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ABSTRACT
The Facility Location Problem (FLP) is a well-studied optimization

problem with applications in many real-world scenarios. Past lit-

erature has explored the solutions from different perspectives to

tackle FLPs. These include investigating FLPs under objective func-

tions such as utilitarian, egalitarian, Nash welfare, etc. We propose

a unified framework, FLIGHT, to accommodate a broad class of

welfare notions. The framework undergoes rigorous theoretical

analysis, and we prove some structural properties of the solution to

FLP. Additionally, we provide approximation bounds, which (under

certain assumptions) provide insight into an interesting fact– as

the number of agents arbitrarily increases, the choice of welfare

notion is irrelevant. Furthermore, the paper examines a scenario

in which the agents are independently and identically distributed

(i.i.d.) according to a given probability distribution. In this setting,

we derive results concerning the optimal estimator of the welfare

and establish an asymptotic result for welfare functions.

CCS CONCEPTS
• Theory of computation → Algorithmic game theory and
mechanism design.
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1 INTRODUCTION
The most commonly studied Facility Location Problem (FLP) con-

siders the problem of placing a facility on a line segment (typically

normalized as [0, 1]). Here, agents derive certain utilities from this
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facility. The goal of a planner is to ensure the welfare of the agents

who use this facility is maximized. Traditional approaches typically

rely on predefined welfare functions such as utilitarian welfare [11],
which maximizes the total welfare (e.g., travel distance), or egali-
tarian welfare [26], which maximizes the minimum welfare.

While these approaches are suitable in many scenarios, they

may not be sufficient to capture the complexity and nuances of

real-world applications, especially when the relationship between

agents and the facility involves non-linear or application-specific

factors. Factors such as varying environmental conditions and re-

source constraints can introduce non-linearities that complicate

the optimization process. In many cases, using simple distance-

based models can lead to suboptimal solutions that fail to reflect

the true welfare of the system. Moreover, with the rise of Artifi-
cial Intelligence (AI) and Machine Learning (ML) techniques, there

is a growing trend toward learning welfare functions from data

rather than relying on predefined or assumed models. Recent ad-

vancements in machine learning have shown that welfare functions

can be inferred directly from historical data, allowing for a more

flexible and context-aware approach [1, 24, 34]. This shift towards

data-driven models underscores the importance of a generalized

framework that can accommodate learned welfare functions, mak-

ing it adaptable to changing environments. Hence, a generalized
framework is necessary to accommodate various welfare functions

that can adapt to these complexities.

One approach to generalizing welfare functions is through the

use of 𝑝-mean functions [3, 14], which provide a continuous spec-

trum of solutions ranging from utilitarian welfare (when 𝑝 = 1)

to egalitarian welfare (when 𝑝 = ∞). The 𝑝-mean functions allow

more control over the system’s balance between efficiency and fair-

ness. 𝑝-mean functions, while powerful, may still not fully capture

the diversity of welfare considerations present in real-world appli-

cations. In this paper, we seek to go beyond 𝑝-mean functions by

introducing a generalized framework that allows for the inclusion

of a wide variety of welfare functions, including but not limited to

𝑝-mean functions. Our generalized welfare framework – FLIGHT, is

designed to handle welfare functions that are learned from data, or

defined based on specific application needs. FLIGHT framework is

flexible enough to incorporate traditional welfare functions, such

as utilitarian and egalitarian welfare, and more complex welfare

functions that arise in modern applications as long as the welfare

function is non-increasing for each agent from its location.
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We begin by establishing several key properties of generalized

welfare functions, such as concavity and location invariance, which
are essential for ensuring tractable optimization. Our goal is to

study the structural properties of the solution to FLP modelled in

FLIGHT. First, we explore more specific properties of these welfare

functions. Next, for a concave positive welfare function 𝛼 and an

arbitrary welfare function 𝛽 , we provide bound on optimal welfare

achieved by 𝛼 with respect to the welfare achieved by 𝛽

Our results show that a class of generalized welfare functions can

approximate others with a constant approximation ratio, ensuring

that our framework remains efficient. Often, a practitioner might

be more interested in expected welfare than exact welfare for every

instance. Towards this, we investigate probabilistic versions of the

facility location problem in which the agents are independently

and identically distributed (i.i.d.) according to a given probability

distribution. We derive results concerning the optimal estimator of

thewelfare and provide an asymptotic property of welfare functions.

In summary, our contributions are as follows:

1.1 Our Contributions
(1) We propose a unified framework FLIGHT that is capable of

accommodating classical welfare functions, including utili-

tarian, egalitarian, and Nash welfare functions (Section 4)

(2) Under the concavity assumption of the utility function, we

derive a series of theoretical results concerning the struc-

tural properties of generalized welfare functions. (Section 5)

Specifically, we prove:

• Theorem 1: Concavity of the welfare function,

• Theorem 2: Location invariance of the welfare function,

• Theorem 3: Behavior under agent shifts, and
• Theorem 4: Maximum shift property.

We then explore more specialized properties under stronger

assumptions, including:

• Theorem 5: Constant approximation bound for concave

and positive utility functions,

• Theorem 8: Bounding distance between the peaks based

upon the agent location profile.

(3) In Section 6, we extend the analysis to probabilistic versions

of the facility location problem. We establish estimation

bounds (Theorem 9 and Theorem 10) and derive asymp-

totic results, including Theorem 11, which provides an as-

ymptotic property of welfare functions.

2 RELATEDWORK
The facility location problem (FLP) has a long and rich history, with

its origins tracing back to 17
th
-century mathematicians like Pierre

de Fermat and Evangelista Torricelli, who studied geometric opti-

mization problems involving the positioning of points to minimize

distances to a given set of locations, known as the Fermat-Weber

problem [8]. This early work laid the foundation for modern FLP.

