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ABSTRACT
In recent years, multi-agent reinforcement learning (MARL) meth-
ods have increasingly been applied to traffic signal control and
have achieved some success. However, most of existing MARL
methods often underemphasize the heterogeneity in neighborhood-
level information of the same agent. This results in highly sen-
sitive performances and a long learning process. To address this
challenge, we propose FGLight, a novel Feudal MARL method for
traffic signal control. FGLight leverages Adaptive Graph Attention
Networks (AGAT) to dynamically model the interactive relation-
ships between intersections. Through adaptive neighbor selection
and weight-based attention mechanisms, AGAT dynamically as-
signs importance weights to neighbor-level information, thereby
improving the accuracy of local policies by more effectively ex-
ploiting neighborhood information. Moreover, FGLight introduces
a Smooth Hysteretic Deep Q-Network (SHDQN) based on an op-
timistic assumption mechanism, which enhances the stability of
the global policy. We conducted experiments on both synthetic and
real-world datasets, and the results demonstrate that, compared to
several state-of-the-art MARL methods, FGLight performs better
as the complexity of the road network increases, exhibiting faster
convergence and greater policy stability.
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1 INTRODUCTION
The ongoing process of urbanization has led to an escalation in ur-
ban traffic congestion, presenting a significant challenge for modern
cities. In recent years, the rapid advancement of artificial intelli-
gence (AI) technologies has led to the growing trend of utilizing
AI to address traffic congestion issues. Traffic signal control plays
a critical role in urban traffic management, and optimizing traffic
signal control is a key approach to alleviating congestion. Histori-
cal data suggests that optimizing traffic signal control systems can
improve surface traffic efficiency by 10% to 20% [1]. Traditional
traffic signal control methods primarily rely on fixed timing and
manual settings, which are based on predefined rules and lack the
ability to dynamically adjust signals according to real-time traffic
conditions [2]. Given the sharp increase in urban traffic flow, these
traditional methods are no longer adequate to meet the current
traffic demands.

In recent years, researchers have increasingly applied Deep Rein-
forcement Learning (DRL) to traffic signal control, achieving notable
results that generally surpass traditional control methods [3–6].
Wei, H et al. proposed the CoLight model [7], which achieved effi-
cient cooperation among traffic signals through learning dynamic
communication and index-free modeling, significantly improving
traffic signal control performance. Chacha Chen et al. proposed
the MPLight model [8], which further realized large-scale traffic
signal control through a decentralized reinforcement learning par-
adigm and parameter sharing. Bingyu Xu et al. proposed a novel
hierarchical and cooperative RL method, HiLight [9], which adopts
a hierarchical structure and introduces multi-critic and adaptive
weighting mechanisms to optimize long-term objectives. Ye, Y et al.
presented the InitLight model [10], which generates initial models
for traffic signal control by combining adversarial inverse reinforce-
ment learning with expert trajectories from single-intersection
environments. Zhang, H et al. proposed the MATLight model [11],
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which achieves coordinated control of multi-intersection traffic
signals through heterogeneous agent mirror learning combined
with Transformer architecture.

Despite the progress achieved by DRL-based models [7–11], sev-
eral critical challenges remain in large-scale traffic signal control.
A key objective is to optimize the average travel time of all vehi-
cles across the entire road network. However, coordinating traffic
signals across the network to directly optimize this metric is still
an open problem that requires further exploration. HiLight [9] was
specifically designed to address the challenge of reducing average
travel time across the network. It enables each agent to learn its own
control strategy, using a multi-critic mechanism to optimize both
local and neighborhood average travel times. An adaptive weight-
ing system promotes agent cooperation by balancing local and
neighborhood objectives. However, the reliance on coordinating
multiple sub-policies limits its ability to achieve global optimization
in complex networks, particularly in areas with variable traffic and
dense intersections, where low-level optimization alone proves in-
sufficient. These challenges hinder HiLight’s scalability and broader
application.

To address this challenge, we propose a hierarchical reinforce-
ment learning method based on Adaptive Graph Attention Net-
works (AGAT), called FGLight. FGLight employs a hierarchical
multi-objective optimization reinforcement learning framework to
achieve efficient intersection neighborhood communication and
cooperation. Specifically, at the lower-level interaction layer, FG-
Light leverages AGAT to dynamically assign importance weights
to neighbor-level information, enhancing the accuracy of local
decision-making by further exploring neighborhood information.
This approach enables each intersection agent to adaptively select
relevant neighboring intersections and selectively share and lever-
age traffic information based on importance-weighted criteria. At
the upper-level decision-making layer, FGLight introduces an opti-
mistic assumption mechanism and proposes a Smooth Hysteretic
Deep Q-Network (SHDQN). This innovative approach employs dy-
namic learning rate adjustments to differentiate between positive
and negative temporal difference errors during Q-value updates,
thereby increasing the probability of positive updates. Through this
design, the upper-level decision-making layer effectively mitigates
the impact of environmental uncertainties, enhances the stability of
the learning process, and accelerates convergence towards optimal
traffic management strategies. Our contributions are summarized
as follows:

• We propose a DRL-based traffic signal control method, FG-
Light, which further explores the importance of neighbor
information, focusing on the optimization of multiple traffic
signal controls in complex road networks.

