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ABSTRACT
Inverse reinforcement learning (IRL) algorithms often rely on (for-
ward) reinforcement learning or planning, over a given time hori-
zon, to compute an approximately optimal policy for a hypothesized
reward function; they then match this policy with expert demon-
strations. The time horizon plays a critical role in determining both
the accuracy of reward estimates and the computational e"ciency
of IRL algorithms. Interestingly, an e!ective time horizon shorter
than the ground-truth value often produces better results faster.
This work formally analyzes this phenomenon and provides an
explanation: the time horizon controls the complexity of an in-
duced policy class and mitigates over!tting with limited data. This
analysis provides a guide for the principled choice of the e#ective
horizon for IRL. It also prompts us to re-examine the classic IRL
formulation: it is more natural to learn jointly the reward and the
e#ective horizon rather than the reward alone with a given horizon.
To validate our! ndings, we implement a cross-validation extension
and the experimental results support the theoretical analysis. The
project page and code are publicly available.
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1 INTRODUCTION
Inverse reinforcement learning (IRL) [23] aims to infer the underly-
ing task objective from expert demonstrations. One common ap-
proach is to estimate a reward function that induces a policy match-
ing closely the demonstrated data. This model-based approach holds
the promise of generalizing the learned reward function and the
associated policy over states not seen in the demonstrations [25].

Many existing IRL algorithms follow the classic formulation and
assume a known ground-truth discount factor (or equivalently, time
horizon) for the expert demonstrations [1, 3–6, 11, 12, 15, 18, 21,
23, 24, 27–29, 32, 34]. They estimate the reward function based on
this speci!ed time horizon. However, we do have the$ exibility to
choose a di#erent time horizon when learning the reward function
and optimizing the policy.

This work is licensed under a Creative Commons Attribution Inter-
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Surprisingly, we! nd that using a horizon shorter than the ground-
truth value often produces better results faster, especially when
expert data is scarce.Why? Intuitively, the time horizon controls the
complexity of an induced policy class. With limited data, a shorter
time horizon is preferred, as the induced policy class is simpler and
mitigates over!tting. We refer to the horizon or discount factor
used during learning as the e!ective horizon or e!ective discount
factor, as it holds promise to enhance learning e#ectiveness.

We present a formal analysis showing that, with limited ex-
pert data, using a shorter discount factor or horizon improves the
generalization of the learned reward function to unseen states. In
IRL settings where the e#ective horizon varies, the performance
gap between the induced policy and the expert policy arises from
two sources: (i) reward estimation error due to limited data dur-
ing IRL, and (ii) policy optimization error from using an e#ective
horizon shorter than the ground-truth. We prove that the e#ec-
tive horizon controls the complexity of the approximated policy
class during IRL. As the horizon increases, reward estimation error
grows—over!tting occurs because we estimate policies from a more
complex class using limited expert data. On the other hand, as the
horizon approaches the ground-truth, the policy optimization er-
ror decreases. These opposing errors suggest that an intermediate
e#ective horizon balances this trade-o# and produces the most
expert-like policy.

Based on our theoretical! ndings, we propose a more natural and
higher-performing formulation of the IRL problem: jointly learn-
ing the reward function and the e#ective horizon/discount factor.
To validate this approach, we extend the linear programming IRL
algorithm (LP-IRL) [23] and the maximum entropy IRL algorithm
(MaxEnt-IRL) [34], using cross-validation to simultaneously learn
the reward function and the e#ective horizon. Our experimental
evaluation of these extended algorithms across four di#erent tasks
corroborates our theoretical analysis.

This work presents the! rst formal analysis of the relationship
between the horizon and the performance of the learned reward
function in IRL. Previous studies have examined the impact of the
horizon in Reinforcement Learning (RL) [2, 10, 13, 16], approxi-
mate dynamic programming [26], and planning [14, 20], but the
e#ects when the reward function is unknown and inferred from
data remain under-explored. Our work addresses this gap by pro-
viding a theoretical analysis on how changes in the horizon a#ect
policy performance in IRL. Some IRL algorithms employ smaller
e#ective time horizons for computational e"ciency [17, 19, 33],
while others learn discount factors from data to better align with
demonstrations, sometimes incorporating multiple feedback types
[8, 9]. Our theoretical analysis on the role of varying time horizons
complements existing work and o#ers valuable insights to guide
future IRL research.
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2 RELATEDWORKS
E!ective Horizon of Imitation Learning. Imitation learning learns

desired behaviors by imitating expert data and comprises two
classes of methods: model-free behavior cloning (BC) and model-
based inverse reinforcement learning (IRL) [25]. The primary dis-
tinction between BC and IRL lies in the horizons used to align
the learned behaviors with expert data. BC matches step-wise ex-
pert actions, resulting in poor generalization to unseen states. In
contrast, IRL addresses this issue by either matching multi-step
trajectory distributions [3–5, 18, 27, 29, 32, 34] or their marginal-
ized approximations [6, 7, 11, 12, 15, 24]. The former employs a
double-loop structure to interleave the policy optimization and
reward function update, while the latter learns a discriminator
to distinguish expert-like behaviors. Both approaches utilize the
ground-truth horizon/discount factor for policy optimization, en-
suring global temporal consistency between the learned policy and
expert. Notably, few IRL methods adopt receding horizons to re-
duce computational cost[17, 19, 33], claiming shorter optimization
horizons yields sub-optimal policies. Moreover, several works focus
on! nding the optimal discount factors in an IRL context [8, 9].
However, the absence of a theoretical analysis on the horizon’s
impact in IRL leaves an important yet overlooked gap in the!eld.

Theoretical Analysis on E!ective Horizon. Several studies have
examined how planning horizons a#ect Reinforcement Learning
(RL) [2, 10, 13, 16], approximate dynamic programming [26], and
planning [20], particularly when transition models are estimated
from samples [14]. In these works, which assume a known reward
function, di#erences in planning horizons directly a#ect policy
performance. However, the e#ect of horizons remains unexplored
when the reward function is learned from data. Our study addresses
this gap by investigating how horizon changes a#ect policy perfor-
mance when the reward function is derived from expert demonstra-
tions. Under this setting, policy optimization depends on both the
horizon and the horizon-dependent reward function estimation.

This dual dependency introduces unique analytical challenges
not present in forward RL or planning. The key challenge lies in
examining how varying discount factors in$uence reward estimates
when expert data is limited. While Metelli et al. [21] de!ne a set
of reward functions that remain compatible with limited expert
demonstrations under a! xed, known horizon, we extend this for-
mulation to accommodate unknown and varying horizons. By con-
sidering this extended class of feasible reward functions, we analyze
how horizon variations a#ect reward estimation and subsequent
policy optimization, particularly with scarce expert data.