The field saw significant growth after World War II, spurred by

advances in operations research, as facility location became crucial

for industrial planning, supply chains, and logistics [15]. During

this period, figures such as Harold Kuhn formalized mathematical

models that enabled the practical application of FLP to real-world

challenges, ranging from public service placement to telecommu-

nications infrastructure [32]. In modern times, the facility loca-

tion problem has found broad applications in diverse fields such

as operations research, computer science, and electronics. With

the rise of data-driven decision-making, facility location models

are now applied in cloud computing infrastructure, data centers,

network design, and even in the placement of sensors in wireless

networks [27]. The continued relevance of facility location models

underscores their versatility in addressing problems that require

optimal resource allocation and spatial planning.

2.1 General Facility Location
The general facility location problem has beenwidely studied across

various fields due to its applications in logistics, urban planning, and

operations research. A general overview of the results and variants

of FLPs can be found in Chan et al. [5], Farahani and Hekmatfar

[10], Melo et al. [21]. Several variants of the FLP have been studied,

such as obnoxious facility location [29] and capacitated facility

location [33]. Online FLPs are also studied where the agents arrive

in an online fashion and a set of facilities is maintained [12, 22].

Additionally, Leitner et al. [19] examines the polytope associated

with the asymmetric version of the facility location problem. Fotakis

and Tzamos [13] also study facility location with concave welfare

functions. However, their focus is on designing algorithms with

a constant approximation ratio, whereas our work investigates

the structural properties of such a system. Snyder [28] considers

a probabilistic view of FLPs. This is relevant as we also perform a

probabilistic analysis.

2.2 Facility Location on a Line, Fairness, and
Strategyproofness

The facility location problem on a line, where both agents and fa-

cilities are confined to a linear domain, has garnered significant

attention for its simplicity and traceability. Procaccia and Tennen-

holtz [25], Procaccia et al. [26] provide approximation guarantees

to deterministic and randomized mechanisms that minimize the

total cost while maintaining strategyproofness to ensure no agent

can manipulate the outcome. These works highlight the need for

welfare functions that incorporate fairness, and our framework

addresses this requirement.

Recent work on fairness in FLPs has become increasingly rel-

evant as a growing emphasis has been placed on equitable distri-

bution across agents [6, 16, 20]. Moulin [23] introduced the Nash

welfare function, establishing its foundational role in welfare eco-

nomics. Lam et al. [18] further highlights its application in facility

location, demonstrating that the Nash welfare function effectively

balances fairness and efficiency. This is particularly important for

our generalized welfare framework, which aims to extend beyond

specific functions like Nash welfare. Furthermore, Chen et al. [6] in-

troduce algorithms for 2-facility location that ensure envy-freeness,

reinforcing the importance of fairness in our work. Lam et al. [17]

examine the problem of proportional fairness in obnoxious facility

location, where facilities are undesirable to agents and fairness

becomes a key concern. Wang et al. [31] introduce the concept

of positive intra-group externalities in FLP, focusing on how intra-

group dynamics affect utility and strategyproof mechanisms [31].
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2.3 Welfare Functions and 𝑝-mean Functions
Welfare functions have long been central to decision-making and

resource allocation in facility location. Balcan et al. [1] presents a

method for learning welfare functions from revealed preferences,

which is critical as our generalized framework aims to accommo-

date complex and dynamically evolving welfare functions. Pardeshi

et al. [24] explores the theoretical front of learning welfares or

preferences through the context of generalization bounds. In the

context of Nash welfare, Caragiannis et al. [4] demonstrates its use

in allocation problems, reinforcing the importance of designing

flexible welfare functions that balance fairness and efficiency.

Researchers have also explored generalizations of utilitarian

and egalitarian welfare through 𝑝-mean functions [14], which can

be viewed as a parameterized family of welfare functions where

varying the parameter 𝑝 adjusts the balance between fairness and

efficiency [7]. For instance, 𝑝 = 1 corresponds to utilitarian welfare,

𝑝 = ∞ corresponds to egalitarian welfare, and intermediate values

of 𝑝 provide trade-offs between these extremes. Our work builds

on these concepts by integrating 𝑝-mean functions into a broader

framework for generalized welfare functions.

Barman and Suzuki [2] and Lam et al. [18] contribute to the grow-

ing body of work on Nash welfare, focusing on balancing fairness

and efficiency. Our framework expands on these ideas by allowing

for general welfare functions that can capture more complex and

non-linear utility structures, as noted by Drezner and Scott [9] in

facility location. The increasing need for learned generalized wel-

fare functions [1, 24, 34] to accommodate engineering applications

and other real-world complexities further motivates our research.

In the next section, we will introduce the formal problem setup and

explain the notations.

3 PRELIMINARIES
3.1 Facility Location Problem Setup
We consider a scenario in which a set of 𝑛 agents, denoted by

𝑁 = {1, . . . , 𝑛}, are positioned along the interval1 [0, 1]. Each agent

𝑖 ∈ 𝑁 is located at a specific point 𝑥𝑖 ∈ [0, 1], and the collective set

of agent locations is represented by the vector x = (𝑥1, 𝑥2, . . . , 𝑥𝑛).
Without loss of generality (w.l.o.g.), we assume that the agent posi-

tions are ordered such that 𝑥1 ≤ 𝑥2 ≤ . . . ≤ 𝑥𝑛 .

The social planner’s problem is placing a single facility that

serves these agents. Let the mechanism of this mapping be 𝑓 :

[0, 1]𝑛 → [0, 1], which takes the vector of agent locations x as

input and returns a location 𝑦 ∈ [0, 1] for the facility. For a facility
at location𝑦, agent 𝑖 need to travel | 𝑦−𝑥𝑖 |. Thus, | 𝑦−𝑥𝑖 | indicates
the cost to it or in some contexts, 1− | 𝑦 − 𝑥𝑖 | indicates the utility
to agent 𝑖 . The most prominently studied welfare functions are

computed as follows.