• FGLight dynamically balances the importance of local and
neighborhood objectives through an adaptive weighting
mechanism, enhancing the accuracy of local policies by ef-
ficiently utilizing neighborhood information. Furthermore,
FGLight introduces a SHDQN based on an hysteretic as-
sumption mechanism, improving the stability of the global
policy.

• We conducted extensive experiments on both synthetic traf-
fic grids and real-world traffic networks. The experimental

results demonstrate that our proposed FGLight outperforms
existing DRL methods and traditional control approaches
across all evaluation metrics.

2 RELATEDWORK
In the field of traffic signal control, traditional methods rely on
manually designed signal rules [3, 4, 6], which employ predefined
signal cycles and are broadly applicable to stable traffic flow control.
However, these approaches primarily focus on steady traffic states
and lack the ability to dynamically adjust based on real-time traffic
conditions. To address these limitations, adaptive traffic control
systems [12–14] have been developed, which predefine a range of
traffic signal parameters (e.g., cycle lengths, phase allocations, and
offsets) and adjust these in response to real-time traffic volumes.
Despite these advances, designing effective traffic signal rules re-
mains a challenging task. In response to these challenges, Varaiya
et al. proposed the max-pressure [5] algorithm, which balances
queue lengths between adjacent intersections by minimizing the
pressure at each intersection, assuming infinite downstream link ca-
pacity. However, these assumptions often do not hold in real-world
environments, resulting in suboptimal performance in practice.

In recent years, many researchers in traffic management have
begun exploring reinforcement learning (RL) methods for traffic
signal control, which bypass the need for predefined rules and
assumptions. RL-based methods [15, 16] have shown superior per-
formance compared to traditional approaches. Some researchers
have treated each intersection as an independent agent, employing
Independent Reinforcement Learning (IRL) methods [17–21], en-
abling each agent to adjust signal phases and cycles based on locally
observed traffic conditions. For example, Wei et al. introduced the
IntelliLight [17], which adjusts signal phases in real-time. Zhang et
al. developed the FRAP [22], addressing phase competition through
symmetrymodeling. Liang et al. proposed a DRLmethod [16], utiliz-
ing convolutional neural networks to map states to rewards. These
methods are scalable to multi-intersection scenarios. However, a
major limitation of IRL approaches is their failure to account for
interactions between adjacent intersections within the road net-
work. Agents make decisions based solely on local information,
without a global perspective, hindering the optimization of global
objectives. To address this, some studies [23, 24] have proposed
using observations from all intersections as inputs to a centralized
model, which makes decisions for each intersection. However, this
centralized approach suffers from the curse of dimensionality as the
number of intersections increases, leading to exponential growth
in the joint action space.

To enable large-scale coordinated traffic signal control, researchers
have increasingly turned to multi-agent reinforcement learning
(MARL) methods. Chu et al. introduced the MA2C algorithm [25],
designed to address the scalability issues inherent in centralized RL
approaches. Building onMA2C, Jinming et al. proposed FMA2C [26],
integrating hierarchical reinforcement learning with MA2C to
achieve both global coordination and scalability. Xu et al. intro-
duced HiLight [9], a hierarchical and cooperative RL method utiliz-
ing a layered structure with multiple critics and adaptive weighting
to optimize long-term objectives. Chen et al. proposed MPLight [8],
advancing large-scale traffic signal control through decentralized
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RL and parameter sharing. Wei et al. developed CoLight [7], a
MARL model that enhances agent cooperation by learning dynamic
communication patterns and index-free modeling, improving sig-
nal control performance. Despite the progress of MARL methods
such as CoLight and PressLight [27], these models often lack effec-
tive global coordination mechanisms. They fail to fully leverage
dynamic information from neighboring intersections, leading to
suboptimal global performance. Additionally, their limited com-
munication mechanisms inhibit the ability to exploit the temporal
and spatial characteristics of traffic flow, hindering optimal control
across the entire road network.

3 METHOD
In this section, we introduce the architecture of proposed FGLight
in the paper. FGLight is an innovative end-to-end Federated Multi-
Agent Reinforcement Learning (FMARL) framework specifically
developed to optimize large-scale traffic signal control. As shown
in figure 1, FGLight is composed of three essential components: the
feature extraction layer, lower-level interaction layer, and upper-
level decision-making layer. The feature extraction layer processes
real-time traffic data such as vehicle counts and queue lengths, pro-
viding crucial information for decision-making. The upper-level
decision-making layer leverages AGAT, enabling adaptive and dy-
namic communication between intersections. AGAT’s adaptive
neighbor selection mechanism allows each intersection to dynami-
cally choose relevant neighboring nodes as traffic conditions change.
This is complemented by a weight-based attention mechanism that
assigns importance weights to neighbor-level information. At the
lower-level, FGLight employs an Hysteretic Update Module (HUM)
along with a SHDQN to ensure stability and accuracy in policy
updates. This two-tiered system balances local decision accuracy
with global traffic optimization, ensuring effective control across
complex road networks.

