent increase in performance
as |C| increases during training. Additionally, the performance gap
between consecutive candidate set sizes is approximately the same
(between 0.14 and 0.21, when |Ctest | = 4096).

3.3 Message Structure Analysis
With the aim of addressing how NLG variations develop robust
communication protocols, we propose to analyze the message struc-
ture of the language protocols. The NLG includes additional adverse
pressures where the communication channel seems unreliable. In
order to overcome the noise introduced by the faulty channel, the
pair of agents must find alternative ways to coordinate how to send
information. Moreover, since the only feedback received by the
Speaker is the game’s outcome, the new coordination mechanism
becomes essential to complete the game with a high success rate.

The most intuitive behavior for the Speaker focuses on developing
implicit repair mechanisms where messages incorporate redundant
information. As such, even if a subset of the message tokens be-
come masked, the Listener can still parse the remaining message
and select the correct candidate, making the communication robust
to the noise being introduced by the faulty channel.

To test our assumption, we indirectly analyze the internal struc-
ture of the message being transmitted in all games. Since we want
to examine the existence of redundancy in the communication pro-
tocol, we propose an evaluation where we iteratively increase the
number of masked tokens and retrieve the performance obtained.
The range of masked tokens spreads from 0 to 𝑁 /2 = 5 (half of the
tokens). Additionally, when selecting the number of tokens to con-
ceal, we evaluate the performance over ten different combinations
of masked tokens (except when no tokens are masked), ensuring
the results represent the average case. As such, this analysis allows
us to examine, in greater detail, how the accuracy changes as we
increase the number of masked tokens iteratively. As shown in
Figures 6 and 7, the NLG variations only decrease slightly in accu-
racy as the number of masked tokens increases, conveying that our
assumption is accurate and messages contain redundant informa-
tion. Consequently, the Listener still contains enough information
to select the right candidate, even with partial messages. On the
other hand, for the deterministic variations, LG (S) and LG (RL),
we observe a faster decrease in performance as more tokens are
masked, conveying that every token is essential for the Listener to
infer the right candidate. Furthermore, we highlight that the aver-
age accuracy obtained by the NLG (0.5) variant, with five tokens
masked, is similar to the performance obtained by LG (RL) when
masking a single token, which is around 75% (Figure 7). This par-
ticular result illustrates how much noise both variants can manage
for a particular and similar performance level. As such, NLG (0.5)
can deal with 5x more noise than LG (RL) when discriminating the
most amount of images, |Ctest | = 4096. Please refer to Appendix F
for additional results on the ImageNet and CelebA datasets.

In addition to the results presented above, we observe an in-
teresting occurrence when communication protocols emerge with
deterministic channels, as in the case of LG (S) and LG (RL). Our
analysis shows that when masking a single token, the first token of
the message seems to carry more information than the others, or,
at least, is crucial to derive meaning from the rest of the message.
We show these results in the Appendix F, where the drop in perfor-
mance can, in some cases, drop down around 10% when the first
token is masked in opposition to mask any other token. The drop in
performance is more noticeable as the number of candidates given
to the Listener increases, where it seems the first token plays a
crucial role to reduce the number of final choices to consider.

3.4 External Noise Interference
In this experiment, we test the capability of the emergent commu-
nication protocols trained in the games presented above to adapt
to new game variations where we focus on adding noise to conceal
information in other components of the input. In this regard, we
model a new noise dynamic by adding random information to the
objects to discriminate: (1) the target image provided to the Speaker,
and (2) the candidates given to the Listener. We sample noise from
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Figure 4: Test accuracy for all variants with |Ctest | = 1024.
Trained on ImageNet and |C| = 1024. The 𝑥-axis denotes 𝜆test.
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Figure 5: Test accuracy for all variants with |Ctest | = 4096.
Trained on ImageNet and |C| = 1024. The 𝑥-axis denotes 𝜆test.

Table 1: Test accuracy including SD, when 𝜆test = 0, for LG
(RL) and NLG, on ImageNet dataset.

Game 𝜆 |C| |C| (test)
1024 4096

LG (RL) 0 16 0.67
(0.04)

0.39
(0.04)

LG (RL) 0 64 0.93
(0.01)

0.79
(0.03)

LG (RL) 0 256 0.98
(0.00)

0.94
(0.01)

LG (RL) 0 1024 0.99
(0.00)

0.97
(0.00)

NLG 0.5 16 0.55
(0.03)

0.27
(0.02)

NLG 0.5 64 0.87
(0.01)

0.67
(0.03)

NLG 0.5 256 0.98
(0.00)

0.91
(0.01)

NLG 0.5 1024 0.99
(0.00)

0.97
(0.00)

Table 2: Test accuracy including SD, when 𝜆test = 0.5, for LG
(RL) and NLG, on ImageNet dataset.