Definition 1 (Utilitarian Welfare). For the agents located at
x and the facility located at 𝑦, the Utilitarian Welfare is

𝑊Utilitarian (𝑦, x) =
∑︁
𝑖

(1− | 𝑦 − 𝑥𝑖 |)

1
Note that the [0,1] domain can be extended and translated to be any closed interval.

Definition 2 (Egalitarian Welfare). For the agents located at
x and the facility located at 𝑦, the Egalitarian Welfare is

𝑊Egalitarian (𝑦, x) = min

𝑖
(1− | 𝑦 − 𝑥𝑖 |)

Definition 3 (Nash Welfare). For the agents located at x and
the facility located at 𝑦, the Nash Welfare is

𝑊Nash (𝑦, x) =
∏
𝑖

(1− | 𝑦 − 𝑥𝑖 |)

Typically, the social planer aims to place the facility at a location

𝑦 that maximizes 𝑊
Utilitarian

or 𝑊
Nash

or 𝑊
Egalitarian

. There are

closed-form solutions for Utilitarianism and Egalitarianism.

3.2 Key Important Mechanisms
In facility location problems (FLP), different welfare optimization

criteria lead to distinct placement strategies for the facility.

The solution that maximizes utilitarian welfare—defined as the

total sum of utilities—is the median of the agent locations. Formally,

this position is given by 𝑥 ⌊𝑛/2⌋ , where𝑛 represents the total number

of agents. This placement has the additional advantage of being

strategyproof, meaning agents cannot benefit from misreporting

their locations.

In contrast, the solution that maximizes egalitarian welfare (fo-
cused on maximizing the minimum utility for any agent)—is the

midpoint between the extreme agents. This solution can be ex-

pressed as
𝑥1+𝑥𝑛

2
, where 𝑥1 and 𝑥𝑛 represent the positions of the

agents at the two extremes.

Finally, the solution that maximizes Nash welfare—a balance

between utilitarian and egalitarian objectives—is more complex.

The Nash welfare function is the product of individual utilities, and

finding its maximization in FLP is known to be both difficult to

compute and interpret in practice [23].

While these solutions maximize different welfare objectives,

many interesting properties emerge from their comparative anal-

ysis. However, these properties have traditionally been studied

separately for each welfare function. This paper proposes a unify-

ing framework that allows for the study of these properties in a

more general, abstract manner.

As stated previously (Section 1), there are scenarios where one

must go beyond the three classical welfare functions. Rather than

developing new solutions for each emerging welfare criterion, a

more holistic approach can be adopted. Specifically, we want to

study facility location as an abstract problem, agnostic to the spe-

cific welfare function, by focusing on common properties shared

by many of these functions. One such approach involves the use of

𝑝-mean functions, which we explain in the next section.

3.3 𝑝-mean Welfare Functions
Consider the facility location problem where the 𝐿𝑝 -norm is used

as the distance metric between agents and the facility. The solution

𝑦𝑃𝑚𝑒𝑎𝑛 to the facility location problem under the 𝐿𝑝 -norm is de-

fined as the facility location that minimizes the 𝑝-mean distance to

all agents, given by:

𝑦𝑃𝑚𝑒𝑎𝑛 = arg min

𝑦∈[0,1]

(∑︁
𝑖∈𝑁

|𝑦 − 𝑥𝑖 |𝑝
)
1/𝑝

(1)
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Since the 𝑝-th root is a monotonically increasing function, we

can simplify the optimization problem to:

𝑦𝑃𝑚𝑒𝑎𝑛 = arg min

𝑦∈[0,1]

∑︁
𝑖∈𝑁

|𝑦 − 𝑥𝑖 |𝑝 (2)

Next section proposes a more general framework, FLIGHT –

Facility Location Integrating Generalized, Holistic Theory of
Welfare. FLIGHT generalizes the concept of welfare functions and

provides a unified approach to solving facility location problems.

4 A UNIFIED PERSPECTIVE
We propose FLIGHT and demonstrate how all well-studied welfare

functions, including 𝑝-mean functions, can be incorporated into

it. We show that the Nash Welfare function can also be integrated

within the FLIGHT framework, thereby highlighting the versatility

and generality of our approach in encompassing a wide range of

welfare functions.

4.1 FLIGHT Framework
Utility for an agent at location 𝑥𝑖 when the facility is located at 𝑦

is a function of 𝑦 − 𝑥𝑖 . Let the utility function for each agent be

𝛼 : R → R. Specifically, 𝛼 takes the distance from the facility as

input and returns the corresponding utility for the agent as output.

The function 𝛼 encapsulates how the agent’s utility diminishes with

increasing distance from the facility
2
.

Next, we define the total welfare𝑊𝛼 (𝑦, x) as the aggregate of
individual utilities across all agents. Formally, it is expressed as:

𝑊𝛼 (𝑦, x) =
∑︁
𝑖∈𝑁

𝛼 (𝑦 − 𝑥𝑖 )

where 𝑦 ∈ [0, 1] represents the location of the facility, and x =

(𝑥1, . . . , 𝑥𝑛) denotes the vector of agent locations.
Given this total welfare function, the social planner’s goal is to

determine a location that maximizes global welfare. We denote it

as 𝑃𝛼 (x). Formally, this can be expressed as:

𝑃𝛼 (x) = arg max

𝑦∈[0,1]
𝑊𝛼 (𝑦, x)

For Utilitarian welfare, as stated in Section 3.2, 𝑃𝛼 (𝑥) = 𝑥 𝑛
2

and

for Egalitarian welfare, 𝑃𝛼 (𝑥) = 𝑥1+𝑥𝑛
2

. In the next section, we show

that 𝑝-mean welfare functions are special cases of our framework.

4.2 Incorporating 𝑝-mean Welfare Functions
into Our Framework

In this section, we demonstrate that 𝑝-Mean utility functions are
fully accommodated by our framework. Since utilitarian welfare
and egalitarian welfare are special cases of 𝑝-mean utility functions,

which naturally fit within our general framework.

4.2.1 Generalizing to 𝑝-Mean Utility Functions. The idea is to align
optimization from Equation 2 with FLIGHT, we can express it as a

maximization problem as:

𝑦𝑃𝑚𝑒𝑎𝑛 = arg max

𝑦∈[0,1]
−

∑︁
𝑖∈𝑁

|𝑦 − 𝑥𝑖 |𝑝 (3)

2
Note: 𝛼 could be an asymmetric function as well, meaning it lacks symmetry about

the y-axis.

