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ABSTRACT
Restless multi-armed bandits (RMABs) have been highly successful

in optimizing sequential resource allocation across many domains.

However, in many practical settings with highly scarce resources,

where each agent can only receive at most one resource, such as

healthcare intervention programs, the standard RMAB framework

falls short. To tackle such scenarios, we introduce Finite-Horizon

Single-Pull RMABs (SPRMABs), a novel variant in which each arm

can only be pulled once. This single-pull constraint introduces

additional complexity, rendering many existing RMAB solutions

suboptimal or ineffective. To address this shortcoming, we pro-

pose using dummy states that expand the system and enforce the

one-pull constraint. We then design a lightweight index policy for

this expanded system. For the first time, we demonstrate that our

index policy achieves a sub-linearly decaying average optimality

gap of
˜O
(

1

𝜌1/2

)
for a finite number of arms, where 𝜌 is the scaling

factor for each arm cluster. Extensive simulations validate the pro-

posed method, showing robust performance across various domains

compared to existing benchmarks.
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1 INTRODUCTION
The restless multi-armed bandits (RMAB) problem [32] is a time

slotted game between a decision maker (DM) and the environment.

In the standard RMAB model, each “restless” arm is described by a

Markov decision process (MDP) [26], and evolves stochastically ac-

cording to two different transition functions, depending on whether

the arm is activated or not. Scalar rewards are generated with each

transition. The goal of the DM is to maximize the total expected

reward under an instantaneous constraint that at most 𝐾 out of 𝑁

arms can be activated at any decision epoch. RMABs have been

widely used to model a variety of real-world applications such as

problems around congestion control [2], job scheduling [37], wire-

less communication [5], healthcare [16, 23], queueing systems [19],

and cloud computing [36]. One key reason for the popularity of

RMABs is their ability to optimize sequential allocation of limited

resources to a population of agents in uncertain environments [22].

However, in many real-world scenarios, additional constraints

are placed on the allocation. In this paper, we propose and study the

new problem of sequentially allocating resources when each agent

can only receive a resource in at most one timestep, i.e., we focus

on the RMAB problem where no arm can be pulled repeatedly. This

constraint is, for instance, prevalent in real-world domains where

resources are extremely scarce and there are many more agents

than resources, occurring for instance in healthcare, conservation,

and machine maintenance. Even in cases where the number of re-

sources and agents are of the same magnitude, organizers might

impose single-pull constraints for fairness reasons to ensure an

equal treatment of all agents. Lastly, there are also allocation sce-

narios where an agent only benefits from the first resource assigned

to them, for instance, when distributing single-dose vaccines.

Concrete examples where the single-pull constraint is imposed

in practice arise in public health, where RMABs are (or can be) used

to optimize the allocation of health intervention resources [7, 20,
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29]. We present more detailed examples of deployed and emerging

applications from healthcare and other domains with the presence

of such a single intervention constraint in Section 2. These practical

challenges necessitate the development of a new model capable of

addressing the unique constraints posed by single-pull scenarios,

ensuring efficient allocation of limited resources.

Given the new and urgent requirement of a single pull per arm

in many practical domains, we introduce the Finite-Horizon Single-

Pull Restless Multi-Armed Bandits (SPRMABs), a novel variant of the
RMAB framework where each arm can be pulled at most once. As

widely known, the complexity of conventional RMAB lies in the

challenge of finding an optimal control strategy to maximize the

expected total reward, a problem that is typically intractable [25].

As a result, existing approaches have largely focused on designing

efficient heuristic (and at times asymptotically optimal) index-based

policies, such as those developed for offline RMABs [5, 18, 28, 32,

38] and reinforcement learning (RL) algorithms for online RMABs

[3, 9, 10, 15, 24, 27, 30, 33, 35]. However, the introduction of the

single-pull constraint in SPRMABs renders these traditional methods

either suboptimal or inapplicable.

Tailoring existing methods, such as the Whittle index policy [32]

and fluid linear programming (LP)-based policies [8, 11, 28, 38], to

the novel SPRMABs presents significant challenges. Specifically, the

Whittle index policy [32] is defined using Lagrange multipliers for

activation budget constraints. Introducing the single-pull constraint

disrupts this framework, as the Lagrangian formulation becomes ill-

defined, causing the method to return highly suboptimal solutions.

Similarly, for fluid LP-based methods [8, 11, 28, 38], enforcing the

single-pull constraint introduces a new nonlinear constraint, which

exponentially increases the complexity as the time horizon and the

number of arms grows. The question we tackle in this paper is the

following:

Is it possible to design a light-weight asymptotically optimal
index policy for SPRMABs?

To tackle this challenge, we utilize dummy states to duplicate the
entire system, ensuring that once an arm is activated, it transitions

exclusively between these dummy states. The transitions within

the dummy states mirror those of the normal states when no action

is taken (i.e., action 0). Building on this expanded system, we design
a lightweight index policy specifically tailored for SPRMABs, and
we demonstrate that our proposed index policy achieves a linear

decaying rate in the average optimality gap. Our main contributions

can be summarized as follows:

• Lightweight Index Policy Design: We leverage the concept

of expanding the system through dummy states and develop a light-

weight index policy, called single-pull index (SPI) policy, which
addresses two challenges that conventional index policies cannot

handle. First, in real-world applications, pulling an arm doesn’t

always guarantee better outcomes, meaning the full budget may

not need to be used. Existing index policies often exhaust the bud-

get on the highest indices, leading to suboptimal results. Second,

in SPRMABs, each arm can only be pulled once, making activation

timing crucial. An arm with a high index now may yield a better re-

ward if pulled later, which current algorithms fail to handle. Dummy

states allow deferring decisions without affecting future rewards,

conserving resources and tackling both challenges effectively.

• Optimality Gap: For the first time, we demonstrate that our

proposed index policy achieves a sub-linearly decaying rate of the

average optimality gap for a finite number of arms, characterized

by the bound
˜O( 1

𝜌1/2
+ 1

𝜌3/2
), where 𝜌 denotes the scaling factor for

each arm cluster.

• Empirical Simulations:We conduct extensive simulations to

validate the effectiveness of the proposed method, benchmarking

it against existing strategies. The results consistently demonstrate

robust performance across a variety of domain settings, underscor-

ing the practicality and versatility of our index policy in addressing

SPRMABs. This advancement not only enhances the applicability

of SPRMABs in equitable resource allocation but also lays a strong

foundation for future research in constrained bandit settings.

