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ABSTRACT
Current reinforcement learning (RL) models, often functioning as

complex ‘black boxes,’ obscure decision-making processes. This

lack of transparency limits its applicability in critical real-world

applications where clear reasoning behind algorithmic choices is

crucial. To tackle this issue, we suggest moving from neural network

or tabular approaches to a rule ensemble model, which improves

decision-making clarity and adapts dynamically to environmental

interactions. Instead, ourmethod constructs additive rule ensembles

to approximate the Q-value in reinforcement learning using orthog-

onal gradient boosting (OGB) combined with a post-processing

rule replacement technique. This method enables the model to

provide inherent explanations through the use of rules. Our study

sets a theoretical foundation for rule ensembles within the rein-

forcement learning framework, emphasizing their capacity to boost

interpretability and facilitate the analysis of rule impacts. Experi-

mental results from seven classic environments demonstrate that

our proposed rule ensembles match or exceed the performance of

representative RL models such as DQN, A2C, and PPO, while also

providing self-interpretability and transparency.
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1 INTRODUCTION
In the field of reinforcement learning (RL), algorithms such as

Deep Q-Networks (DQN), Proximal Policy Optimization (PPO), and

Advantage Actor Critic (A2C) have driven significant progress in

handling complex sequential decision-making tasks [13, 16, 17, 22].
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However, these models often lack interpretability, as their complex

inner workings are not transparent, making it difficult to trace and

understand how decisions are made [11, 19]. This lack of trans-

parency can lead to significant concerns in critical real-world appli-

cations, such as in healthcare, finance, and autonomous driving sec-

tors, where understanding algorithms’ decision-making processes

are crucial. The inability to provide clear explanations hinders the

use of advanced RL techniques in scenarios demanding high levels

of transparency and accountability [12, 28, 29]. In tabular-based

methods, Q-values represent expected rewards for specific state-

action pairs [27]. But it is challenging to discern why a particular

action was selected, as the Q table does not provide direct insight

into the rationale behind these Q-values. Deep neural networks are

infamously known for their lack of interpretability, despite efforts

to improve it, making these models prone to mistrust and often

unsuitable for improving human understanding of the domain be-

ing modeled [12, 25]. Similarly, when a Q-value approximation is

generated from a black box model, such as a deep neural network,

the challenge of interpreting decisions remains, as illustrated in

Figure 1. Imagine you are an agent deciding whether to move up

or down to escape, where a wrong choice could mean life or death.

A typical black-box model would offer a cold, numerical Q-value

or approximation, without any explanation for why that value is

assigned to that action, leaving you without direct insight into the

reasoning behind it. In contrast, a rule-based model would provide

decisions along with a clear explanation. For each action, the model

details the rules that contributed to the Q-value, explaining why it

Figure 1: Black Box DecisionMaking andWhite Box Decision
Making.
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suggests moving up or down based on the current state. This trans-

parency approach allows you to understand the reasoning behind

the recommendation, enabling you to make a more informed and

confident decision.

To address these challenges, our work proposes a fundamen-

tal transition from traditional table or neural network-based ap-

proaches to a rule ensemble model for reinforcement learning. Rule-

based systems, appreciated for their simplicity and clarity, use a

sequence of straightforward if-then rules that are easy to inter-

pret and validate [2, 6, 18, 23, 26]. This transparency is especially

valuable in scenarios where understanding the reasoning behind de-

cisions is just as essential as the outcomes themselves. Our approach

aims to blend the self-interpretable structure of rule-based mod-

els with reinforcement learning, focusing on learning and refining

rules instead of a Q-table or neural network. This method bridges

the gap between sequential decision-making and user transparency,

providing clear and interpretable decisions.

We propose reinforcement additive rule ensembles that create

a rule set for each action to approximate the Q-value by aggregat-

ing the outputs of multiple simpler models—each tied to a specific

decision rule—into a cohesive predictive framework. In the ensem-

ble, each rule contributes a weighted value for every state-action

pair, collectively forming the overall decision metric based on rule

fulfillment. In this paper, we begin by detailing the theoretical

foundation of additive rule ensembles in the context of reinforce-

ment learning. By deriving the score from the ensemble of decision

rules rather than from a neural network or table, we retain the

framework’s ability to perform expected reward proximation for

each state while significantly improving the self-interpretability

of the output. Our method allows us to examine the individual

contributions of each rule, providing insights into what factors

are considered most critical by the model across different states-

action pairs. Through extensive experiments in simulated classic RL

environments, we demonstrate that rule ensembles can match or

even surpass the performance of benchmark RL models, including

Q-tabular, DQN, A2C and PPO, while providing the added value of

self-interpretability.