Figure 1: The framework of FGLight. The yellow, red, and
green boxes represent the feature extraction layers, upper-
level decision-making layer, and lower-level interaction
layer, respectively.

3.1 PROBLEM DEFINITION
The traffic signal control problem is formulated as a Markov De-
cision Process (MDP) [28], where each agent is tasked with con-
trolling a single intersection within the traffic network. Each agent
operates under partial observability, meaning it can only observe
its own state and those of its local neighborhood. The objective is
to derive a policy that selects the optimal control phase for each
intersection based on these partially observable states, thereby min-
imizing the average travel time across the entire traffic network. In
our problem framework, we assume that there are n intersections
in the system, and the number of agents is the same as the number
of intersections, which is defined as n. The Markov game is defined
by the following components:

• State Space: The state space 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑚} represents
the set of all possible states of the entire traffic network,
including current traffic signal phases and the number of
vehicles on the roads, where each state represents the current
phase combination and the number of vehicles on the lanes
of the road network globally.

• Observation Space: Due to partial observability, each agent’s
observation space 𝑂 includes only the states of its own in-
tersection and those within its local neighborhood.

• Action Space: The action space A = {𝑎1, 𝑎2, ..., 𝑎𝑛} com-
prises the possible actions available to each agent, which in
this case are the different traffic signal phases. Agents select
the next phase based on the observed states. Possible phases
include red, yellow, and green lights, in which each phase
is encoded as one-hot encoding, and four signals at each
intersection, which are connected to form a 12-dimensional
vector.

• Reward Function: The reward function 𝑅𝑠 = 𝐸 [𝑅𝑡+1 |𝑆𝑡 = 𝑠]
defines the feedback each agent receives after taking an ac-
tion. Upon executing an action, the system receives a reward
signal derived from the reward function.

• State Transition Function: The state transition function 𝑃 =

𝑃 [𝑆𝑡+1 = 𝑠′ |𝑆𝑡 = 𝑠] describes the probability distribution of
the traffic system transitioning from one state to another
after an action is performed.

• Policy: The policy determines how agents select actions
based on their current observations. Each agent follows a
policy to take actions that aim to maximize long-term cumu-
lative rewards, with reinforcement learning being used to
discover the optimal policy.

3.2 The Architecture of FGLight
In large-scale traffic signal control, FGLight adopts a distributed
approach by assigning agents to individual intersections within
a hierarchical feudal architecture. As illustrated in Figure 1, this
structure consists of two key components: an upper-level decision-
making layer and a lower-level interaction layer. The upper-level
layer, featuring an AGAT module, dynamically adjusts relevant
intersection sets and assigns importance weights to neighbor-level
information based on changing traffic conditions. It operates on a
macro time scale, selecting sub-policies every T steps to optimize
long-term goals. In contrast, the lower-level layer functions on a
micro time scale, implementing the HUM for learning stability and
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executing specific control actions at each step within the T-step
interval. This dual-layer design creates a synergistic approach to
traffic management, with the upper-level layer overseeing broad,
long-term strategies through AGAT’s adaptive spatial awareness,
while the lower-level layer ensures real-time responsiveness to
dynamic traffic conditions.

The subsequent sections will provide a detailed examination of
the four core components of the FGLight framework: the upper-
level decision-making layer, the AGAT module, the lower-level
interaction layer, and the HUM module, offering detailed insights
into how they contribute to achieving efficient and effective traffic
signal control.

3.2.1 The Upper-level Decision-making Layer. The action of the
upper-level decision-making layer, denoted as 𝑎𝑐 , involves selecting
and implementing a sub-policy for 𝑇 consecutive time steps. This
layer receives a reward 𝑟𝑙 , defined as the negative local travel time.
However, the primary objective is to minimize the average travel
time across the entire road network, not just locally. Optimizing
local travel times in isolation does not necessarily lead to global
optimization due to potential conflicts between individual upper-
level decision-making layer strategies. Such conflicts may result in
suboptimal performance with respect to the network-wide average
travel time.

To address this issue, the upper-level decision-making layer in-
corporates an additional reward metric: the neighborhood travel
time 𝑟𝑛 . For a given intersection, 𝑟𝑛 is defined as a statistical measure
of local travel times for all intersections within its neighborhood,
including itself. By optimizing 𝑟𝑛 , the upper-level decision-making
layer accounts for the strategies of neighboring agents, thereby en-
hancing performance over a broader area. This approach facilitates
inter-agent coordination and promotes strategy alignment, mini-
mizing conflicts. Consequently, it contributes to the optimization
of the overall average travel time across the entire road network.