To incorporate 𝑝-mean utility functions into our framework, we

define a utility function 𝛼 : R → R, where 𝛼 (𝑥) = −|𝑥 |𝑝 . Using
this definition, the total welfare function𝑊𝛼 (𝑦, x) becomes:

𝑊𝛼 (𝑦, x) =
∑︁
𝑖∈𝑁

𝛼 (𝑦 − 𝑥𝑖 ) =
∑︁
𝑖∈𝑁

−|𝑦 − 𝑥𝑖 |𝑝 (4)

4.2.2 Special Cases: Utilitarian and Egalitarian Welfare. Both util-
itarian welfare and egalitarian welfare are special cases of the 𝑝-
mean utility functions, fitting naturally within our framework. The

utilitarian welfare function corresponds to the case where 𝑝 = 1.

Similarly, The egalitarian welfare function corresponds to the lim-

iting case as 𝑝 → ∞.

4.3 Nash Welfare
In this section, we demonstrate that the Nash welfare function [18]

is also fully compatible with our framework. To formalize this, let

𝑦𝑁𝑎𝑠ℎ denote the facility location that maximizes the Nash welfare.

We express this as:

𝑦𝑁𝑎𝑠ℎ = arg max

𝑦∈[0,1]

∏
𝑖∈𝑁

(1 − |𝑦 − 𝑥𝑖 |) (5)

We can simplify this by applying the logarithmic transforma-

tion. Since the logarithmic function is monotonic, it preserves the

location of the maximum. Therefore, we have:

𝑦𝑁𝑎𝑠ℎ = arg max

𝑦∈[0,1]
log

(∏
𝑖∈𝑁

(1 − |𝑦 − 𝑥𝑖 |)
)

(6)

Or equivalently:

𝑦𝑁𝑎𝑠ℎ = arg max

𝑦∈[0,1]

∑︁
𝑖∈𝑁

log(1 − |𝑦 − 𝑥𝑖 |) (7)

Thus, by defining the utility function as 𝛼 (𝑥) = log(1 − |𝑥 |), the
Nash welfare problem is equivalent to maximizing the total welfare

function𝑊𝛼 (𝑦, x).
It is worth noting that our framework naturally accommodates

asymmetric welfare functions, an area that has been explored in a

limited number of facility location studies [9, 19]. While the study of

asymmetry in FLPs remains relatively sparse, our framework offers

a convenient approach to incorporating such welfare functions.

Having established that the 𝑝-mean functions—along with the

utilitarian and egalitarian welfare functions—and the Nash welfare

function can be effectively incorporated into our FLIGHT frame-

work, we now turn our attention to studying the properties of this

generalized welfare formulation. In the following section, we exam-

ine key structural properties of the generalized welfare function,

with particular emphasis on concavity, which is a natural assump-

tion in many practical contexts since utility typically decreases

with increasing distance.

We choose to use utility over cost in our exposition, primarily for

conceptual clarity. Note that our framework, FLIGHT, is inherently

flexible and capable of unifying both cost and utility perspectives

under the broader notion of agent single-peaked preferences. Within

this formulation, the 𝛼-welfare function can be interpreted as an ag-

gregation of these preferences, ensuring a cohesive and generalized

approach to welfare optimization.
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We proceed by proving several theorems related to these prop-

erties, thereby further elucidating the theoretical foundation of the

FLIGHT framework.

5 𝛼-WELFARE: PROPERTIES AND
COMPUTATION

In the previous section, we demonstrated that a wide variety of

existing welfare notions can be incorporated into our framework.

Here, we delve into the general structural properties of 𝛼-Welfare

functions, focusing on how these properties relate to the compu-

tation and approximation of various welfare functions within the

framework. Notably, many of these properties echo results found

in the literature, thus highlighting the unifying power of our frame-

work. Moreover, several proofs become simplified when viewed

through the lens of the generalized framework. We have provided

proof sketches wherever possible. The complete proofs are present

in Appendix B of the full version of the paper [30].

5.1 Assumptions
We begin by assuming that the utility function 𝛼 (𝑥) is concave
with respect to 𝑥 , which captures the phenomenon of diminishing

returns as the distance between the facility and an agent increases.

This assumption of concavity serves as the foundation for the theo-

rems presented in the subsequent sections. Additionally, we assume

that 𝛼 (𝑥) attains its maximum at 𝑥 = 0, reflecting the highest utility

when the agent is located at the facility.

The following properties arise naturally from a fundamental

assumption of concave utility functions. Note that these do not

need to be imposed as design choices.

5.2 Properties of 𝛼-Welfare
Theorem 1. The total welfare function𝑊𝛼 (𝑦, x), is concave in 𝑦.

Proof. The total welfare is defined as the sum of individual utility

functions:

𝑊𝛼 (𝑦, x) =
∑︁
𝑖∈𝑁

𝛼 (𝑦 − 𝑥𝑖 )

Since 𝛼 (𝑥) is concave, and the sum of finitely many concave func-

tions is also concave, it follows that𝑊𝛼 (𝑦, x) is concave in 𝑦. □

The significance of Theorem 1 lies in the fact that the concavity

of the total welfare function𝑊𝛼 (𝑦, x) implies it is single-peaked
with respect to 𝑦, a property that is analogous to the behavior ob-

served in Nash welfare functions [18]. Furthermore, the structural

properties established in Theorems 2, 3, and 4 exhibit similar char-

acteristics to those studied in [18], reinforcing the parallels between

our framework and Nash welfare-based approaches in facility lo-

cation. . Single-peakedness is crucial in optimization. It allows the

use of efficient convex or concave optimization algorithms to locate

the maximum welfare point, facilitating computational approaches

to solving the facility location problem. Furthermore, the concavity

guarantees that local maxima are also global maxima, simplifying

the analysis and solution of the problem. Our next theorem proves

the location invariance property of FLIGHT.