2 RELATEDWORK
In the field of RL, post hoc interpretability methods are widely
used to understand the decision-making behavior of agents. These

methods aim to provide explanations for model behavior by ana-

lyzing trained RL models. Common post hoc techniques include

generating attention maps or heatmaps to show what the agent

focuses on in a specific state, as well as local sensitivity analysis

based on input-output relationships (e.g., LIME, SHAP4RL), to ex-

plain Q-value estimation or policy output. These techniques help

understand why an action is chosen in a specific state to some

extent [11, 14, 19].

However, post hoc methods in RL have significant limitations.

First, since these explanations are generated after model training,

they are detached from the actual decision-making process, lacking

causality, and cannot clearly indicate the agent’s internal decision

logic. This separation makes the explanations difficult to verify

and trust, especially in high-risk applications like healthcare or

autonomous driving [1, 3, 12]. Second, these methods often rely on

visualizing complex high-dimensional representations, making the

results unstable and subjective. Different tools or observers may

derive different interpretations, affecting consistency and gener-

alizability [5, 29]. Additionally, post hoc methods lack real-time

adaptability, making it difficult to provide reliable and consistent

explanations when dealing with new environments or complex

tasks [1, 15].

3 PRELIMINARY
3.1 MDP and Q-Learning
A Markov decision process (MDP) [27] is encapsulated by the tuple

(𝑆,𝐴, 𝑃, 𝑅,𝛾), where:
• 𝑆 denotes the complete set of states, potentially either count-

able or uncountable,

• 𝐴 represents the complete set of actions available,

• 𝑃 : 𝑆 × 𝐴 → 𝑃 (𝑆) is the transition kernel that governs the

dynamics of the state transitions,

• 𝑅 : 𝑆 ×𝐴 → 𝑃 (R) specifies the distribution over immediate

rewards received after actions,

• 𝛾 , a factor within (0, 1), quantifies the discounting of future

rewards.

In this setting, choosing any action 𝑎 ∈ 𝐴 while in any state 𝑠 ∈
𝑆 leads to the next state according to the transition probability

𝑃 (·|𝑠, 𝑎) and accrues an immediate reward as dictated by 𝑅(·|𝑠, 𝑎).
Additionally, for purposes of mathematical convenience and to

ensure model regularity, it is assumed that 𝑆 is a compact subset of

R𝑟
, possibly extending infinitely, and 𝐴 comprises a finite number

of actions 𝑀 , specifically 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑀 }. The rewards are

constrained within the bounds [−𝑅max, 𝑅max], ensuring that all

rewards 𝑅(·|𝑠, 𝑎) remain uniformly bounded across all states 𝑠 and

actions 𝑎.

A policy 𝜋 : 𝑆 → 𝑃 (𝐴) assigns to each state 𝑠 ∈ 𝑆 a probability

distribution over actions, denoted by 𝜋 (·|𝑠). The value function

associated with a policy 𝜋 , denoted by 𝑉 𝜋
: 𝑆 → R, is defined as

the total expected discounted reward accrued by executing actions

in accordance with policy 𝜋 , starting from a given initial state.

Specifically,

𝑉 𝜋 (𝑠) = E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅𝑡 | 𝑆0 = 𝑠

]
. (1)

While decision makers have the authority to define the policy

𝜋 , the transition kernel 𝑃 and the reward function 𝑅 are inherent

characteristics of the environment and are typically not known to

the decision makers.