To jointly optimize both local and neighborhood travel times, the
upper-level decision-making layer employs an actor-critic reinforce-
ment learning approach incorporating an AGAT mechanism. This
layer utilizes two value networks:𝑉𝑙 (𝑜 ;𝜙𝑙 ) and𝑉𝑛 (𝑜 ;𝜙𝑛), which es-
timate the value functions for local and neighborhood travel times,
respectively, under policy 𝜋 (𝑎𝑐 | 𝑜 ;𝜙𝜋 ). These value functions and
the policy are parameterized by 𝜙𝑙 , 𝜙𝑛 , and 𝜙𝜋 , respectively. No-
tably, the input 𝑜 to the neighborhood value network 𝑉𝑛 differs
from the input 𝑜 to the local value network 𝑉𝑙 and policy 𝜋 . The
input 𝑜 is constructed by concatenating observations from multiple
intersections within the neighborhood. This actor-critic approach
effectively integrates gradient signals from both𝑉𝑙 and𝑉𝑛 , facilitat-
ing the computation of the policy gradient for 𝜋 (𝑎𝑐 | 𝑜 ;𝜙𝜋 ). The
policy gradient is calculated as follows:

∇𝜙𝜋 = E[log𝜋 (𝑎𝑐 |𝑜 ;𝜙𝜋 ) (𝛿𝑙 +𝑤𝛿𝑛)] (1)

𝛿𝑙 = 𝑟 𝑙 + 𝛾𝑉 𝑙 (𝐸𝑚𝑏𝑒𝑑 (𝑜′);𝜙𝑙 ) −𝑉 𝑙 (𝐸𝑚𝑏𝑒𝑑 (𝑜);𝜙𝑙 ) (2)

𝛿𝑛 = 𝑟𝑛+𝛾𝑉𝑛 (𝐴𝐺𝐴𝑇 (𝐸𝑚𝑏𝑒𝑑 (�̂�′));𝜙𝑛)−𝑉𝑛 (𝐴𝐺𝐴𝑇 (𝐸𝑚𝑏𝑒𝑑 (�̂�));𝜙𝑛)
(3)

where 𝛿𝑙 denotes the advantage function for the local travel time,
and 𝛿𝑛 represents the advantage function for the neighborhood
travel time. The weight coefficient w is employed to balance the

contributions of these two advantage functions in the overall policy
optimization process.

3.2.2 The Lower-level Interaction Layer. The lower-level interac-
tion action 𝑎𝑠 primarily offers two options: maintaining the current
phase or transitioning to the next phase in the subsequent time
step. However, research by Chen et al. [8] at Pennsylvania State
University suggests that 𝑎𝑠 is not confined to this binary choice;
it can directly select a specific phase for the next time step. The
rewards for the lower-level interaction action are defined as the
negative values of the total waiting time 𝑟𝑤 , the total delay 𝑟𝑑 , and
the total queue length 𝑟𝑞 across all lanes. These rewards are defined
as follows: the waiting time is the total time vehicles spend waiting
(with speeds lower than 0.1 meters per second); the delay is the
difference between the maximum speed and the current speed of
the lane, divided by the maximum speed; and the queue length is
the total number of waiting vehicles on incoming lanes.

In the lower-level interaction layer, SHDQN is implemented to
model the agent-environment interaction process. This method
employs differential learning rates to minimize the loss function,
thereby enhancing decision-making efficacy. The loss function is
defined as:

L𝑆𝐻𝐷𝑄𝑁

𝜃
=

𝐵∑︁
𝑘=1

𝛿2
𝑘

(4)

𝛿 = 𝑟 + 𝛾max
𝑎′
𝑄
(
𝐴𝐺𝐴𝑇 (𝑜′), 𝑎′;𝜃 ′

)
−𝑄 (𝐴𝐺𝐴𝑇 (𝑜), 𝑎;𝜃 ) (5)

where 𝛿 denotes the temporal difference (TD) error, which quan-
tifies the discrepancy between the predicted Q-value and the up-
dated Q-value based on the subsequent observation. 𝐵 represents
the batch size, indicating the number of samples utilized in each
network update. 𝜃 ′ denotes the parameters of the target network,
which is periodically synchronized with the main network parame-
ters 𝜃 . 𝑜′ represents the observation at the subsequent time step.

3.2.3 Adaptive Graph Attention Networks for Cooperation. In a
MARL environment, the judicious utilization of heterogeneity in
neighborhood-level information for individual agents emerges as a
critical factor in optimizing inter-agent communication processes.
To address this issue, FGLight employs an AGAT to learn the rela-
tive importance of neighboring intersections for communication,
generating decision importance weight information for the agents’
neighborhood. Based on this mechanism, agents learn to model the
influence of their neighborhood and take actions according to the
weighted observations within the neighborhood, considering the
varying importance of different neighbors and adapting to evolving
traffic patterns.