2 MOTIVATING DOMAINS AND EXAMPLES
The single-pull constraint in RMABs is motivated by multiple real-

world domains.We begin by describing examples from public health

domains with limited resources [4, 20]. One concrete deployed ex-

ample RMABs used for amaternal mHealth (mobile health) program

in India [22, 29]. This deployment supports an mHealth program

of ARMMAN (armman.org), an India-based non-profit that spreads

preventative care awareness to pregnant women and new mothers

through an automated call service. To reduce dropoffs from the

mHealth program, ARMMAN employs health workers to provide

live service calls to beneficiaries; however, ARMMAN is faced with

a resource allocation challenge because any one time, there are

200K beneficiaries (mothers) enrolled in the program but they have

enough staff to only do 1000 live source calls per week. As a result,

RMABs are deployed to optimize allocation of their limited live

service calls[29], and given the scale of the program, a beneficiary

received a maximum of one service call. That is, each RMAB arm

represents a mother, and once an arm is pulled, i.e., the mother

receives a service call, she does not receive a service call again.

Similarly, in maternal health programs in Uganda [7], RMABs are

proposed to be used to allocate scarce wireless vital sign monitors

to mothers in maternity wards, where each mother may receive

such a monitor only once during her stay. A similar scenario occurs

in support programs which can only support a limited number of

beneficiaries every week and beneficiaries can only participate in

the program once. One such example ismalnutrition prevention[17],

where a child may be enrolled in a malnutrition program only once.

These practical challenges necessitate the development of a new

model capable of addressing the unique constraints posed by single-

pull scenarios, ensuring an efficient allocation of limited resources.

3 SYSTEM MODEL AND PROBLEM
FORMULATION

Consider a finite-horizon RMAB problem with 𝑁 arms. Each arm

𝑛 is associated with a specific Unichain Markov decision process

(MDP) (S,A, 𝑃𝑛, 𝑟𝑛, s1,𝑇 ), where S is the finite state space and

A := {0, 1} denotes the binary action set. Using the standard termi-

nology from the RMAB literature, we call an arm passive when ac-

tion 𝑎 = 0 is applied to it, and active otherwise. 𝑃𝑛 : S×A×S ↦→ R
is the transition kernel and 𝑟𝑛 : S ×A ↦→ R is the reward function.

The total number of activated arms at each time 𝑡 is constrained by
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𝐾 , which we call the activation budget. The initial state is chosen
according to the initial distribution s1 and 𝑇 < ∞ is the horizon.

At time 𝑡 ∈ [𝑇 ], each arm 𝑛 is at a specific state 𝑠𝑛 (𝑡) ∈ S and

evolves to 𝑠𝑛 (𝑡 + 1) independently as a controlled Markov process

with the controlled transition probabilities 𝑃𝑛 (𝑠𝑛 (𝑡), 𝑎𝑛 (𝑡), 𝑠𝑛 (𝑡+1))
when action 𝑎𝑛 (𝑡) is taken. The immediate reward earned from

activating arm𝑛 at time 𝑡 is denoted by 𝑟𝑛 (𝑡) := 𝑟𝑛 (𝑠𝑛 (𝑡), 𝑎𝑛 (𝑡)). De-
note the total reward earned at time 𝑡 by 𝑅(𝑡), i.e., 𝑅(𝑡) := ∑

𝑛 𝑟𝑛 (𝑡).
Motivated by the healthcare implementations where each arm (i.e.,

patient) can only be pulled for once due to resource limitation, now

let us consider the scenario where each arm can only be pulled

once, and the duration of activation is also one. This is equivalent

to the constraint in the following expression

Single-pull constraint :

𝑇∑︁
𝑡=1

𝑎𝑛 (𝑡) ≤ 1,∀𝑛. (1)

Let F𝑡 denote the operational history until 𝑡 , i.e., the 𝜎-algebra

generated by the randomvariables {𝑠𝑛 (ℓ) : 𝑛 ∈ [𝑁 ], ℓ ∈ [𝑡]}, {𝑎𝑛 (ℓ) :
𝑛 ∈ [𝑁 ], ℓ ∈ [𝑡 − 1]}. Our goal is to derive a policy 𝜋 : F𝑡 ↦→ A𝑁

that makes decisions regarding which set of arms are made active

at each time 𝑡 ∈ [𝑇 ] so as to maximize the expected value of the cu-

mulative rewards subject to the activation budget and the one-pull

constraint in (1), i.e.,

SPRMAB : max

𝜋
E𝜋

(
𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

𝑟𝑛 (𝑡)
)

s.t.

𝑁∑︁
𝑛=1

𝑎𝑛 (𝑡) ≤ 𝐾,∀𝑡 ∈ [𝑇 ],
𝑇∑︁
𝑡=1

𝑎𝑛 (𝑡) ≤ 1,∀𝑛. (2)

where the subscript indicates that the expectation is taken with

respect to the measure induced by the policy 𝜋. We refer to the

problem (2) as the “original problem”, which suffers from the “curse

of dimensionality”, and hence is computationally intractable. We

overcome this difficulty by developing a computationally feasible

and provably optimal index-based policy.

3.1 Existing Index Policies and Failure
Examples

The challenge comes from the “hard" constraints in (2), where the

first budget constraint must be satisfied at every time step, and

the second single-pull constraint must be satisfied firmly for

all arms. Existing index policy approaches [28, 32, 38] for conven-

tional RMAB problems without the single-pull constraint design
indices by relaxing the “hard” activation-budget constraint∑𝑁

𝑛=1𝑎𝑛 (𝑡) ≤ 𝐾,∀𝑡 ∈ [𝑇 ] to the “relaxed” constraints, i.e., the acti-

vation cost at time 𝑡 ∈ [𝑇 ] is limited by 𝐾 in expectation, which

is

Re-budget constraint: E𝜋

{
𝑁∑︁
𝑛=1

𝑎𝑛 (𝑡)
}
≤ 𝐾. (3)

In the following, we present two typical index polices, one is the

Whittle index policy [32], and the other is the LP-based index policy

[28, 34, 38].