Applying the law of iterative expectation, the value function

under any policy 𝜋 is represented as:

𝑉 𝜋 (𝑠) = E
[
𝑄𝜋 (𝑠, 𝑎) | 𝑎 ∼ 𝜋 (·|𝑠)

]
, ∀𝑠 ∈ 𝑆, (2)

where 𝑄𝜋 (𝑠, 𝑎), the action value function, calculates the expected

total discounted rewards starting from state 𝑠 and taking action 𝑎,

as follows:

𝑄𝜋 (𝑠, 𝑎) = E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅𝑡 | 𝑠0 = 𝑠, 𝑎0 = 𝑎

]
(3)

= 𝑟 (𝑠, 𝑎) + 𝛾E
[
𝑉 𝜋 (𝑠′) | 𝑆 ′ ∼ 𝑃 (·|𝑠, 𝑎)

]
, (4)
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with 𝑟 (𝑠, 𝑎) being the expected immediate reward for choosing

action 𝑎 in state 𝑠 . We first define an operator 𝑃𝜋 by

(𝑃𝜋𝑄) (𝑠, 𝑎) = E
[
𝑄 (𝑠′, 𝑎′) | 𝑠′ ∼ 𝑃 (·|𝑠, 𝑎), 𝑎′ ∼ 𝜋 (·|𝑠′)

]
, (5)

and define the Bellman operator 𝑇𝜋
by

(𝑇𝜋𝑄) (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾 · (𝑃𝜋𝑄) (𝑠, 𝑎) . (6)

The primary objective of reinforcement learning is to discover

the optimal policy that maximizes the cumulative reward through

dynamic learning from the acquired data. To define optimality, we

refer to the optimal action-value function 𝑄∗
as follows:

𝑄∗ (𝑠, 𝑎) = sup

𝜋
𝑄𝜋 (𝑠, 𝑎), ∀(𝑠, 𝑎) ∈ 𝑆 ×𝐴, (7)

where the supremum is taken over all possible policies. Moreover,

for any action-value function 𝑄 : 𝑆 ×𝐴 → R, we define the greedy
policy 𝜋𝑄 such that for any state 𝑠 ∈ 𝑆 , 𝜋𝑄 (·|𝑠) satisfies:

𝜋𝑄 (𝑎 |𝑠) =
{

1 if 𝑄 (𝑠, 𝑎) = max𝑎′∈𝐴𝑄 (𝑠, 𝑎′),
0 otherwise.

(8)

Given 𝑄∗
, the optimal policy 𝜋∗ is any policy that is greedy with

respect to 𝑄∗
. It has been established that 𝑄∗ = 𝑄𝜋∗

.

3.2 Orthogonal Gradient Boosting for Additive
Rule Ensembles

3.2.1 Additive Rule Ensembles. Additive rule ensembles are a
type of probabilistic models [10] that predict the mean of a target

variable 𝑌 ∈ R, given an input variable 𝑋 ∈ R𝑑 as E[𝑌 | 𝑋 = 𝑥] =
𝜇 (𝑓 (𝑥)), where 𝜇 : R → R is an inverse link function mapping the

output of 𝑓 (𝑥) to the target variable 𝑌 , and 𝑓 : R𝑑 → R is an affine

linear combination of 𝑘 boolean query functions:

𝑓 (𝑥) =
𝑘∑︁
𝑖=1

𝛽𝑖𝜙𝑖 (𝑥) . (9)

In (9), 𝛽𝑖 (0 ≤ 𝑖 ≤ 𝑘) is the weight of the 𝑖-th boolean query function

𝜙𝑖 : R𝑑 → {0, 1}, and 𝜙𝑖 is a conjunction or product of 𝑐𝑖 boolean

propositions:

𝜙𝑖 (𝑥) =
𝑐𝑖∏
𝑗=1

𝑝𝑖, 𝑗 (𝑥), (10)

where𝑝𝑖, 𝑗 ∈
{
1
(
𝑠𝑥 ( 𝑗 ) ≤ 𝑥

( 𝑗 )
𝑙

)
: 𝑗 ∈ [𝑑], 𝑙 ∈ [𝑛], 𝑠 = ±1

}
is a thresh-

old function (we denote [𝑥] = {1, . . . , 𝑥}).
In (9), each term can be represented as a rule in the form of

‘IF. . .THEN . . . ’, where the query 𝜙𝑖 defines the condition of the

rule, and the weight 𝛽𝑖 is the rule consequent.

3.2.2 Orthogonal Gradient Boosting. Boosting is an iterative ap-

proach for learning additive models [7, 9, 21] based on minimizing

the empirical risk

𝑅𝜆 (𝑓 ) =
𝑛∑︁
𝑖=1

𝑙 (𝑓 (𝒙𝑖 ), 𝑦𝑖 )/𝑛 + 𝜆∥𝛽 ∥2/𝑛,

given a training set {(𝒙1, 𝑦1), . . . , (𝒙𝑛, 𝑦𝑛)}, where 𝑙 is a loss func-
tion can be derived as deviance function, i.e., shifted negative log

likelihood, and measures the cost of predicting 𝑓 (𝒙𝑖 ) while the true
value is 𝑦𝑖 , yielding a sequence of models 𝑓 (0) , 𝑓 (1) , . . . , 𝑓 (𝑘 ) .