Given the raw data from local observations, comprising the ve-
hicle count on each lane and the current traffic signal phase, we
initially embed these k-dimensional data into an m-dimensional
latent space. This embedding is achieved through a multilayer per-
ceptron (MLP):

ℎ𝑖 = 𝐸𝑚𝑏𝑒𝑑 (𝑜𝑡𝑖 ) = 𝜎 (𝑜𝑖𝑊𝑒 + 𝑏𝑒 ) (6)

where 𝑜𝑡
𝑖
∈ R𝑘 denotes the observation vector of intersection 𝑖 at

time step 𝑡 ; 𝑘 represents the dimensionality of the feature space;𝑊𝑒

and 𝑏𝑒 are the learnable weight matrix and bias vector, respectively;
𝜎 (·) is the ReLU activation function; and ℎ𝑖 ∈ R𝑚 represents the
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resulting embedded representation, capturing the current traffic
state at intersection 𝑖 .

To implement the dynamic neighbor selection mechanism, the
AGAT utilizes a LSTM-based approach that adaptively determines
agent interactions. This mechanism encodes each agent’s local
observation into a feature vector, which is then processed by a
LSTM to extract time-series features and historical information. For
each agent pair (𝑖 , 𝑗 ), their LSTM hidden states are concatenated
and fed into a MLP, outputting a binary value that determines the
existence of an interaction relationship. This can be summarized
by the formula:

𝑊𝑖, 𝑗 = 𝑓
𝑔 (concat(ℎ𝑖 , ℎ 𝑗 )) (7)

where𝑊𝑖, 𝑗 is the binary interaction indicator, ℎ𝑖 and ℎ 𝑗 are LSTM
hidden states of agents 𝑖 and 𝑗 , 𝑓 𝑔 is the MLP function, and concat
is the concatenation operation.

To quantify the relevance of observational information from
neighboring agents in the decision-making process of the target
agent, we first extract representation vectors from the observation
embedding layer for both the target and neighboring agents. The
importance weight of agent j to the decision-making of agent 𝑖 ,
denoted as 𝑒𝑖 𝑗 , is then computed using the following attention
mechanism:

𝑒𝑖 𝑗 =𝑊𝑖, 𝑗 · (ℎ𝑖𝑊𝑡 ) · (ℎ 𝑗𝑊𝑠 )𝑇 (8)

where𝑊𝑡 ,𝑊𝑠 ∈ R𝑚×𝑛 represent the observation embedding param-
eters for the target agent and the neighboring agents, respectively.

To derive generalized attention values that quantify the relative
importance of neighboring agents to the target agent, we further
normalize the interaction scores between the target agent 𝑖 and its
neighboring agents. This normalization is achieved through the
following formula:

𝛼𝑖 𝑗 = softmax(𝑒𝑖 𝑗 ) =
exp

(
𝑒𝑖 𝑗
𝜏

)
∑

𝑗∈N𝑖
exp

(
𝑒𝑖 𝑗
𝜏

) (9)

where 𝜏 is the temperature factor, 𝑁𝑖 represents the set of agents
within the neighborhood of the target agent, and | N𝑖 | is the
number of neighboring agents in the target agent’s vicinity.

It is crucial to note that the set 𝑁𝑖 includes the target agent 𝑖
itself, enabling the agent to assess the relative importance of its
own traffic conditions in the decision-making process. This self-
attention mechanism allows the agent to balance the significance
of its local state against the information from neighboring agents.
The generalized attention score 𝛼𝑖 𝑗 offers several advantages. It is
adaptable to diverse road network topologies, including intersec-
tions with varying numbers of branches. Furthermore, it employs
a relaxed neighborhood concept, allowing for the inclusion of non-
adjacent agents in 𝑁𝑖 under certain conditions, extending beyond
immediate neighbors. This approach facilitates comprehensive in-
formation integration, potentially incorporating a wider range of
agents and considering a more expansive and nuanced view of the
traffic situation.

To encapsulate the aggregated influence of neighboring agents
on the target agent, we compute a weighted sum of the hidden
states of multiple neighboring agents, with the weights determined
by their respective importance. This aggregation can be formalized

as follows:
ℎ𝑠𝑖 = 𝜎 (𝑊𝑞 ·

∑︁
𝑗∈N𝑖

𝛼𝑖 𝑗 (ℎ 𝑗𝑊𝑐 ) + 𝑏𝑞) (10)

where𝑊𝑐 ∈ R𝑚×𝑐 denotes the weight matrix for embedding the
source intersection, and𝑊𝑞 and 𝑏𝑞 are trainable parameters. The
weighted sum of the neighborhood representation ℎ𝑠𝑖 ∈ R𝑐 ag-
gregates critical information from the surrounding environment,
facilitating the execution of efficient signal strategies. For agent 𝑖 ,
the cooperative information ℎ𝑠𝑖 encapsulates the importance-based
relationships with its neighboring agents.