Whittle Index Policy. Whittle index [32] is designed upon the

infinite-horizon average-reward (IHAR) RMAB settings through

decomposition. Specifically, Whittle relies on the Relaxed budget

constraint in (3) and obtains a unconstrained problem for IHAR

settings:

IHAR-RMAB: max

𝜋∈Π
lim inf

𝑇→∞

1

𝑇
E𝜋

𝑇∑︁
𝑡=1

𝑁∑︁
𝑛=1

{𝑟𝑛 (𝑡) + 𝜆(1 − 𝑎𝑛 (𝑡))},

where 𝜆 is the Lagrangian multiplier associated with the constraint.

The key observation of Whittle is that this problem can be decom-

posed and its solution is obtained by combining solutions of 𝑁

independent problems via solving the associated dynamic program-

ming (DP) [33]: 𝑉𝑛 (𝑠) =max𝑎∈{0,1} 𝑄𝑛 (𝑠, 𝑎),∀𝑛 ∈ N , where

𝑄𝑛 (𝑠, 𝑎) + 𝛽 = 𝑎

(
𝑟𝑛 (𝑠, 𝑎) +

∑︁
𝑠′
𝑝𝑛 (𝑠′ |𝑠, 1)𝑉𝑛 (𝑠′)

)
+ (1 − 𝑎)

(
𝑟𝑛 (𝑠, 𝑎) + 𝜆 +

∑︁
𝑠′
𝑝𝑛 (𝑠′ |𝑠, 0)𝑉𝑛 (𝑠′)

)
, (4)

where 𝛽 is unique and equals to the maximal long-term average

reward of the unichain MDP, and 𝑉𝑛 (𝑠) is unique up to an additive

constant, both of which depend on the Lagrangian multiplier 𝜆.

The optimal decision 𝑎∗ in state 𝑠 then is the one which maximizes

the right hand side of the above DP. The Whittle index associated

with state 𝑠 is defined as the value 𝜆∗𝑛 (𝑠) ∈ R such that actions 0

and 1 are equally favorable in state 𝑠 for arm 𝑛 [3, 10], satisfying

𝜆∗𝑛 (𝑠) := 𝑟𝑛 (𝑠, 1) +
∑︁
𝑠′
𝑝𝑛 (𝑠′ |𝑠, 1)𝑉𝑛 (𝑠′)

− 𝑟𝑛 (𝑠, 0) −
∑︁
𝑠′
𝑝𝑛 (𝑠′ |𝑠, 0)𝑉𝑛 (𝑠′). (5)

Whittle index policy then activates 𝐾 arms with the largest Whittle

indices at each time slot 𝑡 .

LP-based IndexPolicy.With the Relaxed budget constraint
in (3), we can transfer the conventional RMAB problem into an

equivalent LP [1] by leveraging the definition of occupancy mea-

sure (OM). In particular, the OM 𝜇 of a policy 𝜋 in a finite-horizon

MDP is defined as the expected number of visits to a state-action

pair (𝑠, 𝑎) at each time 𝑡 , i.e.,

𝜇 = {𝜇𝑛 (𝑠, 𝑎; 𝑡) = P(𝑠𝑛 (𝑡) = 𝑠, 𝑎𝑛 (𝑡) = 𝑎) : ∀𝑛, 𝑡 |0 ≤ 𝜇𝑛 (𝑠, 𝑎; 𝑡) ≤ 1} ,

which is a probability measure, satisfing

∑
𝑠,𝑎 𝜇𝑛 (𝑠, 𝑎, 𝑡) = 1, ∀𝑡 ∈

[𝑇 ]. Hence, the associated LP is expressed as

max

𝜇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

∑︁
(𝑠,𝑎)

𝜇𝑛 (𝑠, 𝑎; 𝑡)𝑟𝑛 (𝑠, 𝑎) (6)

s.t.

𝑁∑︁
𝑛=1

∑︁
𝑠

𝜇𝑛 (𝑠, 1; 𝑡) ≤ 𝐾, ∀𝑡, //𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (7)∑︁
𝑎

𝜇𝑛 (𝑠, 𝑎; 𝑡)=
∑︁
(𝑠′,𝑎′ )

𝜇𝑛 (𝑠′, 𝑎′; 𝑡−1)𝑃𝑛 (𝑠′, 𝑎′, 𝑠),∀𝑛, 𝑠,

//𝑓 𝑙𝑢𝑖𝑑 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 (8)∑︁
𝑎

𝜇𝑛 (𝑠, 𝑎; 1) = s1 (𝑠), ∀𝑠, 𝑛, //𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (9)

where (7) is a restatement of the budget constraint in (2) for

∀𝑡 ∈ [𝑇 ], which indicates the activation budget; (8) represents the

transition of the occupancy measure from time 𝑡 − 1 to time 𝑡 ,

∀𝑛 ∈ [𝑁 ] and ∀𝑡 ∈ [𝑇 ]; and (9) indicates the initial condition for

occupancy measure at time 1, ∀𝑠 ∈ S. Denote the solution to the
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above LP as 𝜇★ =
{
𝜇★𝑛 (𝑠, 𝑎; 𝑡) : 𝑛 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ]

}
. A simple index-

based policy according to the optimal solution 𝜇★ can be designed

by dividing the arms at each time slot 𝑡 into three categories:

(1) High-priority states: 𝜇★𝑛 (𝑠, 0; 𝑡) = 0. (Pull arms under those
states. )

(2) Medium-priority states: 𝜇★𝑛 (𝑠, 1; 𝑡) > 0, 𝜇★𝑛 (𝑠, 0; 𝑡) > 0.(Pull
arms under those states when remaining budget is available.)

(3) Low-priority states: 𝜇★𝑛 (𝑠, 1; 𝑡) = 0. (Do not pull arms under
those states.)

In SPRMAB as shown in (2) where each arm can be activated

at most once, the standard Whittle and LP-based index policies

may become suboptimal. This is because the these index policies

are designed under the assumption that arms can be activated

multiple times, and it may not adequately account for the urgency

of activating certain arms in a single-pull setting. Below, we present

a rigorous example demonstrating how the Whittle and LP-based

index policies can fail under these constraints (see Figure 1).