When using boosting to learn additive rule ensembles, in the 𝑡-th

iteration, a query is selected from a set of queries Q to maximize

some objective functions:

𝑞𝑡 = arg max{obj(𝜙 ; 𝑓 (𝑡−1) ) : 𝜙 ∈ Q},

and then added into the rule ensembles. Commonly used boosting

objective functions include the gradient boosting objective (GB) [9],

gradient sum objective (GS) [7], extreme gradient boosting objective

(XGB) [4], etc. Traditionally, boosting only calculates the weight

of the newly-added query: 𝛽 (𝑡 ) = arg min𝛽 𝑅𝜆 (𝑓 (𝑡−1) + 𝛽𝜙𝑡 ). The
risk of themodel can be further reduced by recalculating theweights

of all queries, which is the corrective weight update method:

𝜷𝑡 = arg min{𝑅𝜆 (𝚽𝑡𝜷) : 𝜷 = (𝛽1, . . . , 𝛽𝑡 ) ∈ R𝑡 },

where 𝚽𝑡 = [𝝓1, . . . , 𝝓𝑡 ] is the 𝑛 × 𝑡 query matrix with the out-

put vectors of all selected queries as columns. However, the previ-

ous boosting objective functions do not fully utilize the advantage

brought by corrective weight update since they do not consider

the weight correction step during the selection of the queries. Yang

et al. [30] proposed a novel boosting objective function correctly

identifying the query, such that the subspace spanned by all se-

lected queries is closest to the ideal gradient descent corrective

weight update subspace. More specifically, they derive the Orthog-

onal Gradient Boosting objective function obj
ogb

= |𝝓𝑇𝒈⊥ |/∥𝝓⊥∥,
where 𝒈⊥ and 𝝓⊥ are the projection of 𝒈 and 𝝓 onto the orthogonal

complement of the range of 𝚽𝑡−1.

4 METHODOLOGY
4.1 Rule Based Model for Q-Learning
In an MDP framework adapted with additive rule ensembles for

Q-learning, each action 𝑎 ∈ 𝐴 is associated with a specific ensemble

model 𝑓𝑎 (𝑠) for state 𝑠 ∈ 𝑆 , predicting the Q-function as

𝑄 (𝑠, 𝑎) = 𝜇 (𝑓𝑎 (𝑠)),

where 𝜇 is the inverse link function.

Each ensemble 𝑓𝑎 (𝑠) for an action 𝑎 predicts the expected return

directly as 𝑄 (𝑠, 𝑎). This prediction is the output of a linear combi-

nation of features (defined by boolean query functions) weighted

by coefficients specific to each action. Thus, we can simplify the

previous function as 𝑄 (𝑠, 𝑎) = 𝑓𝑎 (𝑠). The function 𝑓𝑎 (𝑠) is defined
as

𝑓𝑎 (𝑠) =
𝑘𝑎∑︁
𝑖=1

𝛽𝑎,𝑖𝜙𝑎,𝑖 (𝑠),

with 𝛽𝑎,𝑖 as coefficients and 𝜙𝑎,𝑖 as Boolean query functions specific

to action 𝑎. The policy 𝜋 is then derived to maximize the expected

return by selecting actions that maximize the Q-value, expressed

as 𝜋 (𝑠) = arg max𝑎 𝑄 (𝑠, 𝑎). The learning process involves iterative

updates to the coefficient vector 𝜷𝑎 and the queries 𝜙𝑎,𝑖 based on

observed rewards and state transitions, aiming to refine the ensem-

bles for optimal decision-making in complex or high-dimensional

state spaces.