Theorem 2. Let x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and x′ = (𝑥1 + 𝑐, 𝑥2 +
𝑐, . . . , 𝑥𝑛 + 𝑐) be two location profiles, where 𝑐 ∈ R represents a
constant shift. Then, the following holds:

𝑊𝛼 (𝑦, x′) =𝑊𝛼 (𝑦 − 𝑐, x),
and consequently,

𝑃𝛼 (x′) = 𝑃𝛼 (x) + 𝑐.

Proof. The key idea behind this result is that shifting all the

agents’ locations by a constant 𝑐 results in a corresponding shift

in the facility location by 𝑐 , without affecting the total welfare

function.

To see this, consider the welfare function𝑊𝛼 (𝑦, x) =
∑
𝑖∈𝑁 𝛼 (𝑦−

𝑥𝑖 ), where 𝛼 (𝑧) is the utility function. When the agent profile x is

shifted by a constant 𝑐 , the welfare function for the shifted profile

becomes:

𝑊𝛼 (𝑦, x′) =
∑︁
𝑖∈𝑁

𝛼 ((𝑦 − 𝑐) − 𝑥𝑖 ).

This is equivalent to the original welfare function with the facility

location adjusted by 𝑐 , i.e.,𝑊𝛼 (𝑦, x′) =𝑊𝛼 (𝑦 − 𝑐, x).
Thus, the optimal facility location for the shifted profile, 𝑃𝛼 (x′),

is simply the original location shifted by 𝑐 , i.e., 𝑃𝛼 (x′) = 𝑃𝛼 (x) + 𝑐 .
This completes the proof. □

The next theorem shows how the movement of a single agent 𝑥𝑖
by a constant affects the peak 𝑃𝛼 with utility function 𝛼 .

Theorem 3. Let x = (𝑥1, . . . , 𝑥𝑛) be the agent location profile. If
agent 𝑥𝑖 is shifted left by a constant 𝑐 ∈ (0, 𝑥𝑖 ], resulting in a new
profile x′ = (𝑥1, . . . , 𝑥𝑖 − 𝑐, . . . , 𝑥𝑛), then:

𝑃𝛼 (x′) ≤ 𝑃𝛼 (x)

Proof. Since𝑊𝛼 (𝑦, x′) is concave and single-peaked, to prove

that 𝑃𝛼 (x′) ≤ 𝑃𝛼 (x), it suffices to show that𝑊𝛼 (𝑦, x′) is strictly
decreasing in the interval (𝑃𝛼 (x), 1). This is because 𝑃𝛼 (x) is the
maximum of𝑊𝛼 (𝑦, x), and proving the function decreases beyond

this point implies that the new maximum 𝑃𝛼 (x′) must occur at a

lower value.

We begin by expressing the total welfare for the perturbed loca-

tion profile x′:

𝑊𝛼 (𝑦, x′) = 𝛼 (𝑦 − 𝑥1) + · · · + 𝛼 (𝑦 − (𝑥𝑖 − 𝑐)) + · · · + 𝛼 (𝑦 − 𝑥𝑛)
This can be rewritten as:

𝑊𝛼 (𝑦, x′) =𝑊𝛼 (𝑦, x) + 𝛼 (𝑦 − (𝑥𝑖 − 𝑐)) − 𝛼 (𝑦 − 𝑥𝑖 )
Next, we differentiate this expression with respect to 𝑦:

𝑑𝑊𝛼 (𝑦, x′)
𝑑𝑦

=
𝑑𝑊𝛼 (𝑦, x)

𝑑𝑦
+ 𝑑𝛼

𝑑𝑦

����
𝑦−(𝑥𝑖−𝑐 )

− 𝑑𝛼

𝑑𝑦

����
𝑦−𝑥𝑖

Now, consider the terms on the right-hand side:

1. Since𝑊𝛼 (𝑦, x) is concave and 𝑃𝛼 (x) is its maximum, we know

that
𝑑𝑊𝛼 (𝑦,x)

𝑑𝑦
< 0 for 𝑦 ∈ (𝑃𝛼 (x), 1).

2. Additionally, because 𝛼 (𝑥) is concave, we have 𝑑𝛼
𝑑𝑦

��
𝑦−(𝑥𝑖−𝑐 ) ≤

𝑑𝛼
𝑑𝑦

��
𝑦−𝑥𝑖 . This follows from the fact that the derivative of a concave

function decreases as the input increases.

3. As a result,
𝑑𝛼
𝑑𝑦

��
𝑦−(𝑥𝑖−𝑐 ) −

𝑑𝛼
𝑑𝑦

��
𝑦−𝑥𝑖 ≤ 0.
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Thus, the total derivative
𝑑𝑊𝛼 (𝑦,x′ )

𝑑𝑦
remains negative in the

interval (𝑃𝛼 (x), 1). Since the function is decreasing beyond 𝑃𝛼 (x),
it follows that: 𝑃𝛼 (x′) ≤ 𝑃𝛼 (x) □

It is important to observe that when an agent moves to the right,

i.e., 𝑥𝑖 → 𝑥𝑖 + 𝑐 with 𝑐 ≥ 0, we can prove by symmetry arguments

that 𝑃𝛼 (x) ≤ 𝑃𝛼 (x′), where x′ represents the updated location

profile after the shift.

This result follows by considering x′ as the initial location profile
and x as the deviated profile. Then, by applying Theorem 3, which

states that the optimal facility location shifts in the direction of the

agent’s movement, we conclude that 𝑃𝛼 (x) ≤ 𝑃𝛼 (x′).
The importance of this theorem lies in the fact that it establishes

a directional monotonicity property. Specifically, assuming the po-

sitions of all other agents remain fixed, if a single agent shifts to

the right, the peak 𝑃𝛼 will not move to the left, and similarly, if the

agent shifts to the left, the peak will not move to the right.