Low Medium High𝑃 (𝐿 |𝐿, 0)

𝑃 (𝐿 |𝑀, 0)

𝑃 (𝑀 |𝐻, 0)

Low Medium High𝑃 (𝐿 |𝐿, 1) 𝑃 (𝐻 |𝐻, 1)

𝑃 (𝑀 |𝐿, 1)

𝑃 (𝐿 |𝑀, 1)

𝑃 (𝐻 |𝑀, 1)

𝑃 (𝑀 |𝐻, 1)

Figure 1: General transition kernels with 𝑎 = 0 in above and
𝑎 = 1 in below for a patient in CPAP example.

Example 1. Continuous Positive Airway Pressure Therapy
(CPAP). The CPAP [13, 21, 30] is a highly effective treatment when it
is used consistently during sleeping for adults with obstructive sleep
apnea. Since non-adherence to CPAP in patients hinders the effective-
ness, we adapt the Markov model of CPAP adherence behavior to a
three-state system with the clinical adherence criteria. To elaborate,
three distinct states are defined to characterize adherence levels: Low
(L), Medium (M), and High (H) as shown in Figure 1. Generally speak-
ing, when action 𝑎 = 0 is taken, i.e., no intervention, the patient has
a probability of 1 to move from a higher adherence level to a lower
adherence level. While intervention is available, a patient can either
transit to a lower adherence lever or a higher adherence level with
certain probabilities. In standard CPAP, the reward is set as the 1 for
state “low adherence", 2 for state “medium adherence", and 3 for state
“high adherence".

Proposition 1. The MDP for each patient defined in Example 1
is indexable.

Proposition 1 indicates that the Whittle index can be employed

for the constructed CPAP problem in Example 1. To verify that

the Whittle index policy [32] and LP-based policy [34, 38] fail in

this example, we construct the following setting. We randomly

generate 20 different arms and each arm is duplicated 10 times,

whose transition probability matrices are generated randomly. The

budget is set to 𝐾 = 10. The objective is to maximize the total

adherence level in a finite horizon 𝑇 = 10. More importantly, each

arm can only be pulled at most once.

Figure 2 highlights the performance limitations of existing policy

strategies—specifically the LP-based method and the Whittle index

policy—when single-pull constraint presents. It shows the nor-
malized rewards where the optimal policy

1
, used as a benchmark,

achieves a score of 1.0. The LP-based policy attains 0.76, and the

Whittle index policy only 0.46 of the optimal performance. These

results underline the ineffectiveness of both the LP-based method

and the Whittle index policy in adequately handling the single-
pull constraint, as neither approach reaches the efficiency of

the optimal policy, particularly with the Whittle index-based ap-

proach performing less than half as well. This comparison suggests

that these methods require modifications or alternative strategies

to improve their adaptability and effectiveness under the strict

limitations imposed by the single-pull constraint.

Optimal LP Based Policy Whittle Index Based Policy
Policy

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Re

wa
rd

1.0

0.76

0.46

CPAP

Figure 2: A CPAP setting with 3 different states, 20 different
types of arms, each type has 10 arms, the budget is set to be
10 and the time Horizon is 10.

An intuitive explanation for why existing index policies fail in

the single-pull setting is twofold. First, these indices are designed

without accounting for the single-pull constraint. Second, tradi-

tional index policies pull arms from highest to lowest index until

the activation budget is exhausted. However, in the SPRMAB setting,

pulling the arm with the highest index at the current time may not

lead to better results, as waiting for a future time slot could yield a

higher reward. This makes the traditional approach ineffective in

such scenarios.

3.2 Challenge for Extending Existing Methods
The limitations of existing index policies in addressing the single-
pull constraint in (1) become evident in the context of SPRMAB

settings. Traditional policies such as theWhittle index fail to accom-

modate this constraint effectively because the additional dimen-

sional constraint inherent in the single-pull scenario disrupts the

foundational principles underpinning the Whittle index’s defini-

tion, rendering it inapplicable. Consequently, attention shifts to the

LP-based index policy. This focus is due to the adaptability of LP ap-

proaches, which may allow for the integration of the single-pull
constraint through modifications to the existing framework. This

1
Though we usually do not know the performance achieved by optimal policy, we

can leverage the optimal value achieved for the LP in (16) to serve as the optimal

performance, as it is always an upper bound of the optimal performance. This will be

explained in detail in Section 4.
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approach requires re-evaluating the LP formulation to ensure it

captures the critical aspects of decision-making under the stringent

limitations imposed by the single-pull constraint.

Similar to relaxing the “hard” budget constraint, we can also

relax the single-pull constraint in (1) so that the total number

of pulls per arm is limited by 1 only in expectation as

Re-single-pull constraint:E𝜋

{
𝑇∑︁
𝑡=1

𝑎𝑛 (𝑡)
}
≤1,∀𝑛. (10)

Hence, we have the relaxed problem of (2) expressed as

Re-SPRMAB : max

𝜋
E𝜋

(
𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

𝑟𝑛 (𝑡)
)

s.t.E𝜋

{
𝑁∑︁
𝑛=1

𝑎𝑛 (𝑡)
}
≤𝐾, E𝜋

{
𝑇∑︁
𝑡=1

𝑎𝑛 (𝑡)
}
≤1,∀𝑛. (11)

According to the definition of OM 𝜇, the Re-SPRMAB in (11) can be

reformulated as the following LP [1]:

SPRMAB-LP: max

𝜇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

∑︁
(𝑠,𝑎)

𝜇𝑛 (𝑠, 𝑎; 𝑡)𝑟𝑛 (𝑠, 𝑎)

s.t. 𝐶𝑜𝑛𝑠𝑡𝑟𝑖𝑎𝑛𝑡𝑠 (7) − (9),

𝑇∑︁
𝑡=1

∑︁
𝑠

𝜇𝑛 (𝑠, 1; 𝑡) ≤ 1,∀𝑛. (12)

It is clear that the SPRAMB-LP in (12) achieves an upper bound of

the optimal value of SPRAMB in (2), which is shown as the following

proposition.

Proposition 2. The optimal value achieved by SPRMAB-LP in (12)
is an upper bound of that of SPRMAB in (2).