3 PROBLEM FORMULATION
We consider an MDP (𝐿,𝑀, 𝑁,𝑂 0,𝑃0), where 𝐿 and 𝑀 represent the
state and action spaces, respectively. The transition function is
denoted by 𝑁 : 𝐿 → 𝑀 → 𝐿 ↑ [0, 1], and the ground-truth re-
ward function is 𝑂0 : 𝐿 → 𝑀 ↑ [0,𝑂𝐿𝑀𝑁 ]. The discount factor,
𝑃0, implicitly determines the value of future rewards at the cur-
rent time step. The optimal policy, 𝑄↓𝑂0,𝑃0

, maximizes the total dis-
counted reward based on 𝑂0 and 𝑃0. In our setting, we are given
the MDP without the reward function 𝑂0 or the discount factor
𝑃0. Instead, we have a set of 𝑅 expert demonstrated state-action

pairs 𝑆 = {(𝑇0,𝑈0), (𝑇1,𝑈1), ...(𝑇𝑄↔1,𝑈𝑄↔1)} sampled from a deter-
ministic policy 𝑄↓𝑂0,𝑃0

. Our analysis employs the discount factor
for simplicity; however, the! ndings are equally applicable to the
planning horizon since both determine how much future rewards
are valued. A smaller discount factor e#ectively limits the agent’s
planning horizon by diminishing the importance of distant rewards.

We examine the scenario where both the reward function and
discount factor (𝑂,𝑃) are jointly learned from the limited expert
demonstrations. The scarcity of data suggests that (𝑂,𝑃) is suscepti-
ble to approximation errors, which consequently a#ects the induced
optimal policy 𝑄↓

𝑂,𝑃
. The quality of the pair (𝑂,𝑃) is assessed by

comparing the value of its induced policy 𝑄↓
𝑂,𝑃

with the ground-

truth optimal policy 𝑄↓𝑂0,𝑃0
, both evaluated under the true (𝑂0,𝑃0)

for fairness. We de!ne the loss as
""""𝑉 𝑅↓

𝐿0,𝑀0
𝑂0,𝑃0

↔𝑉
𝑅↓
𝐿,𝑀

𝑂0,𝑃0

""""
↗
, where 𝑉 𝑅

𝑂,𝑃

is the value function of 𝑄 under (𝑂,𝑃 ). The “best" policy 𝑄↓
𝑂,𝑃

is
the one that minimizes this loss. During learning, each choice of
𝑃 induces a di#erent policy class ω𝑃 with its own complexity, as
de!ned below.

De!nition 3.1 (Policy Class and Complexity Measure). For a given
𝑃 , the policy class ω𝑃 comprises all optimal policies for a! xed state
space 𝐿 , action space 𝑀, and transition function 𝑁 , for any reward
function 𝑂 ↘ F𝑂 satisfying the following mild condition. Formally,

ω𝑃 =
{
𝑄

$$ ≃𝑂 ↘ F𝑂 : 𝑄 is optimal in (𝐿,𝑀, 𝑁,𝑂,𝑃)
}
,

where F𝑂 is the set of reward functions such that, for each state
𝑇 ↘ 𝐿 , there is exactly one action 𝑈↓ (𝑇) for which 𝑂(𝑇,𝑈 ↓ (𝑇)) strictly
surpasses 𝑂(𝑇,𝑈 ) for all 𝑈 ω 𝑈↓ (𝑇). The complexity of this policy
class is measured by |ω𝑃 |, the number of distinct optimal policies.

For a given discount factor 𝑃 , IRL algorithms learn a reward
function 𝑂 from limited expert data (𝑅 ). This reward function yields
an optimal policy 𝑄↓

𝑂,𝑃
from the policy set ω𝑃 that closely matches

the expert data. The complexity of ω𝑃 , measured by |ω𝑃 |, in$uences
the degree of over!tting in this low-data regime, making it a key
factor in IRL. The optimal e#ective discount factor 𝑃↓ is de!ned as
the one whose induced optimal policy minimizes the loss:

𝑃↓ = argmin
0⇐𝑃⇐𝑃0

"""𝑉 𝑅↓
𝐿0,𝑀0

𝑂0,𝑃0
↔𝑉

𝑅↓
𝐿,𝑀

𝑂0,𝑃0

"""
↗
.

We use this loss to examine the interplay among the amount
of expert data, the discount factor, and the resulting policy’s per-
formance. In particular, we investigate how to choose 𝑃 ⇐ 𝑃0 to
minimize this loss.

4 ANALYSIS
4.1 Overview
We de!ne the e!ective horizon as the horizon (or discount factor)
used in learning the reward function and optimizing policies, which
may di#er from the ground-truth horizon. We formally analyze
how this e#ective horizon in$uences the quality of the learned
reward function under varying amounts of expert data. Our main
result, Theorem 4.1, shows that when expert data is limited, using
a discount factor smaller than the ground-truth value enables IRL
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methods to learn reward functions that induce policies more closely
aligned with the expert.

Theorem 4.1. Let (𝐿,𝑀,𝑁 ) be a controlled Markov process shared
by two MDPs: the ground-truth MDP (𝐿,𝑀, 𝑁,𝑂 0,𝑃0) with reward
function 𝑂0 : 𝐿 →𝑀 ↑ [0,𝑂max] and discount factor 𝑃0 ↘ (0, 1); and
the estimated MDP (𝐿,𝑀, 𝑁, 𝑂,𝑃) with reward function 𝑂 : 𝐿 →𝑀 ↑
[0,𝑂max] and discount factor 𝑃 ↘ (0, 1), estimated from 𝑅 expert
state-action pairs. Let |ω𝑃 | denote the complexity of the policy class
induced by the estimated e!ective horizon 𝑃 , and suppose the optimal
policy 𝑄↓

𝑂,𝑃
derived from (𝑂,𝑃) belongs to this class, i.e., 𝑄↓

𝑂,𝑃
↘ ω𝑃 .