We now address a broader question: how does the optimal fa-

cility location 𝑃𝛼 change when all agents move from one location

profile x to a new profile x′? Specifically, we aim to understand the

relationship between the shifts in individual agent positions and

the resulting change in the welfare-maximizing facility location.

Theorem 4. For any two agent location profiles x = (𝑥1, 𝑥2 . . . , 𝑥𝑛)
and x′ = (𝑥 ′

1
, 𝑥 ′

2
, . . . , 𝑥 ′𝑛), the following inequality holds:

|𝑃𝛼 (x) − 𝑃𝛼 (x′) | ≤ max

𝑖∈[𝑛]
|𝑥𝑖 − 𝑥 ′𝑖 |

Proof.3 Define two new location profiles, x+𝑐 and x−𝑐 , as follows:

x+𝑐 ≜ (𝑥1 + 𝑐, 𝑥2 + 𝑐, . . . , 𝑥𝑛 + 𝑐)

x−𝑐 ≜ (𝑥1 − 𝑐, 𝑥2 − 𝑐, . . . , 𝑥𝑛 − 𝑐)
By Theorem 3, we know:

𝑃𝛼 (x−𝑐 ) ≤ 𝑃𝛼 (x′) ≤ 𝑃𝛼 (x+𝑐 )
Additionally, by Theorem 2, we have:

𝑃𝛼 (x) − 𝑐 ≤ 𝑃𝛼 (x′) ≤ 𝑃𝛼 (x) + 𝑐
This implies:

−𝑐 ≤ 𝑃𝛼 (x′) − 𝑃𝛼 (x) ≤ +𝑐
Therefore, we conclude:

|𝑃𝛼 (x′) − 𝑃𝛼 (x) | ≤ 𝑐 = max

𝑖∈𝑁
|𝑥 ′𝑖 − 𝑥𝑖 |

□

5.3 Approximation Bounds: Comparison to
Other Welfare Metrics

We now turn to the question of how well different welfare functions

approximate one another under this framework.

Theorem 5. Let 𝛼 be a utility function with an upper Lipschitz
constant 𝜆𝑢𝛼 and a lower Lipschitz constant 𝜆𝑑𝛼 . Additionally, assume
that 𝛼 (𝑥) > 0 for all 𝑥 ∈ [−1, 1], even though agent locations are
restricted to [0, 1]. Define:

𝐷𝛼 = min {𝛼 (0) + (𝑛 − 1)𝛼 (−1), 𝛼 (0) + (𝑛 − 1)𝛼 (1)} .
3
Note that (except for the FLIGHT setting) this proof is almost exactly equivalent to

the one in Lam et al. [18].

Then, for all 𝑦 ∈ [0, 1], the following inequality holds:

𝑒
𝜆𝑑𝛼 (𝑃𝛼 (x)−𝑦)

𝛼 (0) ≤ 𝑊𝛼 (𝑃𝛼 (x), x)
𝑊𝛼 (𝑦, x)

≤ 𝑒
𝑛𝜆𝑢𝛼 (𝑃𝛼 (x)−𝑦)

𝐷𝛼 .

Proof sketch. To establish the desired bounds, we leverage the

Lipschitz properties of the logarithmic function ln(𝑥), as well as the
Lipschitz continuity of 𝛼 (𝑥), to derive a bound on ln

(
𝑊𝛼 (𝑃𝛼 (x),x)

𝑊𝛼 (𝑦,x)

)
.

The total welfare function 𝑊𝛼 (𝑦, x) is the sum of individual

utilities based on the location of the facility at 𝑦. By applying the

Lipschitz properties of 𝛼 (𝑥), we can bound the ratio of welfare func-
tions by exponentiating the bound on their logarithmic difference.

Formally, we write:

ln

(
𝑊𝛼 (𝑃𝛼 (x), x)
𝑊𝛼 (𝑦, x)

)
= ln(𝑊𝛼 (𝑃𝛼 (x), x)) − ln(𝑊𝛼 (𝑦, x)) .

Using the Lipschitz property of ln(𝑥) and the fact that 𝛼 (𝑥) is
concave with its maximum at 𝑥 = 0 , we can apply bounds on

this difference. Specifically, since 𝛼 (𝑥) is Lipschitz continuous with
upper and lower bounds given by 𝜆𝑢𝛼 and 𝜆𝑑𝛼 , we obtain the bounds

for the ratio of the welfare functions.

Finally, applying the exponent to both sides of the inequality

provides the result, where the upper and lower bounds depend on

the constants 𝜆𝑢𝛼 , 𝜆
𝑑
𝛼 , and the behavior of 𝛼 (𝑥) at the extremes of

its domain. □

Given that the exponent is a rational function with polynomials

of the same degree in both the numerator and the denominator,

we can conclude (as we prove in Lemma 6) that as 𝑛 → ∞, the

exponent is asymptotically bounded by a constant. Furthermore,

we can assert that the ratio remains sub-exponential even for small

values of 𝑛.

Lemma 6. As the number of agents 𝑛 increases, the upper bound
on the approximation ratio converges to a constant, i.e., at the most

𝑒
𝜆𝑢𝛼

min{𝛼 (−1),𝛼 (1) } .

Proof. From the previous theorem, the upper bound on the ap-

proximation ratio is given by:

𝑊𝛼 (𝑃𝛼 (x), x)
𝑊𝛼 (𝑦, x)

≤ 𝑒
𝑛𝜆𝑢𝛼 (𝑃𝛼 (x)−𝑦)

𝐷𝛼 .

As 𝑛 → ∞, the denominator behaves as
4
:

𝐷𝛼 ∼ (𝑛 − 1)min{𝛼 (−1), 𝛼 (1)}.
Thus, the approximation ratio becomes:

lim

𝑛→∞
𝑒

𝑛𝜆𝑢𝛼 (𝑃𝛼 (x)−𝑦)
(𝑛−1) min{𝛼 (−1),𝛼 (1) } = 𝑒

𝜆𝑢𝛼 (𝑃𝛼 (x)−𝑦)
min{𝛼 (−1),𝛼 (1) } .