Proof Sketch. Since the SPRMAB-LP in (12) is equivalent to the

relaxed problem Re-SPRMAB in (11) [1], it is sufficient to show that

Re-SPRMAB in (11) achieves no less average reward than the origi-

nal problem SPRMAB in (2). The proof is straightforward since the

constraints in the relaxed problem expand the feasible region of

SPRMAB in (2). □

One drawback ofSPRMAB-LP in (12) is that themapping of single-
pull constraint from (2) to the one in (12) will make the “hard”

constraint relaxed to a significant extent, as the probability of

𝜇𝑛 (𝑠, 1; 𝑡) will diffuse to different time steps, which contradicts

with the real scenario where arms only be pulled for one particular

time slot. This will make the associated index policy designed upon

the solution of SPRMAB-LP be significantly suboptimal. To make the

relaxed problem tighter, we need to add the following constraint:

for arbitrary time slot 𝑡 , if arm 𝑛 is being activated, the arm should

never be activated in other time slots 𝑡 ′ with 𝑡 ′ ≠ 𝑡 , which can be

mapped as ∑︁
𝑠

𝜇𝑛 (𝑠, 1; 𝑡) ·
∑︁
𝑠

𝜇𝑛 (𝑠, 1; 𝑡 ′) = 0. (13)

Incorporating the additional constraint in (13) into SPRMAB-LP in
(12), we have the following optimization problem:

max

𝜇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

∑︁
(𝑠,𝑎)

𝜇𝑛 (𝑠, 𝑎; 𝑡)𝑟𝑛 (𝑠, 𝑎)

s.t. 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (7) − (9), (12)∑︁
𝑠

𝜇𝑛 (𝑠, 1; 𝑡) ·
∑︁
𝑠

𝜇𝑛 (𝑠, 1; 𝑡 ′) = 0. (14)

Regarding the novel optimization problem in (14), we have the

following proposition.

Proposition 3. The optimal value achieved by (14) lies in the
middle of that by SPRMAB-LP in (12) and that of (2).

Remark 1. The proof of Proposition 3 follows a similar argument
as that in Proposition 2. It indicates that the modified problem in (14)

achieves a tighter upper bound compared with the SPRMAB-LP in (12),
and thus the associated index policy designed upon the solution of
(14) performs better than that derived from (12). However, the above
formulation in (14) is not an LP any longer due to the last constraint,
which leads to outstanding challenge in solving the above revised
optimization problem when the state space |S| and time horizon 𝑇
are large.

4 PROPOSED METHOD
To address the challenge of solving the problem in (14) posed by

the nonlinear constraint in (13) (as indicated in Remark 1), we

propose a novel method to handle the single-pull constraint.
This method involves modifying the underlying Markov Decision

Processes (MDPs) associated with the arms by introducing the

concept of dummy states.
In the considered SPRMABs, for arbitrary state of each arm 𝑠 ∈ S

at current time step 𝑡 , it transitions to next state 𝑠′ ∈ S at time 𝑡 + 1

if a pull is assigned to this arm. After reaching state 𝑠′ at time 𝑡 + 1,

the arm will never be pulled again. For every pulled arm, regardless

of its state or current time step, the available action set thereafter is

restricted to {0}. Building on the aforementioned observation, we

introduce dummy states to represent the states reached immediately

after an arm is pulled. We enforce that these dummy states have the

same transition kernels and reward functions under both actions 0

and 1, identical to those of their corresponding normal states. The

formal definition is given as follows.

Definition 1 (Dummy state). A dummy state 𝑠𝑑 represents the
state 𝑠 ∈ S that being transited immediately when an arm is pulled.
For a dummy state 𝑠𝑑 we have the following properties:

𝑃𝑛 (𝑠𝑑 , 0, 𝑠′𝑑 ) = 𝑃𝑛 (𝑠𝑑 , 1, 𝑠
′
𝑑
) = 𝑃𝑛 (𝑠, 0, 𝑠′),

𝑟𝑛 (𝑠𝑑 , 0) = 𝑟𝑛 (𝑠𝑑 , 1) = 𝑟𝑛 (𝑠, 0),∀𝑛, (15)

i.e., actions 0 and 1 are indifferent in dummy states for all arms.

Remark 2. For every state 𝑠 ∈ S, it has a corresponding dummy
state 𝑠𝑑 . When introducing the dummy states, we duplicate the orig-
inal state space S and define the dummy state space as S𝑑 . As a
result, the system now has a new expanded state space S′

:= S⋃S𝑑 .
The intuitive idea behind introducing dummy states and enforcing
indifference between actions 0 and 1 for these states is to ensure that
the resource budget flows toward arms in non-dummy states, as arms
in dummy states yield no gain even if resources are allocated to them.
Another key advantage of using dummy states is that they allow
us to eliminate the nonlinear constraint in (13). These points will be
discussed in more detail in subsequent sections.
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𝑠0

𝑠1

𝑠0,𝑑

𝑠1,𝑑

𝑃0𝑠0,𝑠0

𝑃0𝑠0,𝑠1𝑃0𝑠1,𝑠0

𝑃0𝑠1,𝑠1

𝑃1𝑠
0,𝑑 ,𝑠0,𝑑

= 𝑃0𝑠
0,𝑑 ,𝑠0,𝑑

𝑃1𝑠
0,𝑑 ,𝑠1,𝑑

= 𝑃0𝑠
0,𝑑 ,𝑠1,𝑑

𝑃1
1𝑑 ,0𝑑

𝑃1𝑠
1,𝑑 ,𝑠1,𝑑

= 𝑃0𝑠
1,𝑑 ,𝑠1,𝑑

𝑃1𝑠0,𝑠0,𝑑

𝑃1𝑠0,𝑠1,𝑑

𝑃1𝑠1,𝑠0,𝑑

𝑃1𝑠1,𝑠1,𝑑

Figure 3: A toy example of SPRAMB with dummy states. The
original state space is S = {𝑠0, 𝑠1}, and it leads to a 4-state
expanded system as S′ = {𝑠0, 𝑠1, 𝑠0,𝑑 , 𝑠1,𝑑 }.

To better understand how dummy states work, we present the

following toy example.