4.1.1 Action Selection. In our rule based reinforcement learning

algorithm, action selection, as shown in Figure 2,is governed by a
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Figure 2: Rule Based Q-Learning.

policy 𝜋 derived from the Q-values predicted by individual ensem-

ble models for each action. The policy

𝜋 (𝑠) = arg max

𝑎
𝑄 (𝑠, 𝑎) = arg max

𝑎
𝑓𝑎 (𝑠)

is formulated to maximize the expected return. and 𝑓𝑎 (𝑠) predicts
the Q-value for action 𝑎 in state 𝑠 . For each decision step, the system

evaluates 𝑓𝑎 (𝑠) for all actions, choosing the one with the highest

value to optimize immediate expected returns. We also implement

the epsilon decay to balance the explore and exploit.

4.1.2 Policy Update. In the our proposed rule based reinforcement

learning algorithm, a rule based policy 𝜋 ®𝑤,®𝑞 : 𝑆 × 𝐴 → R is uti-

lized to approximate the optimal action-value policy 𝜋∗, where ®𝑤, ®𝑞
denotes the weights and the queries for rule based model. Like

all other value based Q learning algorithm, RBQL employs the

technique of experience replay. At each timestep 𝑡 , the transition

(𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1) is stored in the replay memory𝑀 , and a minibatch

of independent samples is drawn from 𝑀 to train the additive rule

ensemble via orthogonal gradient boosting. This approach helps

mitigate the issue of strong temporal correlations in the trajec-

tory of the MDP, aiming to produce uncorrelated samples which

enhance the accuracy of the gradient estimation for additive rule

ensemble model. We also use a target model 𝑓(𝑤,𝑞)𝑡𝑎𝑟𝑔𝑒𝑡 with pa-

rameters ®𝑤𝑡𝑎𝑟𝑔𝑒𝑡 , ®𝑞𝑡𝑎𝑟𝑔𝑒𝑡 (current estimate of the parameters). By

utilizing independent samples {(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠′𝑖 )}𝑖∈[𝑛] from the replay

memory (where 𝑠′
𝑖
represents the next state following 𝑠𝑖 and 𝑎𝑖

instead of 𝑠𝑖+1 to avoid notation collision with another indepen-

dent sample in the state space), the parameter ®𝑤𝑡𝑎𝑟𝑔𝑒𝑡 , ®𝑞𝑡𝑎𝑟𝑔𝑒𝑡 of
the additive rule ensemble is updated by computing the target

𝑌𝑖 = 𝑟𝑖 + 𝛾 max𝑎∈𝐴 𝑓(𝑤′,𝑞′ )𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠′𝑖 , 𝑎), comparing it with the Bell-

man optimality operator, and updating ®𝑤, ®𝑞 by the gradient of the

loss function:

𝐿(𝑤,𝑞) = 1

𝑛

𝑛∑︁
𝑖=1

[
𝑌𝑖 − 𝑓(𝑤,𝑞) (𝑠𝑖 , 𝑎𝑖 )

]
2

.

The parameters ( ®𝑤, ®𝑞)𝑡𝑎𝑟𝑔𝑒𝑡 are updated once every Ttarget steps by
setting (𝑤,𝑞)𝑡𝑎𝑟𝑔𝑒𝑡 = (𝑤,𝑞), effectively keeping the target network
fixed for Ttarget steps before updating it to the current weights of

the additive rule ensemble. To further elucidate the importance of

the target network, let us initially disregard it and set (𝑤,𝑞)𝑡𝑎𝑟𝑔𝑒𝑡 =
(𝑤,𝑞). Employing the bias-variance decomposition, the expected

value of the loss function 𝐿((𝑤,𝑞)) is expressed as:

E[𝐿((𝑤,𝑞))] =
𝑓(𝑤,𝑞) −𝑇 𝑓(𝑤,𝑞)

2

𝜎

+ E
[(
𝑌1 − (𝑇 𝑓(𝑤,𝑞) ) (𝑠1, 𝑎1)

)
2

]
,

where

𝑓(𝑤,𝑞) −𝑇 𝑓(𝑤,𝑞)

𝜎
represents the mean-squared Bellman

error (MSBE) under the distribution 𝜎 , and the second term captures

the variance of 𝑌1, and 𝑇 is the update operator.