Then, for the optimal policies 𝑄↓𝑂0,𝑃0
and 𝑄↓

𝑂,𝑃
induced by the ground-

truth and estimated parameters, respectively, the di!erence between
their value functions evaluated under 𝑂0 and 𝑃0 is bounded with
probability at least 1 ↔ 𝑊 by

""""𝑉 𝑅↓
𝐿0,𝑀0

𝑂0,𝑃0
↔𝑉

𝑅↓
𝐿,𝑀

𝑂0,𝑃0

""""
↗

⇐ 2𝑂max
(1 ↔ 𝑃)2

√
1
2𝑅

log
|𝐿 | |ω𝑃 |
2𝑊

+ 𝑃0 ↔ 𝑃

(1 ↔ 𝑃0) (1 ↔ 𝑃)𝑂𝐿𝑀𝑁 .

Intuitively, Theorem 4.1 bounds the performance disparity be-
tween the policy induced by the learned (𝑂,𝑃) and the expert policy
as a sum of two terms: the! rst term bounds the reward function
estimation error that arises from using a limited expert data and an
e#ective 𝑃 during IRL, while the second term measures the policy
performance gap when optimized using 𝑃 < 𝑃0 using that estimated
reward function. When 𝑃 increases, the! rst term, i.e., the reward
function estimation error, grows due to over!tting arising from esti-
mating a policy from an increasingly complex class ω𝑃 using only
limited expert data, while the second term, i.e., the policy optimiza-
tion error, diminishes to encourage! delity to the ground-truth 𝑃0
and approaches 0 when 𝑃 ↑ 𝑃0. Consequently, these opposing
error terms imply that an intermediate value of 𝑃 yields a better
reward function that induces the most expert-like policy.

We build up intermediate theorems and lemmas to formally
prove Theorem 4.1 in the remaining subsections. The overall strat-
egy is the following: The overall bound in Theorem 4.1 measures
the performance gap between the policy induced by the learned
(𝑂,𝑃) pair and the optimal policy. This gap arises from two sources:
(i) di#erences in the reward functions, and (ii) di#erences in the
horizons over which the policies are optimized. Therefore, we de-
compose the overall bound into two error terms: (i) the reward
function estimation error resulting from limited expert data during
IRL, and (ii) the policy optimization error due to using an e#ective
horizon di#erent from the ground truth.

After deriving bounds for both error terms, we combine them to
prove Theorem 4.1 in Section 4.6. The second term is straightfor-
ward to bound (see Section 4.6), Themain challenge lies in bounding
the reward function estimation error in the! rst term (Sections 4.5
to 4.4). We summarize our strategy on bounding the! rst error
term—reward function estimation error—in terms of the e#ective
horizon 𝑃 and the number of expert state-action pairs 𝑅 below.

IRL methods learn the reward function by minimizing the dis-
crepancy between the induced policy and the expert data. Therefore,
we bound the reward function estimation error using the expert
policy estimation error, which measures the gap between the policy

induced by the learned reward function and the ground-truth ex-
pert policy (see Sections 4.2 and 4.3). To do this, we! rst establish a
correspondence between the feasible reward function set and an
expert policy (Lemma 4.3 in Section 4.2). Then, we use this corre-
spondence to bound the error in reward function estimation by the
expert policy estimation error (Theorem 4.4 in Section 4.3). Next,
we show that, this expert policy estimation error, in turn, depends
on the complexity of the policy class |ω𝑃 | and the number of expert
pairs 𝑅 used to! t it (see Section 4.4). Furthermore, we prove that
the policy class complexity |ω𝑃 | is controlled by the e#ective hori-
zon 𝑃 : as 𝑃 increases, the complexity of the policy class ω𝑃 rises
(Theorem 4.5 in Section 4.5). By combining these results, we derive
the bound for the reward function estimation error in terms of 𝑃
and 𝑅 in Section 4.4. This completes the proof.

In the remainder of this section, we provide the detailed proofs,
following the structure outlined above.

4.2 Feasible Reward Function Set
In this section, we establish a correspondence between the given
expert demonstrations and the feasible reward function set—the set
of all pairs of reward functions and horizons consistent with the
expert data. This correspondence is essential for later bounding the
reward function estimation error by the expert policy estimation
error.

To create an algorithm-agnostic mapping from the! xed set of ex-
pert data and the e#ective horizon to the learned reward functions,
we extend Metelli et al.’s [21] de!nition of feasible reward function
sets—originally formulated for known discount factors—to variable
and unknown e#ective discount factors. We begin by implicitly
de!ning the feasible reward function set based on the foundational
IRL formulation [23], which includes all pairs of reward-horizon
whose induced policies match the expert data. From this implicit
de!nition, we derive an explicit characterization of the feasible
reward function set as a function of the expert policy.

We start by! rst implicitly de!ning the feasible reward set based
on the IRL de!nition [23], adapting for the varying discount factors.

De!nition 4.2 (IRL Problem, adapted to the setting of varying
discount factors). Let M = (𝐿,𝑀,𝑁 ) be the MDP without the
reward function or discount factor. An IRL problem, denoted as
⇒ = (M, 𝑄𝑆 ), consists of the MDP and an expert’s policy 𝑄𝑆 . A
reward 𝑂 ↘ R𝑇→𝑈 is feasible for⇒ if there exists a 𝑃 such that 𝑄𝑆

is optimal for the MDPM ⇑ (𝑂,𝑃), i.e., 𝑄𝑆 ↘ ω↓
𝑂,𝑃

. We use R⇒ to

denote the set of feasible rewards for⇒.

This IRL formulation implies an implicit correspondence be-
tween the expert policy 𝑄𝑆 and a feasible (𝑂,𝑃) pair through their
advantage function 𝑀𝑅𝑁

𝑂,𝑃
(𝑇,𝑈 ) = 𝑋𝑅𝑁

𝑂,𝑃
(𝑇,𝑈 ) ↔ 𝑉 𝑅𝑁

𝑂,𝑃
(𝑇). Speci!cally,

the optimal policy induced by (𝑂,𝑃)matches 𝑄𝑆 when the following
two conditions on the advantage function are met:

(1) if 𝑄𝑆 (𝑈 |𝑇) > 0, then 𝑀𝑅𝑁

𝑂,𝑃
(𝑇,𝑈 ) = 0,

(2) if 𝑄𝑆 (𝑈 |𝑇) = 0, then 𝑀𝑅𝑁

𝑂,𝑃
(𝑇,𝑈 ) ⇐ 0.