However, since 𝑃𝛼 (x) − 𝑦 ≤ 1, we have:

lim

𝑛→∞
𝑒

𝑛𝜆𝑢𝛼 (𝑃𝛼 (x)−𝑦)
(𝑛−1) min{𝛼 (−1),𝛼 (1) } ≤ 𝑒

𝜆𝑢𝛼
min{𝛼 (−1),𝛼 (1) } .

Lemma 7. Let 𝛼, 𝛽 be two utility functions with corresponding wel-
fares𝑊𝛽 (𝑦, x),𝑊𝛼 (𝑦, x) and maximizers 𝑃𝛽 (x), 𝑃𝛼 (x). Then, Theo-
rem 5 yields the approximation ratio between utility functions 𝛼 and
𝛽 :

𝑊𝛼 (𝑃𝛼 (x), x)
𝑊𝛼 (𝑃𝛽 (x), x)

≤ 𝑒

𝑛𝜆𝛼 (𝑃𝛼 (x)−𝑃𝛽 (x) )
𝐷𝛼 ≤ 𝑒

𝑛𝜆𝛼
𝐷𝛼

4
Note that 𝛼 (𝑥 ) > 0 ∀𝑥 ∈ [−1, 1].
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By Lemma 6, as 𝑛 → ∞, this approximation ratio becomes constant.

Proof: The proof follows directly from Lemma 6. The final part

of the inequality is true because 𝑃𝛼 (x) − 𝑃𝛽 (x) ≤ 1. □

5.4 Bounding the Distance Between Peaks
The next theorem provides a bound on the distance between the

peaks 𝑃𝛼 and𝑚𝑒𝑑𝑖𝑎𝑛, based on the configuration of agent locations.

Theorem 8. Let 𝑚𝑒𝑑 denote the median of the location profile
x = (𝑥1, 𝑥2, . . . , 𝑥𝑛). If 𝑛 is even, define the median as:

𝑚𝑒𝑑 =
𝑥 𝑛

2

+ 𝑥 𝑛
2
+1

2

.

Then, the following inequality holds:

|𝑚𝑒𝑑 − 𝑃𝛼 (x) | ≤
1

2

⌊𝑛/2⌋
max

𝑖=1
|𝑑+𝑖 − 𝑑−𝑖 |,

where 𝑑+
𝑖
= |𝑚𝑒𝑑 − 𝑥 ⌊𝑛/2⌋+𝑖 | and 𝑑−𝑖 = |𝑚𝑒𝑑 − 𝑥 ⌈𝑛/2⌉−𝑖 |, and 𝛼 is a

symmetric utility function.

Proof sketch. The central idea behind this proof is recognizing

that if the location profile x were perfectly symmetric around the

median𝑚𝑒𝑑 , then the peak of the welfare function, 𝑃𝛼 (x), would
coincide with the median due to the symmetry of 𝛼 .

Thus, the deviation of 𝑃𝛼 (x) from the median arises solely due

to the asymmetry in the distribution of agents around the median.

The key question becomes: how far must the agents be shifted to

transform the location profile x into a symmetric configuration?

To quantify this, we compare the distances of the agents on either

side of the median. For each agent positioned at 𝑥 ⌊𝑛/2⌋+𝑖 (to the

right of the median), we consider the distance 𝑑+
𝑖
from the median,

and similarly, for each agent at 𝑥 ⌈𝑛/2⌉−𝑖 (to the left of the median),

we consider the distance 𝑑−
𝑖
.

The difference |𝑑+
𝑖
− 𝑑−

𝑖
| measures how far these corresponding

agents deviate from a symmetric configuration. The maximum of

these deviations for all pairs of agents gives a measure of the total

asymmetry in the distribution of the agents around the median.

Since the location of 𝑃𝛼 (x) is influenced by the overall symmetry

of the location profile, the deviation of 𝑃𝛼 (x) from the median is

bounded by the total asymmetry, which is expressed as:

|𝑚𝑒𝑑 − 𝑃𝛼 (x) | ≤
1

2

⌊𝑛/2⌋
max

𝑖=1
|𝑑+𝑖 − 𝑑−𝑖 |.

This completes the sketch of the proof. □

1 2 3 4 5

1 2 3 4 5

Symmetric Agent Profile

Actual Agent Profile

Arrows denoting the 
difference in positions

Figure 1: Illustration of Theorem 8: Bounding the Deviation
of the Welfare Peak from the Median. The longest arrow,
representing the maximum deviation from the symmetric
agent profile, provides the required upper bound.

In the following section, we will conduct a probabilistic analysis

of our FLIGHT framework. Specifically, we will consider scenarios

in which the agent locations are drawn from a probability distribu-

tion. By incorporating this probabilistic perspective, we aim to pro-

vide a more comprehensive understanding of how the distribution

of agents influences the welfare outcomes within our framework.

6 PROBABILISTIC ANALYSIS OF 𝛼-WELFARE
In this section, we extend our analysis by introducing a probabilistic

framework in which agent locations are treated as random variables.

Specifically, we assume that the agents’ preferred locations 𝑥𝑖 are

independently and identically distributed (i.i.d.) samples from a

probability distribution P, i.e., 𝑥𝑖 ∼ P. This formulation allows us

to examine the behavior of welfare functions when agent positions

are drawn from a probabilistic distribution, which is particularly

useful in real-world scenarios where exact agent locations may be

uncertain.

6.1 Expected Welfare Function
We define

5
the expected total welfare, WP

𝛼 (𝑦, x), as the expected
welfare at location 𝑦 when agents are sampled from the probability

distribution P. This expected welfare provides a probabilistic gener-

alization of our previously defined deterministic welfare functions.

Definition 4 (Empirical Welfare). The empirical welfare func-
tion𝑊𝛼 (𝑦, x) is defined as the sum of individual utilities for agents
located at x = (𝑥1, 𝑥2, . . . , 𝑥𝑛), where the locations 𝑥𝑖 are sampled
from the probability distribution P. Formally:

𝑊𝛼 (𝑦, x) =
𝑛∑︁
𝑖=1

𝛼 (𝑦 − 𝑥𝑖 ) .