Next, to solve this problem, we incorporate a target model as

described before which yields the expectation:

E[𝐿(𝑤,𝑞)] =
𝑓(𝑤,𝑞) −𝑇 𝑓(𝑤,𝑞)𝑡𝑎𝑟𝑔𝑒𝑡

2

𝜎
(11)

+ E
[(
𝑌1 − (𝑇 𝑓(𝑤,𝑞)𝑡𝑎𝑟𝑔𝑒𝑡 ) (𝑠, 𝑎)

)
2

]
, (12)

where the variance of 𝑌1 is independent of (𝑤,𝑞). Therefore, mini-

mizing 𝐿(𝑤,𝑞) closely approximates the solution to the optimiza-

tion problem:

min

(𝑤,𝑞) ∈ (W,Q)

𝑓(𝑤,𝑞) −𝑇 𝑓(𝑤,𝑞)𝑡𝑎𝑟𝑔𝑒𝑡
2

𝜎
, (13)

where (𝑤,𝑞) is the parameter space.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2238



Let 𝐹 be the functional space of rule based functions defined on

𝑆 × 𝐴. In the 𝑘-th iteration of the algorithm, let
ˆ𝑓 be the current

estimate of 𝜋 at time 𝑘 . We can update our policy by updating 𝑓 by

solving the following minimization problem:

𝑓 = arg min

𝑓 ∈𝐹
1

𝑛

𝑛∑︁
𝑖=1

(
𝑌𝑖 − ˆ𝑓 (𝑆𝑖 , 𝐴𝑖 )

)
2

= 𝑇 ˆ𝑓 , (14)

where 𝑛 is the mini batch size, and 𝑇 is the update operator.

Detailed Model Updates for Rule Based Model
To update the additive rule ensembles for each action, we adopt

the post processing replacement step provided by Shalev-Shwartz

et al. [24]. To train and update the model for action 𝑎, we use the

part of dataset where action 𝑎 is taken. Initially, we use OGB to

train an additive rule ensemble with 𝑘 rules using the mini batch

data for each action. Afterwards, at each iteration where a model

update for an action is needed, we take the replacement step. In a

rule replacement step, first, we remove a rule according to some

criteria, resulting in 𝑘 − 1 rules. For instance, we can remove the

rule whose weight’s absolute value is minimum. After the removal,

the weights of the left rules are recalculated. Then, a new query

which maximizes the OGB objective function is added into the

rule ensemble, and the weight vector is recalculated again. This

replacement procedure repeats until the risk value does not decrease

anymore or a maximum number of repeating is exceeded.

Algorithm 1 Rule Based Q-Learning

1: Initialize replay memory 𝐷 to capacity 𝑁

2: Initialize action-value function 𝑓 (0) = 0

3: Initialize target action-value function
ˆ𝑓 = 0

4: for episode = 1, 𝑀 do
5: Initialize sequence 𝑠1

6: for 𝑡 = 1,𝑇 do
7: With probability 𝜖 select a random action 𝑎𝑡
8: otherwise select 𝑎𝑡 = arg max𝑎 𝑓𝑎 (𝑠)
9: Execute action 𝑎𝑡 in emulator and observe reward 𝑟𝑡

and 𝑑𝑜𝑛𝑒𝑡 to check if the episode is terminated

10: Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝐷

11: Sample random minibatch 𝐷 (𝑡 )
of transitions

(𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1, 𝑑𝑜𝑛𝑒 𝑗 ) from 𝐷

12: Set 𝑦 𝑗 = 𝑟 𝑗 + (1 − 𝑑𝑜𝑛𝑒 𝑗 )𝛾 max𝑎′
ˆ𝑓 (𝜙 𝑗+1, 𝑎

′
;𝜃−)

13: for all action do
14: if 𝑓 (𝑡−1) = 0 then Use OGB to get 𝑓

(𝑡 )
𝑘

to fit 𝐷 (𝑡 )

15: else Update 𝑓
(𝑡−1)
𝑘

to 𝑓
(𝑡 )
𝑘

using 𝐷 (𝑡 )
by the rule

replacement steps

16: end if
17: end for
18: Every 𝐶 steps reset

ˆ𝑓 = 𝑓
(𝑡 )
𝑘

19: end for
20: end for

4.2 Theoretical Analysis
Theorem 1. Let 𝜋∗ (𝑠) = arg max𝑎 𝑄

∗ (𝑠, 𝑎) be the optimal policy
that maximizes the Q-function for any state 𝑠 in a Markov Decision