To simultaneously focus on neighborhood information in differ-
ent representation subspaces across various locations, this study
extends the single-head attention mechanism in the AGAT to multi-
head attention. Specifically, 𝐾 different linear projections (i.e., mul-
tiple sets of trainable parameters 𝑊𝑐 , 𝑊𝑡 , 𝑊𝑠 ) are employed to
perform the attention function in parallel. This attention function
encompasses observation interaction, attention distribution compu-
tation, and neighborhood cooperation. The diverse representations
of neighborhood conditions generated by these 𝐾 attention heads
are subsequently aggregated and averaged into a final representa-
tion ℎ𝑚𝑖 :

ℎ𝑚𝑖 = 𝜎 (𝑊𝑞 · ( 1
𝐻

ℎ=𝐻∑︁
ℎ=1

∑︁
𝑗∈N𝑖

𝛼ℎ𝑖 𝑗 (ℎ 𝑗𝑊
ℎ
𝑐 )

)
+ 𝑏𝑞) (11)

3.2.4 Hysteretic Update Mechanisms. In the lower-level interaction
layer, a Hysteretic Update Mechanism is proposed and implemented
through a Smooth Hysteretic Deep Q-Network (SHDQN) method.
This novel approach employs differential learning rates during the
Q-value update process to distinguish between updates arising
from positive and negative TD errors. This adaptive learning rate
mechanism enhances the stability and performance of the policy
by facilitating more nuanced adjustments based on the direction
and magnitude of the TD error.

Specifically, the SHDQN employs two distinct learning rates in
the Q-value update formula: one for positive TD errors (i.e., when
updating the Q-value to increase it) and another for negative TD
errors (i.e., when updating the Q-value to decrease it). The core
principle of this approach is to stabilize the learning process by
attenuating the response to negative TD errors, thereby promoting
exploration. The update formula for the Smoothed Hysteretic Deep
Q-Network can be expressed as follows:

𝐿
𝑆𝐻𝐷𝑄𝑁

𝜃
=

𝐵∑︁
𝑘=1

𝛿2
𝑘

(12)

𝛿𝑘 = 𝛿𝑘 (𝜎 (𝛿𝑘 ) + 0.5) (13)
where 𝛿𝑘 denotes the weighted temporal difference error, 𝜎 denotes
the sigmoid function, and 𝛿𝑘 denotes the temporal difference error.

Traditional Q-value update methods often lead to unstable learn-
ing processes and premature exploitation. To address these issues,
this study proposes the Smoothed Hysteretic mechanism, which
effectively balances exploration and exploitation by differentiat-
ing the impact of positive and negative TD errors. This approach
mitigates the problem of insufficient exploration caused by exces-
sive penalization of negative experiences, thereby enhancing the
algorithm’s performance in complex traffic environments.
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4 EXPERIMENTS
In this section, we outline the experimental setting, including datasets,
baselines, evaluation metrics, and describes various comparative
experiments designed to validate the effectiveness of the proposed
FGLight method. Additionally, ablation studies are conducted by
removing the AGAT mechanism and the HUM module from FG-
Light to demonstrate the contribution of each component to the
improvement of traffic signal control effectiveness.

4.1 Experiment Settings
For performance evaluation, we utilized CityFlow [29], a popular
open-source traffic simulator that supports large-scale traffic signal
control, as our experimental simulation environment. CityFlow is
widely adopted in traffic signal control research due to its efficient
simulation speed and flexible configuration capabilities. Within
this simulation environment, various traffic flow scenarios were
designed and configured, including both synthetic scenarios and
real-world traffic patterns, to assess the performance of the FGLight
method under diverse traffic conditions.

4.1.1 Datasets. Our experiments utilized two types of datasets [30]
obtained through different methods: synthetic datasets and real-
world datasets. The synthetic dataset includes the Grid 4×4 dataset
and the Grid 6×6 dataset. The real-world datasets comprise the
Jinan 3×4 dataset, and the Hangzhou 4×4 dataset. Each vehicle data
entry includes a timestamp, the vehicle’s starting position, and
its destination within the environment. These data were collected
in real-time through roadside sensors and surveillance systems,
ensuring accuracy and reliability. The datasets encompass both
straight and turning vehicle flows, with all lanes designed for two-
way traffic. As a result, the data encapsulate intricate and dynamic
bidirectional traffic information, offering a thorough assessment of
the algorithm’s performance in complex traffic scenarios.

4.1.2 Baselines. To evaluate the effectiveness of the proposed FG-
Light, the experiments compare two types of methods: traditional
traffic signal control algorithms and multi-agent reinforcement
learning algorithms. The details are as follows:

• Fixed-Time [3]: This method sets a fixed timing plan for traf-
fic signals based on historical traffic flow data. The green
light duration for each phase and the sequence of signal
phases are predetermined and do not adapt in response to
real-time traffic conditions. This approach is characterized
by its simplicity of implementation and is suitable for envi-
ronments with stable traffic flow.

• SOTL [14]: This method determines the timing of signal
changes based on local traffic data, such as the number of
vehicles and waiting time. Specific thresholds are set, and
when the number of waiting vehicles or the waiting time
on one side of the intersection reaches these preset values,
the traffic signal automatically switches to allow vehicles to
pass.