Definition 5 (Expected Welfare). Let WP
𝛼 (𝑦, x) represent the

expected welfare for agents sampled i.i.d. from the distribution P.
Formally, this is given by:

WP
𝛼 (𝑦, x) = Ex∼P𝑛 [𝑊𝛼 (𝑦, x)] ,

where 𝛼 is the individual utility function, x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) repre-
sents the agent locations, and 𝑛 is the number of agents.

Theorem 9. The expected welfare function WP
𝛼 (𝑦, x) is given by:

WP
𝛼 (𝑦, x) = 𝑛 × [𝛼 ⊛ P](𝑦),

where [𝛼 ⊛ P](𝑦) represents the convolution of the utility function 𝛼
and the probability distribution P, evaluated at location 𝑦.

Proof sketch. The result follows from the linearity of expecta-

tion and the fact that the sum of 𝑛 independent random variables

sampled from P is equivalent to scaling the expected utility by 𝑛.

Specifically, since each agent’s utility is independently and identi-

cally distributed (i.i.d.) from P, the expected welfare for 𝑛 agents

can be written as the expected welfare for one agent multiplied by

𝑛. This yields the convolution result. □
In many practical applications, especially in large-scale systems,

we are often not given the exact locations of all agents but rather

5
In scenarios where agent locations are probabilistic, the total welfare function be-

comes a random variable. Accordingly, we extend our prior definitions in Section 4

to accommodate this stochastic setting. Such analysis provides insights into ex-ante

performance.
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a probability distribution P that describes their likely positions.

When dealing with a large number of agents, directly computing

the total welfare based on each individual’s location can become

computationally expensive. This challenge necessitates the devel-

opment of more efficient techniques for estimating the welfare,

particularly when a probability distribution is available.

The following two theorems provide insights, allowing us to cir-

cumvent the need to compute the welfare function through explicit

agent positions. Instead, these results show that we can rely on the

probability distribution P to derive robust estimates of the welfare

function.

First (Theorem 10), we demonstrate that given only the proba-

bility distribution P, the best estimator of the welfare function is

the expected welfare. This means that the expected welfare serves

as an unbiased estimator with the minimum variance, ensuring

the most accurate estimate of the empirical welfare function. This

result is highly valuable because it simplifies the computation by

focusing on the mean of the distribution rather than requiring the

sum over all agents.

Second (Theorem 11), we establish that as the number of agents

increases, the empirical welfare converges in probability to the

expected welfare. This result, rooted in the weak law of large num-

bers, guarantees that as the number of agents becomes arbitrarily

large, the difference between the empirical and expected welfare di-

minishes. Hence, for engineering applications where we often deal

with large populations, using the expected welfare is not only com-

putationally simpler but also practically equivalent to calculating

the empirical welfare.

Together, these results underscore the utility of relying on the

expected welfare in large-scale systems. The expected welfare is

easier to compute and analyze, and as the number of agents in-

creases, it becomes a reliable proxy for the actual welfare function,

making it highly suitable for real-world engineering applications.

6.2 Optimality in Function Space
We next examine how the expected welfare function relates to

minimizing the distance between welfare functions in a suitable

function space.

Definition 6. Define the F -distance between two functions 𝑓1
and 𝑓2 as:

| |𝑓1 − 𝑓2 | |F ≜
∫
R
(𝑓1 (𝑥) − 𝑓2 (𝑥))2 𝑑𝑥

Theorem 10. The function WP
𝛼 (𝑦, x) minimizes the expected F -

distance to the empirical welfare function𝑊𝛼 (𝑦, x), i.e., it is the best
approximation of the empirical welfare in the F -distance sense.

Proof sketch. By definition of expected welfare,𝑊𝛼 (𝑦,P, 𝑛) is
the mean of the empirical welfare function𝑊𝛼 (𝑦, x), where x is

the random vector of agent locations. Given that the F -distance is

a measure of the difference between two functions, the expected

value of the empirical welfare is the function that minimizes this

difference. The proof mirrors the discrete case. (The Minimum

Variance Unbiased Estimator of a random variable is simply its

mean.) □

6.3 Asymptotic result on Welfares
The weak law of large numbers is a classical result in probability

theory. Here, we derive a variation of the law applied to our welfare

framework.

Theorem 11 (Asymptotic result for Welfare Functions).

Let𝑊𝛼 (𝑦, x) be the empirical welfare function for a sample of𝑛 agents
and 𝑋 ∼ P. Then, as 𝑛 → ∞, the empirical welfare converges in
probability to the expected welfare for a single agent:

𝑊𝛼 (𝑦, x)
𝑛

𝑝
−→ WP

𝛼 (𝑦,𝑋 )

Proof sketch. This is a direct consequence of the weak law of

large numbers. As the number of agents increases, the average

empirical welfare converges to the expected welfare. The factor

of 𝑛 normalizes the total welfare, ensuring convergence to the

expected value for one agent sampled from P. □

7 CONCLUSION
In this paper, we introduced a flexible and unified framework for

facility location problems using 𝛼-welfare functions, demonstrating

that various well-known welfare models, such as utilitarian, egali-
tarian, and Nash welfare, are special cases within this framework.

We established key structural properties of these functions, includ-

ing concavity, location invariance, and monotonicity, which simplify

optimization for facility placement. Additionally, by incorporating

a probabilistic perspective, where agent locations are modeled as

independent samples from a distribution, we derived the expected

welfare function and analyzed how welfare functions approximate

each other under uncertainty. Furthermore, we provided approxima-
tion bounds between different welfare functions and introduced the

F -distance as a metric for evaluating discrepancies between empiri-

cal and expected welfare functions. This comprehensive framework

supports robust decision-making in facility location problems and

offers significant potential for future research.

ADDITIONAL RESOURCES
The full version of this paper, including complete proofs and addi-

tional discussions, is available in the full version of the paper [30].
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