Example 2. Consider a setting where the original state space is
S = {𝑠0, 𝑠1}. We introduce two corresponding dummy states, 𝑠0,𝑑 and
𝑠1,𝑑 , which are absorbing states. As a result, the expanded state space
becomes S′

:= {𝑠0, 𝑠1, 𝑠0,𝑑 , 𝑠1,𝑑 }. In this setup, once an arm transitions
into a dummy state (either 𝑠0,𝑑 or 𝑠1,𝑑 ), it remains in dummy states
indefinitely, regardless of the action taken. Hence, both 𝑠0,𝑑 and 𝑠1,𝑑
are absorbing states, meaning that no matter which action is chosen
(either action 0 or action 1), the transition probabilities from these
dummy states remain the same. The transitions between these states
are illustrated in Figure 3. Thus, arms in these dummy states provide
no additional reward even for positive action assignment, ensuring
that resources are directed toward arms in non-dummy states, which
can still benefit from positive action assignments.

Once we provide the new state space S′
containing dummy

states and the new transition kernels, we have a new formulation

as follows:

max

𝜇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

∑︁
𝑠∈S′

∑︁
𝑎∈A

𝜇𝑛 (𝑠, 𝑎; 𝑡)𝑟𝑛 (𝑠, 𝑎)

s.t.

𝑁∑︁
𝑛=1

∑︁
𝑠∈S′

𝜇𝑛 (𝑠, 1; 𝑡) ≤ 𝐾, ∀𝑡,∑︁
𝑎∈A

𝜇𝑛 (𝑠, 𝑎; 𝑡) =
∑︁
𝑠′∈S′

∑︁
𝑎′∈A

𝜇𝑛 (𝑠′, 𝑎′; 𝑡 − 1)𝑃𝑛 (𝑠′, 𝑎′, 𝑠),∀𝑛, 𝑠 ∈ S′,∑︁
𝑎

𝜇𝑛 (𝑠, 𝑎; 1) = s1 (𝑠), ∀𝑠 ∈ S, 𝑛. (16)

Remark 3. Given the expanded state space S′ with dummy states
and the modified transition kernels, we can remove both the single-
pull constraint in (12) and the nonlinear constraint in (13). The
reason we can eliminate the single-pull constraint is that once
an arm is pulled, it transitions to a dummy state, where there is no
difference between action 1 and action 0. As a result, when arms in
non-dummy states can benefit from a positive action, the active OM
naturally flows to those arms. Similarly, the nonlinear constraint
to concentrate the OM in (13) is no longer required, as it becomes
irrelevant without the single-pull constraint.

4.1 The Single-Pull Index Policy
Once we solve (16) and get the optimal 𝜇★, we can define the fol-

lowing Markovian policy
2

𝜒★𝑛 (𝑠, 1; 𝑡) :=
𝜇★𝑛 (𝑠, 1; 𝑡)

𝜇★𝑛 (𝑠, 0; 𝑡) + 𝜇★𝑛 (𝑠, 1; 𝑡)
∈ [0, 1], (17)

which denotes the probability of selecting action 1 for arm 𝑛 with

state 𝑠 at time 𝑡 . Note that the optimal policy (17) is not always

feasible for SPRMAB since in the latter at most 𝐾 units of activation

costs can be consumed at a time and the arm can only be pulled once.

To this end, we construct our single-pull index (SPI) I𝑛 (𝑠𝑛 (𝑡); 𝑡)
associated with arm 𝑛 at time 𝑡 as

I𝑛 (𝑠𝑛 (𝑡); 𝑡) := 𝜒★𝑛 (𝑠𝑛 (𝑡), 1; 𝑡)𝑟𝑛 (𝑠𝑛 (𝑡), 1), (18)

where 𝜒★𝑛 (𝑠𝑛 (𝑡), 𝑎; 𝑡) is defined in (17). Notice that our SPImeasures

the expected reward for activating the arm 𝑛 in state 𝑠𝑛 (𝑡) at time

𝑡 . Therefore, a higher index indicates a higher expected reward,

suggesting that the intuition is to activate arms that contribute

more significantly to the accumulated reward. Our index policy

then activates arms with SPI indices in a decreasing order. The

entire procedure is summarized in Algorithm 1.

Algorithm 1 SPI Index Policy

Input: Initialize s1 (𝑠) ∀𝑛 ∈ [𝑁 ] .
1: Construct the LP according to (16) and solve the occupancy

measure 𝜇∗;
2: Compute 𝜒★𝑛 (𝑠, 𝑎, 𝑡),∀𝑠, 𝑎, 𝑡 according to (17);

3: Construct the SPI set I(𝑡) := {𝐼𝑛 (𝑠𝑛 (𝑡); 𝑡) : 𝑛 ∈ [𝑁 ]} accord-
ing to (18); and sort I(𝑡) in a decreasing order;

4: if Budget remains then
5: Activate arms according to the order in step 3 ;

6: if the activated arm is in dummy states then
7: Do not pull the arm and let the budget minus one unit;

8: end if
9: end if

4.2 Asymptotic and Non-Asymptotic Optimality
We now provide results on asymptotic and non-asymptotic opti-

mality for our new index. We begin by showing that our index is

asymptotically optimal in the same asymptotic regime as that in

Whittle [32] and others [28, 31, 34, 38]. With some abuse of nota-

tion, let the number of users be 𝜌𝑁 and the resource constraint

be 𝜌𝐾 in the asymptotic regime with 𝜌 → ∞. In other words,

we consider 𝑁 different classes of users with each class contain-

ing 𝜌 users. Let 𝐽𝜋 (𝜌𝐾, 𝜌𝑁 ) denote the expected total reward of

the original problem (1) under an arbitrary policy 𝜋 for such a

system. Denote the optimal policy for the original problem (2) as

𝜋𝑂𝑝𝑡
:= {𝜋𝑂𝑝𝑡

𝑛 ,∀𝑛 ∈ N}.

Theorem 1. The designed SPI policy (Algorithm 1) is asymptoti-
cally optimal, i.e.,

lim

𝜌→∞
1

𝜌𝑁

(
𝐽𝜋

𝑂𝑝𝑡 (𝜌𝐾, 𝜌𝑁 ) − 𝐽𝜋𝑆𝑃𝐼 (𝜌𝐾, 𝜌𝑁 )
)
= 0. (19)

2
If the denominator equals to 0, we direct set 𝜒★𝑛 (𝑠, 1; 𝑡 ) = 0.
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Remark 4. Theorem 1 indicates that as the number of per-class
users goes to infinity, the average gap between the performance
achieved by our SPI policy 𝜋𝑆𝑃𝐼 and the optimal policy 𝜋𝑂𝑝𝑡 tends to
be zero. This is a well-established criteria for showing the "optimality"
of designed index policies in existing work [14, 28, 32, 34, 38], and
the results only hold for 𝜌 → ∞. In the following, we present a more
rigorous characterization of the optimality gap under finite scaling
factor 𝜌 , which is given by Theorem 2.