The! rst condition ensures the expert’s chosen actions have zero
advantage, while the second guarantees unchosen actions have
non-positive advantages.
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Next, we establish an explicit correspondence between the es-
timated (𝑂,𝑃) and their compatible expert policy 𝑄𝑆 by enforcing
these two conditions on the advantage function 𝑀𝑅𝑁

𝑂,𝑃
. To do this,

we introduce two operators for any given policy 𝑄 :
(1) the expert-"lter : (𝑌𝑅𝑀) (𝑇,𝑈 ) = 𝑀(𝑇,𝑈 )1{𝑄 (𝑈 |𝑇) > 0}, that

retains the advantage 𝑀(𝑇,𝑈 ) values for actions taken by the
expert policy 𝑄𝑆 (𝑈 |𝑇),

(2) the expert-"lter-complement: (𝑌𝑅𝑀) (𝑇,𝑈 ) = 𝑀(𝑇,𝑈 )1{𝑄 (𝑈 |𝑇) =
0}, that preserves the advantage values for actions not taken
by the expert.

Using the Bellman equation, we express the advantage functions
in terms of the estimated (𝑂,𝑃). We then apply the two! lters to
the advantage function 𝑀𝑅𝑁

𝑂,𝑃
to enforce the optimality conditions,

simplifying the expression in the process. This allows us to derive
the explicit expression for the feasible reward set presented in
Lemma 4.3. The detailed derivation is provided in Appendix B.1.

Lemma 4.3 (Feasible Reward Function Set, extended from Metelli
et al. [21]). Let⇒ = (M, 𝑄𝑆 ) be an IRL problem. Let 𝑂 ↘ R𝑇→𝑈 and
0 < 𝑃 < 1, then 𝑂 is a feasible reward, i.e., 𝑂 ↘ R⇒ if and only if
there exists 𝑍 ↘ R𝑇→𝑈

⇓0 and 𝑉 ↘ R𝑇 such that:

𝑂 = ↔𝑌𝑅𝑁
𝑍 + (𝑎 ↔ 𝑃𝑁)𝑉 ,

whereas 𝑎 : R |𝑇 | ↑ R |𝑇 |→ |𝑈 | is an operator that marginalizes the
action for each state on a function 𝑏 (·) such that (𝑎𝑏 ) (𝑇,𝑈 ) = 𝑏 (𝑇).

The feasible reward function in Lemma 4.3 comprises two terms:
the! rst term depends on the expert policy 𝑄𝑆 and the second term
depends on the underlying MDP’s transition function. The!rst
term, ↔𝑌𝑅𝑁

𝑍 , is derived using the expert-"lter-complement on a
non-negative function 𝑍 . This ensures that actions taken by the
expert (i.e., 𝑄𝑆 (𝑈 |𝑇) > 0) are assigned a value of zero, while actions
not taken (i.e., 𝑄𝑆 (𝑈 |𝑇) = 0) have non-positive values. The second
term represents the policy’s temporal e#ect that relies on theMDP’s
transition function. This can be viewed as reward shaping through
the value function, which preserves the expert policy’s optimality.

We have thus established an explicit correspondence between
the feasible (𝑂,𝑃) and the expert policy 𝑄𝑆 in Lemma 4.3. This
explicit expression will later be used to bound the di#erence in
reward functions by the expert policy estimation error.

4.3 Reward Function Estimation Error from
Expert Policy Estimation Error

In this section, we establish a bound on the reward function es-
timation error in terms of the expert policy estimation error—the
discrepancy between the estimated expert policy (from limited data)
and the true expert policy. Since IRL methods learn the reward func-
tion by matching the induced policy to expert data, establishing this
bound is crucial, as it allows us to relate the reward estimation error
to the amount of expert data and the induced policy complexity in
later analysis.

Let’s consider two IRL problems,⇒ = (M, 𝑄𝑆 ) and ⇒̂ = (M, 𝑄𝑆 ),
which di#er only in expert policies: ⇒ utilizes the ground-truth
expert policy, while ⇒̂ employs an estimated policy from samples.
Since an IRL algorithm aligns its induced policy with the estimated

expert policy, its feasible sets will be equivalent to that of the es-
timated expert policy. Intuitively, inaccuracies in estimating the
expert policy 𝑄𝑆 lead to errors in estimating the feasible sets R⇒.
Our goal is to obtain a reward function 𝑂 with a feasible set “close”
to the ground-truth 𝑂0’s feasible set. Speci!cally, “closeness” is de-
termined by the distance between the nearest reward functions in
each set. The estimated R⇒̂ is considered close to the exact R⇒
if, for every reward 𝑂0 ↘ R⇒, there exists an estimated reward
𝑂 ↘ R⇒̂ with a small |𝑂0 ↔ 𝑂 | value.

Given the form of the feasible reward functions corresponding to
an expert policy as derived in Lemma 4.3, we express the estimation
error |𝑂0 ↔ 𝑂 | as a function of the ground-truth expert policy 𝑄𝑆

and the estimated expert policy 𝑄𝑆 from limited data. The bound
on the reward function estimation error is shown below.

Theorem 4.4 (Extension of Theorem 3.1 in Metelli et al. [21]). Let
⇒ = (M, 𝑄𝑆 ) and ⇒̂ = (M, 𝑄𝑆 ) be two IRL problems. Then for any
𝑂0 ↘ R⇒ such that 𝑂0 = ↔𝑌𝑅𝑁

𝑍 + (𝑎 ↔ 𝑃0𝑁)𝑉 and ⇔𝑂0⇔↗ ⇐ 𝑂max
there exist 𝑂 ↘ R⇒̂ and 0 < 𝑃 < 1, such that element-wise it holds
that: $$$𝑂0 ↔ 𝑂

$$$ ⇐ 𝑌𝑅
𝑁
𝑌𝑅

𝑁
𝑍 .

Furthermore, ⇔𝑍 ⇔↗ ⇐ 𝑂max
1↔𝑃0 .

The theorem above bounds the reward function estimation error
by the discrepancy between the true expert policy 𝑄𝑆 and the
estimated expert policy 𝑄𝑆 derived from limited data. Intuitively,
it states that there exists a reward function 𝑂 in the estimated
feasible set R⇒̂ whose estimation error is controlled by the expert
policy estimation error, under the corresponding 𝑃 . Speci!cally, the
error term on the right-hand side is non-zero only for state-action
pairs where 𝑄𝑆 (𝑈 | 𝑇) = 0 but 𝑄𝑆 (𝑈 | 𝑇) > 0. This means the
reward estimation error is zero for state-action pairs observed in
the expert demonstrations, while errors arise where the estimated
expert policy incorrectly assigns positive probability to actions
the expert did not take. We refer readers to Appendix B.2 for the
detailed proof.