• MaxPressure [5]: This method optimizes traffic signal con-
trol by calculating the pressure at intersections in real-time,
which is defined as the difference between the number of ve-
hicles entering and exiting the lanes. The goal is to maximize
overall network traffic flow and reduce congestion. During

(a) Grid 4×4 (b) Grid 6×6

(c) Dongfeng Sub-district, Jinan,
China

(d) Gudang Sub-district, Hangzhou,
China

Figure 2: (a) and (b) are Synthetic Map with 16 and 36 in-
tersections. (c) and (d) are Real-world Maps with 12 and 16
intersections. The green areas on the maps are the ones we
use. The intersections within the red circles will be used in
the experiment.

each signal cycle, the MaxPressure method dynamically ad-
justs the green light duration based on the pressure from
each direction, prioritizing the signal phases that can most
effectively reduce overall pressure.

• PressLight [27]: A reinforcement learning-based traffic signal
control strategy that uses pressure as the reward signal. The
core idea is to dynamically optimize traffic signals by training
a deep neural network.

• CoLight [7]: A traffic signal control strategy based on Graph
Neural Networks (GNN) [31]. It aims to optimize signal con-
trol by modeling the interactions between intersections in
an urban traffic network.

• HiLight [9]:A hierarchical reinforcement learning-based traf-
fic signal control strategy. This method decomposes the traf-
fic signal control problem into multiple layers, with each
layer responsible for different decision dimensions, such as
policy selection and timing optimization.

• InitLight [10]: A pre-trainingmethod for traffic signal control
using Adversarial Inverse Reinforcement Learning. It pre-
trains a single agent model on multiple single-intersection
scenarios, learning a reward function that generalizes well.

4.1.3 Evaluation Metrics. Consistent with existing research [9], we
use widely applied evaluation metrics in the field of traffic signal
control to measure the performance of different traffic signal control
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Table 1: The comparison results of average travel time, in-
cluding the mean and standard deviation (in parentheses).
Best results in boldface, and the second best results under-
lined.

Method Grid4×4 Grid6×6 Jinan Hangzhou

Fixedtime 1165.69 (0.00) 1086.45 (0.00) 1054.85 (0.00) 1149.88 (0.00)

SOTL 1304.03 (0.00) 1003.74 (0.00) 1075.90 (0.00) 1110.66 (0.00)

MaxPressure 1066.43 (0.00) 563.27 (0.00) 917.56 (0.00) 864.53 (0.00)

PressLight 300.62 (54.57) 287.11 (1.79) 325.34 (7.94) 345.91 (1.26)

CoLight 328.57 (1.26) 294.97 (0.95) 368.23 (13.43) 337.46 (1.38)

HiLight 267.61 (4.28) 389.69 (17.82) 296.74 (2.75) 343.68 (2.69)

InitLight 270.92 (30.64) 242.62 (4.05) 301.37 (3.17) 336.19 (2.86)

FGLight 259.73 (0.73) 251.91 (2.08) 290.50 (1.13) 330.86 (2.11)

Table 2: The comparison results of Throughput, including the
mean and standard deviation (in parentheses). Best results
in boldface, and the second best results underlined.

Method Grid4×4 Grid6×6 Jinan Hangzhou

Fixedtime 6090 (0.0) 3390 (0.0) 4465 (0.0) 2359 (0.0)

SOTL 3831 (0.0) 3476 (0.0) 4631 (0.0) 2267 (0.0)

MaxPressure 6897 (0.0) 3576 (0.0) 5381 (0.0) 2695 (0.0)

PressLight 10971 (84.7) 4343 (1.3) 5517 (18.9) 2733 (4.4)

CoLight 10529 (4.5) 4330 (0.4) 5673 (54.6) 2736 (1.7)

HiLight 10958 (32.0) 2729 (21.0) 5531 (7.8) 2689 (10.8)

InitLight 9810 (52.9) 4345 (17.1) 5788 (11.7) 2618 (8.8)

FGLight 11054 (4.0) 4403 (5.0) 5764 (3.5) 2747 (0.7)

methods. These metrics are crucial for reflecting the efficiency of
the traffic system. The two primary evaluation metrics employed
are the average travel time of all vehicles and the throughput of
the road network. The average travel time refers to the duration
required for vehicles to travel from their origin to their destination,
reflecting the impact of traffic signal control on the efficiency of
vehicle movement. The throughput of the road network represents
the total number of vehicles that pass through the traffic network
within a given period, serving as a measure of the traffic signal
control system’s capacity to optimize overall traffic flow.

4.2 Comparison Experiment Results
In this section, FGLight is compared with state-of-the-art baselines
across various traffic datasets. To ensure comparability, identical
experimental settings are maintained across all methods. For rein-
forcement learning algorithms, each experiment is replicated five
times on every dataset to assess algorithmic stability and perfor-
mance consistency.

(a) Grid 4×4 (b) Grid 6×6

(c) Dongfeng Sub-district,Jinan, China(d) Gudang Sub-district,Hangzhou,
China

Figure 3: The convergence of CoLight, HiLight , InitLight ,
PressLight and FGLight.