Theorem 2. For a finite number of 𝜌 ∈ R+, with probability
at least 1 − 1

𝜌
such that the average gap between the performance

achieved by our index policy 𝜋 𝐼𝑛𝑑𝑒𝑥 and the optimal policy 𝜋𝑆𝑃𝐼 is
given as

1

𝜌𝑁

(
𝐽𝜋

𝑂𝑝𝑡 (𝜌𝐵, 𝜌𝑁 ) − 𝐽𝜋𝑆𝑃𝐼 (𝜌𝐵, 𝜌𝑁 )
)

≤ 2𝑟max𝑇

√︄
ln 2𝜌

2𝑁𝜌
+ 5𝑟max𝑇

√︄
ln 2𝜌

2𝜌3
. (20)

Corollary 1. Theorem 2 indicates that the average gap between
the performance achieved by our index policy 𝜋 𝐼𝑛𝑑𝑒𝑥 and the optimal

policy 𝜋𝑂𝑝𝑡 is of the order of O
(

1

𝜌1/2
+ 1

𝜌3/2

)
, which is dominated by

the first term. We also observe from Theorem 2 that if multiple factor
𝜌 goes to infinity, the performance gap converges to 0, which resume
the asymptotic optimality in Theorem 1.

Remark 5. Our index policy is computationally appealing since it
is only based on the “relaxed problem” by solving a LP. Furthermore, if
all arms share the same MDP, the LP can be decomposed across arms
as in [32], and hence the computational complexity does not scale
with the number of arms. More importantly, our index policy is well-
defined without the requirement of indexability condition [32]. This is
in contrast to most of the existing Whittle index-based policies that are
only well defined in the case that the system is indexable, which is hard
to verify andmay not hold in general. Closest to our work is the parallel
work on restless bandits [38], which explores index policies similar to
ours, but under the assumption of homogeneous MDPs across arms
in the binary action settings, and mainly focus on characterizing the
asymptotic optimality gap. There is a branch of work [8, 11, 12, 38] that
focuses on analyzing the gap with an explicit relationship involving
𝜌 , but all of them rely on the assumption that 𝑟ℎ𝑜 is large enough
for the central limit theorem and mean-field approximation to apply.
In contrast, we provide the first characterization that holds for a
finite number of 𝜌 . This further differentiates our work with existing
literature.

5 EXPERIMENTS
In this section, we numerically evaluate the proposed SPI policy in

three domains: two from real-world applications and one from a

synthetic domain, comparing it to state-of-the-art benchmark algo-

rithms. Main results from the two real-world domains are presented

here, while the results from the synthetic domain are provided in

the supplementary materials.

5.1 Benchmarks
The benchmarks we compare in this paper are listed below:

▷Mean-Field LP-based index policy [12]: Themean-field LP-based

index policy is a classic LP-based approach for solving RMAB prob-

lems, leveraging mean-field approximation theory when the num-

ber of arms is large, as expressed in (6)-(9). However, it does not

account for the single-pull constraint when designing the indices.

▷ Original Whittle index policy [32]: The Whittle index defined

in (5) is the most widely used approach for solving Restless RMABs.

It is designed for infinite-horizon problems and does not take the

single-pull constraint into account.

▷ Q-Difference policy [6]: The Q-difference method designs in-

dices based on the difference between Q-value functions. It is a

heuristic approach that can perform well in practice, but it lacks

theoretical guarantees, making its performance uncertain in certain

scenarios.

▷ Modified infinite Whittle index policy: This is a hurestic modifi-

cation for original Whittle index by considering the dummy states

introduced for our proposed SPI policy in Section 4.

▷ Modified Finite Whittle index policy: This is a further modi-

fication of modified Whittle index by considering finite-horizon

time-dependent index.

5.2 Experimental Domains
We briefly introduce the two considered real-world domains below,

and relegate the detailed description to Section C.1 in supplemen-

tary materials.

5.2.1 Continuous Positive Airway Pressure Therapy (CPAP)[13, 21,
30]. CPAP is a highly effective treatment for adults with obstruc-

tive sleep apnea when used consistently during sleep. We model

CPAP adherence behavior as a multi-state system, adapting the

Markov model with clinical adherence criteria, which reduces to a

standard Birth-Death process. In the standard CPAP setting, lower

adherence levels yield lower rewards. The objective is to maximize

the accumulated reward over time, with the constraint that each

patient (arm) can only be pulled (intervened) at most once.

5.2.2 Mobile Healthcare for Maternal Health (MHMH)[12]. In this

program, healthcare workers make phone calls to enrollees (benefi-

ciaries) to enhance engagement and provide targeted health infor-

mation. Since the number of healthcare workers is much smaller

than the number of beneficiaries, they must continuously prior-

itize which beneficiaries to call to maximize the total return. As

in [12], we assume two types of beneficiaries, greedy and reliable.

We intentionally show two variations of this domain “fixed” and

“variable” to illustrate the impact of fixed and varying group sizes

on the performance of different index policies.

5.3 Numerical Results
The simulations are conducted for 𝑁 types of arms, with each type

consisting of 𝜌 arms. Each type of arm follows a distinct MDP, and

different types of arms have varying MDPs. All results are averaged

over 1000Monte Carlo simulations to ensure robust performance

evaluation. Due to the space limitation, we present the main results

in this section and more numerical results can be found in Section

C in supplementary materials.