4.4 Expert Policy Estimation Error from
Limited Data

In this section, we derive a bound on the expert policy estimation
error in terms of the amount of expert data 𝑅 , the e#ective horizon
𝑃 , and the induced policy complexity |ω𝑃 |. We measure this error
using the term 𝑌𝑅

𝑁
𝑌𝑅

𝑁
𝑍 , which quanti!es howmuch the estimated

policy 𝑄𝑆 deviates from the true expert policy 𝑄𝑆 .
Our derivation proceeds in three steps. First, we derive the ex-

pected value of the expert policy estimation error E[𝑌𝑅𝑁
𝑌𝑅

𝑁
𝑍 ]

under our estimation strategy. Then, we apply McDiarmid’s in-
equality to obtain a probabilistic bound on how likely this error
deviates from its expected value. Finally, we derive a uniform bound
on the estimation error by substituting appropriate threshold values
and simplifying the expression.

Expected Value of the Expert Policy Estimation Error. To estimate
the expert policy 𝑄𝑆 ↘ {0, 1}|𝑇 |→ |𝑈 | from 𝑅 independent state-
action samples, we aggregate the demonstrated pairs by summing
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their counts into ω̂𝑆
𝑄 . For each state 𝑇 , we estimate 𝑄𝑆 (𝑇,𝑈 ) by

selecting the action 𝑈 with the highest count:

𝑈𝑉 = argmax
𝑀

ω̂𝑆
𝑄 (𝑇,𝑈 ).

If the count of 𝑈𝑉 is uniquely the highest, we set 𝑄𝑆 (𝑇,𝑈 ) to 1 for 𝑈𝑉
and 0 for other actions. If no action has a unique maximum count,
we set all entries to 0, indicating uncertainty. As the number of
samples 𝑅 increases, the estimated policy is more likely to re$ect
the expert’s true decisions. For further details, see Appendix B.4.1.

Next, based on the estimation strategy described above, we!rst
compute the expected value for the approximated expert policy
E[𝑄𝑆 ] estimated from 𝑅 expert samples, and in turn that of the
estimation error E[𝑌𝑅𝑁

𝑌𝑅
𝑁
𝑍 ].

We! rst compute the expected value of 𝑄𝑆 (𝑇,𝑈 ) given 𝑅 expert
state-action pairs. The expected number state 𝑇 is sampled across
the 𝑅 samples is 𝑅 · 1

|𝑇 | . Moreover, since the expert policy is deter-
ministic, the probability that 𝑈↓𝑉 is the unique maximum at state 𝑇
is the same as the probability that state 𝑇 is sampled at least once.
Therefore, the expectation of the estimated policy E[𝑄𝑆 ] for each
state 𝑇 is given by:

E[𝑄𝑆 (𝑇,𝑈 )] =


1 ↔

(
1 ↔ 1

|𝑇 |
)𝑄

for 𝑈 = 𝑈↓𝑉 ,

0 otherwise.

Next, we compute the expected value of the expert policy es-
timation error E[𝑌𝑅𝑁

𝑌𝑅
𝑁
𝑍 ]. Recall the operator 𝑌𝑅𝑁

retains the
values of 𝑍 (𝑇,𝑈 ) for actions 𝑈 that are not part of the expert policy.
The true expert policy 𝑄𝑆 deterministically selects action 𝑈↓𝑉 for
each state 𝑇 , so the expert-!lter complement will only retain the
values for actions 𝑈 ω 𝑈↓𝑉 . Thus, after applying the expert-!lter
complement, the expected value becomes:

E[𝑌𝑅𝑁
𝑌𝑅

𝑁
𝑍 (𝑇,𝑈 )] = E[𝑌𝑅𝑁

𝑍 (𝑇,𝑈 )] · E[1{𝑄𝑆 (𝑈 |𝑇) = 0}] .

Moreover, the operator 𝑌𝑅
𝑁
preserves the function values for

actions that are chosen by the estimated policy 𝑄𝑆 (𝑇,𝑈 ). Thus, the
expected value of 𝑌𝑅

𝑁
𝑍 (𝑇,𝑈 ) is:

E[𝑌𝑅𝑁
𝑍 (𝑇,𝑈 )] = 𝑍 (𝑇,𝑈 ) · E[1{𝑄𝑆 (𝑈 |𝑇) > 0}] .

Simplifying the expressions above, we have E[𝑌𝑅𝑁
𝑌𝑅

𝑁
𝑍 (𝑇,𝑈 )] =

0, since 𝑄𝑆 (𝑈 |𝑇) = 0 for all 𝑈 ω 𝑈↓𝑉 . Intuitively, an expected expert
policy estimation error of 0 implies that, on average, the estimated
policy 𝑄𝑆 correctly matches the expert policy 𝑄𝑆 . This means it
does not assign non-zero probabilities to actions the expert would
not take, indicating no systematic bias in the estimation process.

Applying McDiarmid’s Inequality. Next, we obtain a probabilistic
bound on how likely the expert policy estimation error deviates
from its expected value E[𝑌𝑅𝑁

𝑌𝑅
𝑁
𝑍 (𝑇,𝑈 )]. We do so by applying

McDiarmid’s Inequality to the term 𝑌𝑅
𝑁
𝑌𝑅

𝑁
𝑍 . Since 𝑍 is bounded by

𝑂max
1↔𝑃 , altering any single state-action sample a#ects at most one row

of the estimated policy 𝑄𝑆 (𝑇, :), which leads to a bounded change in
the value of 𝑌𝑅

𝑁
𝑌𝑅

𝑁
𝑍 by at most 𝑂max

1↔𝑃 . This satis!es the bounded
di#erence condition necessary for McDiarmid’s Inequality.

By applying McDiarmid’s Inequality, we derive that the proba-
bility of the expert policy estimation error exceeding a threshold 𝑐

is bounded by:

Pr
(
𝑌𝑅

𝑁
𝑌𝑅

𝑁
𝑍 (𝑇,𝑈 ) ⇓ 𝑐

)
⇐ exp

(↔2𝑅𝑐2 (1 ↔ 𝑃)2
𝑂2max

)
.

This bound quanti!es how likely this estimation error exceeds
a threshold 𝑐 . As the number of expert-demonstrated state-action
pairs 𝑅 increases, the probability of signi!cant deviations from the
true policy decreases exponentially.