Game 𝜆 |C| |C| (test)
1024 4096

LG (RL) 0 16 0.03
(0.01)

0.01
(0.01)

LG (RL) 0 64 0.09
(0.07)

0.05
(0.03)

LG (RL) 0 256 0.11
(0.06)

0.06
(0.04)

LG (RL) 0 1024 0.11
(0.02)

0.06
(0.01)

NLG 0.5 16 0.32
(0.02)

0.14
(0.01)

NLG 0.5 64 0.57
(0.02)

0.33
(0.02)

NLG 0.5 256 0.73
(0.01)

0.54
(0.02)

NLG 0.5 1024 0.82
(0.01)

0.68
(0.02)
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Figure 6: Mean test accuracy for all LG variants, trained with
|C| = 1024 and on ImageNet dataset. At test time, |Ctest | = 1024.
We report 10 different combinations of masked tokens.
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Figure 7: Mean test accuracy for all LG variants, trained with
|C| = 1024 and on ImageNet dataset. At test time, |Ctest | = 4096.
We report 10 different combinations of masked tokens.
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Figure 8: Mean test accuracy for all variants with |Ctest | = 1024.
Trained on ImageNet and |C| = 1024. During test noise is added
to the inputs (Section 3.4). The 𝑥-axis denotes 𝜆test.
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Figure 9: Mean test accuracy for all variants with |Ctest | = 4096.
Trained on ImageNet and |C| = 1024. During test noise is added
to the inputs (Section 3.4). The 𝑥-axis denotes 𝜆test.

a Gaussian distribution and add it to the output of the frozen image
encoder. As such, in this game adaptation, we modify the target
image to 𝒙′ = 𝑓 (𝒙) + 𝜺 and the candidates to 𝒙𝑖 = 𝑓 (𝒙𝑖 ) + 𝜺, where
𝜺 ∼ N(0, 𝜎2𝑰 ) and 𝒙𝑖 ∈ C. Unless otherwise noted, we set 𝜎 = 1.

We can view this new modification as an out-of-distribution task
since, during training, agents only deal with noise in the communi-
cation channel, where the obstruction happens by masking some
of the message tokens. Figures 8 and 9 depict the results obtained
for all game variants at inference time when we introduce noise
to the input images. When testing with a deterministic channel
(𝜆test = 0), LG (RL) and all NLG versions have similar performance,
where the mean accuracy is around 0.7 and 0.5 for 1024 and 4096
candidates, respectively. We can see a slight degradation in per-
formance across all variants compared to the previous experiment
setting in Section 3.2 (images without any perturbations). Nonethe-
less, these results indicate a positive transfer capability where the
language protocols are general enough, allowing effective agent
reasoning even with partially hidden input distributions. Addition-
ally, we notice that adding noise in the communication channel
during training (NLG variant) does not provide improved benefits
to the communication protocol to deal with other noise types, as
there is no gain in performance when 𝜆test = 0, comparing against
LG (RL).

For the experiments where noise is also present in the communi-
cation channel, 𝜆test > 0, we observe similar results as in Section 3.2,
where NLG versions vastly surpass both LG (RL) and LG (S) since
the former emergent protocols can efficiently retrieve applicable
information to reason about, from the noisy messages. Finally, the
results obtained by LG (S) were considerably lower than all other
variants, again claiming the superiority of having a Listener as an
RL agent, see Section 3.2. Please refer to Appendix F for additional
results on the ImageNet and CelebA datasets.

4 CONCLUSION & FUTUREWORK
In this work, we focus on designing agent systems that can learn
language protocols without prior knowledge, where communica-
tion evolves grounded on experience to solve the task at hand. We

explore EC from a language evolution perspective to analyze a
particular linguistic concept called conversational repair. Conversa-
tional repair appears in human languages as a mechanism to detect
and resolve miscommunication and misinformation during social
interactions. Mainly, we focus on the implicit repair mechanism,
where the interlocutor sending the information deliberately com-
municates in such a way as to prevent misinformation and avoid
future interactions on correcting it. Our analysis shows that implicit
conversational repair can also emerge in artificial designs when
there is enough disruptive environmental pressure, where sending
redundant information facilitates solving the task more effectively.

For future work, several ideas can be explored. One possible re-
search idea passes to merge explicit and implicit repair mechanisms.
In this scenario, agents would have to coordinate between using
implicit mechanisms to prevent misinformation or starting a pos-
terior dialogue (an explicit mechanism) when the Listener cannot
extract useful information from the message sent. We argue that
this coordination mechanism can emerge naturally in sufficiently
complex environments, where the Listener develops the capacity to
leverage the likelihood of success and the cost of playing more com-
munication rounds. Another exciting research direction focuses on
developing a universal repair mechanism system with the objective
of merging various language protocols, grounded in different tasks,
into a universal and general language protocol, focusing on the
capability to be used by new agents and in out-of-distribution tasks.
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