Accumulated Reward.We first compare the accumulated re-

ward performance for the proposed SPI index policy with all bench-
mark polices. Based on the numerical evaluation results presented
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Policy Birth-Death Process (CPAP) Greedy-Reliable-Fixed (MHMH) Greedy-Reliable-Variable (MHMH)

(20, 5, 10, 10, 10) (40, 5, 10, 10, 10) (40, 5, 10, 5, 12) (10, 3, 25, 50, 10) (20, 3, 50, 50, 10) (20, 3, 25, 50, 20) (20, 3, 1, 2, 20) (20, 3, 5, 10, 20) (20, 3, 15, 30, 20)

Upper Bound 200.0 200.0 220.0 174.6 343.6 415.9 16.6 83.2 249.5

SPI 197.5 ± 0.3 200 ± 0 217.4 ± 0.3 172.6 ± 0.3 341.9 ± 0.5 410.6 ± 0.5 14.0 ± 0.2 79.1 ± 0.3 244.5 ± 0.4

Mean Field 187.8 ± 0.7 182.0 ± 0.3 211.4 ± 0.3 156.9 ± 0.4 311.6 ± 0.6 386.0 ± 0.7 13.6 ± 0.2 75.3 ± 0.3 230.3 ± 0.5

Finite Whittle 153.6 ± 0.4 158.0 ± 0.1 153.7 ± 0.4 166.0 ± 0.3 322.1 ± 0.5 402.2 ± 0.5 14.6 ± 0.1 79.2 ± 0.2 240.8 ± 0.4

Infinite Whittle 197.7 ± 0.2 200 ± 0 217.7 ± 0.3 172.1 ± 0.3 325.5 ± 0.5 379.8 ± 0.5 14.0 ± 0.1 75.0 ± 0.3 227.5 ± 0.4

Original Whittle 178.2 ± 0.2 176.7 ± 0.2 199.3 ± 0.3 140.5 ± 0.5 250.3 ± 0.6 339.4 ± 0.6 12.2 ± 0.2 66.8 ± 0.3 202.8 ± 0.5

Q-Difference 111.6 ± 0.4 112.2 ± 0.3 112.0 ± 0.3 165.7 ± 0.4 337.1 ± 0.5 388.5 ± 0.5 14.0 ± 0.1 76.3 ± 0.3 232.3 ± 0.4

Random 140.0 ± 0.5 139.8 ± 0.4 159.8 ± 0.4 26.3 ± 0.3 47.2 ± 0.4 45.2 ± 0.5 1.8 ± 0.1 8.9 ± 0.3 26.9 ± 0.4

Table 1: We present the performance of various policies across different domains and settings. We run each settings for 1000
simulations and present 95% confidence interval. Each setting is denoted by the parameters (number of types 𝑁 , number of
states 𝑆 , budget 𝐾 , group size 𝜌 , time horizon 𝑇 ). In each simulation, we consider 𝑁 types of arms, with each type consisting of
𝜌 arms. Transition probabilities for each type are randomly assigned in every setting. Optimal policies are highlighted in green,
and near-optimal policies are highlighted in yellow. Here near-optimal means the gap between it and optimal policy is less
than three percent of the upper bound. We use the optimal value achieved for the LP (16) in SPI to serve as the upper bound.

in Table 1, we observe the performance of various policies across

different domains and settings, with the proposed SPI policy con-

sistently achieving near-optimal performance. Each setting is de-

scribed by parameters such as the number of types 𝑁 , number of

states 𝑆 , budget𝐾 , group size 𝜌 , and time horizon𝑇 . In all scenarios,

SPI policy either matches or comes extremely close to the optimal

policy, with a performance gap of less than 3%, demonstrating

the robustness of SPI policy across varying settings. Other bench-

mark policies, such as the Mean Field policy and infinite Whittle

index policy, often perform well but exhibit noticeable gaps from

the optimal in certain cases. For instance, in the "Greedy-Reliable-

Fixed" setting (20, 3, 50, 50, 20), Mean Field index policy achieves

386.0 ± 0.7, significantly lower than the optimal 415.9, indicating

sub-optimality. The Random policy consistently underperforms,

yielding the lowest rewards across all settings. For example, in

the "Greedy-Reliable-Variable" setting (20, 3, 15, 30, 20), Random
policy achieves 26.9 ± 0.4, a stark contrast to the optimal 249.5.

Both the finite and infinite Whittle index policies show decent

performance, but often fall short compared to SPI policy and the

optimal policy. In the "Birth-Death Process" setting (40, 5, 10, 10, 10),
infinite Whittle index policy achieves the optimal 200 ± 0, while

finite Whittle index policy lags behind with 158.0 ± 0.1. Overall,

SPI policy consistently demonstrates strong performance, closely

matching or achieving optimal rewards across all settings, while

other benchmark methods show varying degrees of sub-optimality,

with sometimes substantial gaps from the optimal policy.

We also observe that the performance of SPI improves and be-

comes better as the group size increases. In the “Greedy-Reliable-

Variable” setting, when the group size is small, such as 𝜌 = 2,

policies—including SPI, finite Whittle index, infinite Whittle index,

and Q-difference—are either optimal or near-optimal. However, as

the group size increases to 𝜌 = 30, only SPI policy remains opti-

mal, while finite Whittle index policy becomes sub-optimal and the

performance of other policies declines even further.

We consider another domain called Enhrenfest project studied in

[32]. For domains like the Enhrenfest project, different index poli-

cies can achieve very similar near-optimal performance in practice,

and the detail is presented in Section C.1.
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Figure 4: We present the average running time of SPI policy,
finite whittle policy, and infinite whittle policy in the CPAP
setting (𝑁, 𝑆, 𝐾, 𝜌,𝑇 ) = (10, 10, 50, 50, 10).

Running Time. In Figure 4, we compare the running time of

SPI policy with whittle-index-based policies for Birth-Death Pro-

cess, and we include the running time comparison for randomly

generated MDPs as a robustness check in Figure 7 (Section C.2

in supplementary materials). We randomly generate three differ-

ent Birth-Death Process MDPs, and we take the average running

time of each policy under different MDPs. The proposed SPI pol-
icy significantly outperforms the Whittle-index-based policy in

terms of running time. The Whittle-index-based policy requires

first computing the value function and then gradually adjusting the

parameter to search the Whittle index, which results in a longer

running time due to the curse of dimensionality. In contrast, the SPI
policy only needs to solve the LP once when computing the index,

which greatly enhances its scalability. This makes SPI particularly

well-suited for real-time resource allocation, where non-profit or-

ganizations often face tight computation constraints. Although the
infinite Whittle-index policy achieves competitive performance in
some domains, its running time is significantly higher than that of
the SPI policy, making SPI a more practical and efficient choice in
scenarios where rapid decision-making is essential.

Asymptotic Optimality.We empirically show that SPI is as-
ymptotic optimal, and defer its discussion to Section C.2.3.
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