Uniform Bound on the Expect Policy Estimation Error. To obtain
a uniform bound on the expert policy estimation error across all
(𝑇,𝑄 ) pairs, we apply the union bound and set the right-hand side
of the bound to 𝑊

|𝑇 | |ω𝑀 | . Solving for 𝑐 , we derive the threshold that
bounds the error with probability at least 1 ↔ 𝑊 :

𝑐 =
𝑂max
1 ↔ 𝑃

√
1
2𝑅

ln


|𝐿 | |ω𝑃 |

𝑊


.

Since the reward function estimation error is bounded by the ex-
pert policy estimation error,

$$$𝑂0 ↔ 𝑂
$$$ ⇐ 𝑌𝑅

𝑁
𝑌𝑅

𝑁
𝑍 , the error bound

threshold 𝑐 applies to the reward function estimation error with
probability at least 1↔ 𝑊 . As the amount of expert data 𝑅 increases,
the estimation error decreases, re$ecting improved accuracy with
more data. Moreover, the e#ective horizon 𝑃 plays an important
role: smaller values of 𝑃 reduce both 1

1↔𝑃 and |ω𝑃 |, tightening the
bound and better controlling the estimation error.

4.5 Policy Class Complexity Increases with 𝑃
In the previous section, we bounded the reward estimation error in
terms of the policy class complexity |ω𝑃 | and the e#ective horizon
𝑃 . In fact, this policy class complexity also depends on the horizon
that induces it. In this section, we examine how 𝑃 in$uences policy
complexity and prove that, for the policy class in De!nition 3.1,
this complexity grows monotonically with the discount factor 𝑃 .
Consequently, we could deduce how changes in 𝑃 a#ect the overall
reward estimation error. The full proof on the monotonicity is
provided in Appendix A.

Theorem 4.5. Consider a" xed MDP 𝑑 = (𝐿,𝑀, 𝑁, ·, ·) with state
space 𝐿 , action space 𝑀, and transition function 𝑁 . For any reward
function 𝑂 ↘ F𝑂 that satis"es the mild condition in De"nition 3.1 1,
we have the following claims about its policy class:

(1) ↖𝑃,𝑃 ↙ ↘ [0, 1), if 𝑃 < 𝑃 ↙, then ω𝑃 ∝ ω𝑃 ↙ .
(2) When 𝑃 = 0, |ω0 | = 1.
(3) If 𝑃 ↑ 1, |ω𝑃 | ⇓ ( |𝑀| ↔ 1) |𝑇 |↔1 |𝐿 | under mild conditions.

Intuitively, claim 1 asserts that as the discount factor 𝑃 grows,
the number of potentially optimal policies increases monotonically.
Together with claim 2 and 3, Theorem 4.5 demonstrates that there is
a steep increase in policy complexity associated with the increment
of 𝑃 . Speci!cally, when the discount factor is at its lowest (̂𝑃 =
0), there is only one optimal policy, as the reward function has a
1This reward function form is not overly restrictive, as it merely excludes reward
functions that assign equal rewards to multiple actions for any given state. In systems
where the true reward 𝑂 ε F𝐿 , we can always construct a policy-invariant 𝑂↙ ↘ F𝐿 .
We assume this speci!c form of reward function to ensure that discussions about
the policy class remain meaningful, as any policy could be considered optimal when
arbitrary reward functions are allowed.
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unique maximum state-action pair for each state. However, as 𝑃
increases and approaches the largest value (̂𝑃 ↑ 1), the optimal
policy class can eventually encompass nearly all possible policies,
with |ω𝑃 | = ( |𝑀| ↔ 1) |𝑇 |↔1 |𝐿 |. In essence, 𝑃 e#ectively controls the
complexity of the policy class.

4.6 Error Decomposition and Deriving the
Overall Bound

In this section, we use the reward function estimation error bound

from earlier to establish the! nal bound on
""""𝑉 𝑅↓

𝐿0,𝑀0
𝑂0,𝑃0

↔𝑉
𝑅↓
𝐿,𝑀

𝑂0,𝑃0

""""
↗

presented in Theorem 4.1. Recall that 𝑄↓𝑂0,𝑃0
↘ ω𝑃0 is the optimal

policy derived from the ground-truth parameters (𝑂0,𝑃0), while
𝑄↓
𝑂,𝑃

↘ ω𝑃 is the optimal policy derived from the learned parameters

(𝑂,𝑃). We aim to bound the di#erence between their value functions
evaluated under the ground-truth 𝑂0 and 𝑃0.

To simplify the analysis, we decompose the overall error into two
manageable terms: the! rst accounts for the di#erence in value func-
tions caused by the reward function estimation error,

"""𝑂0 ↔ 𝑂
"""
↗
;

the second accounts for the value di#erence due to optimizing the
policy under di#erent horizons (𝑃0 versus 𝑃 ).

Theorem4.6 (Value FunctionDi#erence Bound). LetM = (𝐿,𝑀,𝑁 )
be a partial Markov Decision Process shared by two MDPs. Let 𝑂0 : 𝐿→
𝑀 ↑ [0,𝑂max] be the ground-truth reward function, with 𝑃0 ↘ (0, 1)
as the ground-truth discount factor. Let 𝑂 : 𝐿 → 𝑀 ↑ [0,𝑂max]
and 𝑃 ↘ (0, 1) be the estimated reward function and discount factor
obtained from data. Consider the optimal policies 𝑄↓𝑂0,𝑃0

and 𝑄↓
𝑂,𝑃

induced by (𝑂0,𝑃0) and (𝑂,𝑃), respectively. Then, the di!erence be-
tween their value functions, evaluated using the ground-truth reward
𝑂0 and discount factor 𝑃0, is bounded above by""""𝑉 𝑅↓

𝐿0,𝑀0
𝑂0,𝑃0

↔𝑉
𝑅↓
𝐿,𝑀

𝑂0,𝑃0

""""
↗

⇐ 2
1 ↔ 𝑃

"""𝑂0 ↔ 𝑂
"""
↗
+ |𝑃0 ↔ 𝑃 |
(1 ↔ 𝑃0) (1 ↔ 𝑃)𝑂max .