4.2.1 Overall Analysis. Tables 1 and 2 present the performance
comparison results of FGLight against seven other baseline meth-
ods in terms of average travel time and throughput metrics, re-
spectively. The experimental results demonstrate that on synthetic
datasets, FGLight achieves an average improvement of 74.74% in
average travel time and 61.84% in throughput compared to three
traditional methods (Fixedtime, SOTL, and MaxPressure). On real-
world datasets, FGLight exhibits an average improvement of 69.82%
in average travel time relative and 15.94% in throughput to the
three traditional methods. The performance difference observed
may be attributed to the nature of the compared methods. Tradi-
tional traffic control approaches typically rely on pre-configured
schemes and fixed assumptions, potentially limiting their adapt-
ability to real-time traffic variations. In contrast, FGLight’s design
enables dynamic adjustments to current traffic conditions, which
may contribute to its observed performance in the tested scenarios.

We further compared FGLight with four advanced MARL-based
TSC methods (PressLight, CoLight, HiLight, and InitLight). As ev-
ident from Table 1, FGLight demonstrates notable performance
differences compared to these methods. On synthetic datasets, FG-
Light achieves an average improvement of 14.03% over the other
four methods. Moreover, on real-world datasets, FGLight outper-
forms CoLight by an average of 11.95%, PressLight by 7.43%, HiLight
by 2.98%, and InitLight by 2.54%, which show the effectiveness of
proposed FGLight.

It is noteworthy that FGLight performs better in both average
travel time and throughput metrics for the Grid4×4 and Hangzhou
scenarios, compared with comparison methods. In the Jinan sce-
nario, FGLight achieves the lowest average travel time average
travel time, albeit with slightly lower throughput than InitLight,
indicating its focus on overall efficiency and fairness in traffic flow
management. For the Grid6×6 scenario, while FGLight’s average
travel time is marginally higher than InitLight’s, it achieves com-
parable performance without extensive pre-training, suggesting
improved learning efficiency and sample efficiency. These results
indicate FGLight’s robustness across diverse traffic scenarios and
its potential for efficient real-world implementation.
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Figure 4: The convergence of ablating AGAT, HUM, and both
modules in grid4x4

Table 3: The comparison results of ablating studies in grid4x4

Method average travel time convergence round

w/o Both 347.67 79
w/o AGAT 328.52 41
w/o HUM 325.94 27
FGLight 306.86 12

4.2.2 Convergence Analysis. Figure 3 illustrates the convergence
rates of FGLight compared to PressLight, CoLight, HiLight, and Init-
Light during the training process, using average vehicle travel time
as the evaluation metric. The results indicate that while InitLight
exhibits a convergence trend similar to FGLight, FGLight achieves
comparable performance without pre-training. FGLight reaches the
target objective in 12 iterations after the first iteration, which is 67
iterations fewer than the next fastest method. At the conclusion of
training, FGLight achieves an average travel time of 290.5s, repre-
senting a 3.61% reduction compared to the second-best performing
method in this experiment. These observations suggest that the
FGLight model offer advantages in learning decision-making strate-
gies, potentially leading to reduced overall average travel timewhile
maintaining rapid convergence.

4.3 Ablation Studies
To investigate the impact of each module on the overall perfor-
mance of FGLight, we conduct ablation Studies, including three
configurations: (1) without (w/o) the Adaptive Graph Attention
Networks (AGAT) module and the Hysteretic Update Mechanism
(HUM) module both, (2) w/o the AGAT module only, and (3) w/o
the HUM module only.

Table 3 and Figure 4 illustrate the impact of individual compo-
nents on FGLight’s performance. The results indicate that without
the HUM, there is a 7.06% increase in average travel time, while
without the AGAT, there is a 241.67% extension in convergence
time. The configuration without both AGAT and HUM showed the
largest performance difference, with average travel time increasing
by 13.30% and convergence time extending by 558.33% compared
to the full FGLight model. The observed performance differences
when these components are removed suggest their potential im-
portance in the model’s functionality. These ablation study results

comprehensively demonstrate that both AGAT and HUM play in-
dispensable roles in FGLight.

5 CONCLUSION
In this paper, we have introduced FGLight, a hierarchical reinforce-
ment learning algorithm leveraging AGAT to address the challenge
of multi-intersection traffic signal control in complex road net-
works. FGLight employs an adaptive weighting mechanism for
neighbor communication through AGAT, ensuring that agents ef-
fectively prioritize relevant information from adjacent intersections.
Additionally, the integration of a hysteretic update mechanism en-
hances the stability and accuracy of policy updates, facilitating
both short-term and long-term optimization objectives. The experi-
mental results demonstrate that FGLight significantly outperforms
existing methods across various traffic performance metrics, includ-
ing average travel time and throughput, while also achieving faster
convergence. These results validate the efficacy and superiority
of FGLight in managing complex and dynamic traffic networks,
highlighting its potential for real-world deployment.

In the future, we aim to develop an adaptive mechanism for
optimizing the selection of neighboring agents in the AGAT, im-
proving traffic signal control performance through more precise
communication. Additionally, we plan to introduce an intermediate
decision-making layer to strengthen the algorithm’s hierarchy, en-
hancing its scalability and adaptability to larger and more dynamic
traffic networks.
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