Proof of Theorem 4.6 is in Appendix B.3.
Recall that we have established a bound on the reward estima-

tion error
"""𝑂0 ↔ 𝑂

"""
↗

in terms of the number of expert data 𝑅 , the
e#ective horizon 𝑃 , and the policy complexity |ω𝑃 | in Section 4.4.
Speci!cally, with probability at least 1 ↔ 𝑊 , the reward function

estimation error is bounded by 𝑂max
1↔𝑃


1
2𝑄 ln

( |𝑇 | |ω𝑀 |
𝑊

)
. Substitut-

ing this bound into the! rst error term on the right-hand side of
Theorem 4.6, we obtain:

""""𝑉 𝑅↓
𝐿0,𝑀0

𝑂0,𝑃0
↔𝑉

𝑅↓
𝐿,𝑀

𝑂0,𝑃0

""""
↗

⇐ 2𝑂max
(1 ↔ 𝑃)2

√
1
2𝑅

ln


|𝐿 | |ω𝑃 |

𝑊



+ |𝑃0 ↔ 𝑃 |
(1 ↔ 𝑃0) (1 ↔ 𝑃)𝑂max .

This completes the proof of Theorem 4.1. The overall error con-
sists of two terms. The! rst term arises from the reward function
estimation error, which increases with larger 𝑃 . A larger 𝑃 leads to a
more complex induced policy class, making over!tting more likely
when expert data is limited. Consequently, the reward function

estimation error increases as the expert policy estimation error
grows signi!cantly. The second term represents the performance
loss from using a smaller discount factor (̂𝑃 < 𝑃0), and decreases as
𝑃 approaches 𝑃0. These opposing dependencies on 𝑃 suggest that
there exists an intermediate value 0 < 𝑃 < 𝑃0 that minimizes the
overall loss. We will empirically demonstrate this in the following
section.

5 EXPERIMENT
In this section, we empirically examine Theorem 4.1 by explor-
ing how discount factors in$uence IRL performance with varying
amounts of expert data. We adapt Linear Programming IRL (LP-IRL)
[23] and Maximum Entropy IRL (MaxEnt-IRL) [34] to accommodate
di#erent discount factor settings and expert data sizes (implemen-
tation details are provided in Appendices D and E).

To jointly learn (𝑂,𝑃), we incorporate cross-validation into our
modi!ed IRL methods to optimize the discount factor (details in
Section 5.2). By evaluating policies across a range of 𝑃s, cross-
validation allows us to directly observe how varying 𝑃 a#ects IRL
performance with di#erent amounts of expert data. While special-
ized IRL methods exist for optimizing 𝑃 [8, 9], we choose cross-
validation because it not only identi!es the optimal discount factor,
but also reveals performance trends across various settings, which
is crucial for validating the nuanced implications of our theoretical
!ndings. Speci!cally, we answer the following questions through
cross-validation:

Q.1 Can a lower 𝑃 < 𝑃0 improve IRL policy performance?
Q.2 How does 𝑃↓ change with increasing expert data 𝑅 ?
Q.3 Is the cross-validation extension e#ective in!nding 𝑃↓?

We evaluate the performance of LP-IRL and MaxEnt-IRL on four
Gridworld and Objectworld tasks with varying reward complexity.
We use the number of incorrectly induced actions as a proxy for
value estimation error in the overall error bound. This measure
counts the number of states where the induced policy 𝑄𝑆 di#ers
from 𝑄𝑆 in action selection. For Q.1, we measure the number of
incorrectly induced actions under varying discounted factors and
di#erent amount of expert data. Our! ndings show that the optimal
𝑃s across all expert amount are smaller than 𝑃0 for both algorithms.
For Q.2, we plot how the optimal discount factors change as the
number of expert data increases. The consistent U-shaped curves
observed in all cases align with the anticipated over!tting e#ect im-
plied by the second error term in Equation 4.1. For Q.3, we compare
the performance of policies selected via cross-validation with the
best policy learnable from the available expert data. Our results in-
dicate that the discrepancy in performance is negligible for all tasks,
demonstrating the e#ectiveness of cross-validation in selecting 𝑃↓.

5.1 Task Setup
We design four tasks of varying complexity in reward functions:
Gridworld-simple, Gridworld-hard, Objectworld-linear, and Object-
world-nonlinear, adapted from [18] and [23]. We illustrate each
task instance in the! rst three columns of Tables 1 and more details
on the task speci!cation are in Appendix C. The ground-truth dis-
count factor is 𝑃0 = 0.99. All task MDPs are assumed to be ergodic,
such that all states are reachable and interconnected, allowing IRL
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Figure 1: Summary of LP-IRL with varying discount factors across four tasks. The error counts measure the number of states
for which a policy’s action selection deviates from the expert’s actions. Each task displays the ground-truth value function
(column 1), reward function (column 2), expert policy (column 3), error count curves for di"erent amount of expert data in a
single instance (columns 4-8), and the error count curve summary for a batch of 10 MDPs across varying amount of expert data
(column 9). In all four tasks, 𝑃0 = 0.99. The optimal discount factor 𝑃↓ < 𝑃0 for varying amount of expert data. MaxEnt-IRL has
similar curves in Figure 4.

methods to estimate rewards and policies for all states from lim-
ited expert data by propagating values from observed states during
value iteration.

The Gridworld tasks provide sparse rewards only at randomly
sampled goals: Gridworld-simple has fewer goals (4) and a smaller
state space (10→10 states), while Gridworld-hard has more goals (6)
and a larger state space (15 → 15 states). On the other hand, the Ob-
jectworld tasks have denser ground-truth rewards that are functions
of nearby object features. The reward function for Objectworld-
linear is linear with respect to the features of nearby objects, while
that of Objectworld-nonlinear is non-linear. Intuitively, learning a
complex reward function may be more susceptible to over!tting,
especially when expert data is sparse compared to the state space.

We vary the amount of expert data by adjusting the number of
state-action pairs included, measuring this as a percentage relative
to the state space size. Since states may be sampled multiple times in
the trajectories, the total number of state-action pairs 𝑅 can exceed
the number of states |𝐿 |. Given expert trajectories 𝑆 = {𝑒0, 𝑒1, . . . },
we de!ne the percentage of expert data as 𝑓% = 𝑄

|𝑇 | → 100%. We
evaluate the performance of the induced policy by counting the
number of states where it selects a di#erent action from the expert
policy—referred to as the state error count.

5.2 Cross Validation Extension
We use cross-validation to determine the optimal 𝑃↓ from the ex-
pert data 𝑆 containing 𝑅 state-action pairs. We split 𝑆 into non-
overlapping training (80%) and validation (20%) sets. We uniformly

Figure 2: Optimal 𝑃↓ for LP-IRL at varying amount of expert
data. For each task, we select 𝑃↓ for all 10 sampled environ-
ments through cross-validation. The orange curves illustrate
how the optimal discount factor 𝑃↓ changes with the amount
of expert data, while the green curves show the correspond-
ing error counts. The ground-truth 𝑃0 = 0.99 is depicted in
grey, with its error counts displayed in blue. As the amount of
expert data increases, 𝑃↓ initially decreases sharply and then
gradually increases, indicating that over!tting is prominent
when expert data is scarce.

sample𝑑 = 20 discount factors from the interval (0,𝑃0). For each
sampled 𝑃 , we learn 𝑂𝑃 using the training set and evaluate the in-
duced policy on the validation set by counting the number of states
where it selects a di#erent action from the expert policy—the state
error count. The 𝑃 that minimizes this error count is selected as
the optimal 𝑃 . For all tasks, we randomly sample 10 environments
per task and report the mean and standard deviation of errors. To
assess the e#ectiveness of cross-validation, we employ an oracle
representing the best policy learnable from all available expert
data. This oracle, considered "cheating," uses both the training and
validation sets for training and validates on the entire state space
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Figure 3: The cross-validation results for LP-IRL on four
tasks are shown. The 𝑔-axis represents the amount of expert
data; the -axis shows policy error count di"erences. We
compare discount factors 𝑃↓cv (learned from cross-validation)
and 𝑃↓oracle (chosen by the oracle). Orange dots depict error
di"erences between policies induced by 𝑃↓cv and 𝑃↓oracle; blue
dots show di"erences between policies induced by 𝑃↓cv and
the ground-truth 𝑃0. The orange curves near zero indicate
that cross-validation e"ectively selects 𝑃↓, while the positive
blue curves show that cross-validation consistently yields
better policies than using 𝑃0.
(both observed and unobserved states). We use this oracle only to
compare whether the 𝑃↓ chosen by cross-validation corresponds to
that of the oracle policy, not for selecting the optimal 𝑃 .

5.3 Results
We assess the impact of the e!ective horizon on IRL by evaluating LP-
IRL and MaxEnt-IRL across four tasks. For simplicity, we treat LP-
IRL’s discount factor𝑃 andMaxEnt-IRL’s horizon𝑖 interchangeably,
with! ndings for 𝑃 also applying to 𝑖 unless speci!ed otherwise.
Policy performance results are presented in Tables 1 (LP-IRL) and 4
(MaxEnt-IRL). We report state error counts, measuring discrepancies
between induced and expert policies by counting the states where
their action selections di#er.

Q.1 Optimal 𝑃↓ is Lower than Ground-Truth.
As shown in Figures 1 and 4, the optimal discount factor 𝑃↓ < 𝑃0

for all four tasks and across various amounts of expert data in both
LP-IRL and MaxEnt-IRL. With limited expert data, the error count
curves are generally U-shaped: discrepancies with the expert policy
decrease as 𝑃 increases to a “sweet spot” and then rise sharply. This
pattern con!rms our error bounds in Theorem 4.1: for small 𝑃 , the
over!tting-related error (second term in Equation 4.1) is less signif-
icant, and increasing 𝑃 allows temporal extrapolation, reducing the
overall error. However, beyond the optimal 𝑃 , over!tting becomes
more pronounced, and the overall error increases as the! rst error
term outweighs the bene!ts.

With abundant expert data, error counts remain low (in LP-
IRL) or initially decrease (in MaxEnt-IRL) for small 𝑃 and then
increase as 𝑃 grows, indicating that 𝑃↓ < 𝑃0 yields the most expert-
like policy, con!rming our theoretical results. Interestingly, in LP-
IRL, the error counts do not initially drop as 𝑃 increases. This is
because, with dense expert data, LP-IRL accurately matches step-
wise behaviors, making performance gains from temporal reasoning
negligible. This observation supports Spencer et al. [31]’s insight
that naive behavioral cloning can outperform IRL algorithms when
ample expert data is available. In contrast, MaxEnt-IRL does not
exhibit low error counts for small 𝑃 because its reward function
is parameterized linearly in state features, limiting its ability to
precisely replicate actions even with abundant data.

Q.2 Optimal 𝑃↓s Vary with the Amount of Expert Data.

Figures 2 and 5 show how the optimal discount factor 𝑃↓ varies
with increasing amounts of expert data for LP-IRL and MaxEnt-IRL,
respectively. When data is scarce, 𝑃↓ is high because the bene!ts of
temporal reasoning outweigh over!tting concerns—the estimation
error of the expert policy remains high regardless of over!tting.
A large 𝑃↓ enables extrapolation of actions to nearby unobserved
states, reducing the! rst error term in Theorem 4.1 and improving
overall error reduction.

With a moderate amount of data, 𝑃↓ decreases: although expert
policy estimation improves with more data, it is still limited. The
overall error bound favors a smaller 𝑃↓ to mitigate over!tting, re-
ducing the second error term even at the cost of some temporal
reasoning bene!ts. As data increases further, 𝑃↓ rises again since
over!tting becomes less signi!cant, and larger values enhance tem-
poral reasoning.

Overall, as expert data increases, error counts for 𝑃↓ strictly
decrease and remain below those for 𝑃0, indicating that 𝑃↓ enables
IRL to learn more e#ectively from additional expert data.

Q.3 Cross-Validation E"ectively Selects Optimal 𝑃↓s.
Figures 3 and 6 summarize the cross-validation results for LP-IRL

and MaxEnt-IRL, respectively. The performance discrepancy be-
tween policies induced by 𝑃↓cv and the oracle 𝑃↓oracle (orange curves)
is consistently near zero across all four tasks, indicating that cross-
validation e#ectively selects 𝑃↓ similar to the oracle. Moreover, the
blue curves represent the error di#erences between policies induced
by the ground-truth 𝑃0 and 𝑃↓cv, which are signi!cantly higher than
zero. This suggests that 𝑃↓cv yields better-performing policies than
using the ground-truth 𝑃0, con!rming our theoretical! ndings in
Theorem 4.1.

6 CONCLUSION
In this paper, we present a theoretical analysis on IRL that unveils
the potential of a reduced horizon in inducing a more expert-like
policy, particularly in data-scarce situations. Our! ndings reveals
an important insight on role of the horizon in IRL: it controls the
complexity of the induced policy class, therefore reduces over!tting
to the limited expert data. We, therefore, propose a more natural IRL
function class that jointly learns reward-horizon pairs and empiri-
cally substantiate our analysis using a cross-validation extension
for the existing IRL algorithms. As over!tting remains a challenge
for IRL, especially with scarce expert data, we believe our!nd-
ings o#er valuable insights for the IRL community on better IRL
formulations.
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