Algorithm 2 Orthogonal Gradient Boosting

1: Input: dataset (𝒙𝑖 , 𝑦𝑖 )𝑛𝑖=1
, number of rules 𝑘

2: 𝑓 (0) = 0

3: for 𝑡 = 1, . . . , 𝑘 do
4: 𝒈𝑡 =

(
𝜕𝑙 (𝑓 (𝑡−1) (𝒙𝑖 ), 𝑦𝑛)/𝜕𝑓 (𝑡−1) (𝒙𝑖 )

)𝑛
𝑖=1

5: 𝝓𝑡 = arg max𝜙 |𝒈𝑇⊥𝑡𝝓 |/∥𝝓⊥∥
6: 𝜷 (𝑡 ) = arg min(𝛽1,...,𝛽𝑡 ) ∈R𝑡 𝑅𝜆 (

∑𝑡
𝑗=1

𝛽 𝑗𝜙 𝑗 )
7: 𝑓 (𝑡 ) (·) = 𝛽

(𝑡 )
1

𝜙1 (·) + · · · + 𝛽
(𝑡 )
𝑡 𝜙𝑡 (·)

8: end for
9: Output: 𝑓 (𝑘 )

Algorithm 3 Rule Replacement Steps

Input: dataset (𝒙𝑖 , 𝑦𝑖 )𝑛𝑖=1
, original rule ensemble with 𝑘 rules

𝑓
(0)
𝑘

, maximum iteration number 𝑇

for 𝑡 = 1, . . . ,𝑇 do
Find the index of the smallest weight absolute value 𝑟 =

arg min𝑗∈1,...,𝑘 |𝛽 (𝑡−1)
𝑗

|
˜𝜷 (𝑡−1) = arg min𝜷∈R𝑘−1 𝑅𝜆 (

∑
𝑖∈[𝑘 ]−{𝑟 } ˜𝛽

(𝑡−1)
𝑖

𝜙𝑖 )
˜𝑓
(𝑡−1)
𝑘−1

(·) = ∑
𝑖∈[𝑘 ]−{𝑟 } 𝛽

(𝑡−1)
𝑖

𝜙𝑖 (·)
𝒈 =

(
𝜕𝑙

(
˜𝑓
(𝑡−1)
𝑘−1

(𝒙𝑖 ), 𝑦𝑛
)
/𝜕 ˜𝑓

(𝑡−1)
𝑘−1

(𝒙𝑖 )
)𝑛
𝑖=1

Find the query 𝜙
(𝑡 )
𝑘

= arg max𝜙 ∥𝜙𝑇𝒈⊥∥/|𝜙⊥ |
𝜷 (𝑡 ) = arg min𝜷∈R𝑘 𝑅𝜆 (

∑
𝑖∈[𝑘 ]−{𝑟 } 𝛽𝑖𝜙𝑖 + 𝛽𝑟𝜙

(𝑡 )
𝑟 )

Let 𝛿 = 𝑅𝜆 (𝑓 (𝑡 ) ) − 𝑅𝜆 (
∑
𝑖∈[𝑘 ]−{𝑟 } 𝛽

(𝑡 )
𝑖

𝜙𝑖 + 𝛽
(𝑡 )
𝑟 𝜙

(𝑡 )
𝑟 )

if 𝛿 > 0 then 𝑓
(𝑡 )
𝑘

=
∑
𝑖∈[𝑘 ]−{𝑟 } 𝛽

(𝑡 )
𝑖

𝜙𝑖 + 𝛽
(𝑡 )
𝑟 𝜙

(𝑡 )
𝑟

else break

end if
end for
Output: 𝑓 (𝑡 )

𝑘

Process. If 𝑓 ∗ (𝑠) represents the function mapping state 𝑠 to the value
𝑄∗ (𝑠, 𝜋∗ (𝑠)), then 𝑓 ∗ (𝑠) = 𝑇 𝑓 ∗ (𝑠).

Proof. Assume 𝜋∗ (𝑠) = arg max𝑎 𝑄
∗ (𝑠, 𝑎) is the optimal policy

such that for any state 𝑠 , 𝑄∗ (𝑠, 𝜋∗ (𝑠)) = max𝑎 𝑄
∗ (𝑠, 𝑎). Then, by

definition, the function 𝑓 ∗ (𝑠) which is intended to represent the

optimal action value function as:

𝑓 ∗ (𝑠) = 𝑄∗ (𝑠, 𝜋∗ (𝑠))

satisfies the condition:

𝑓 ∗ (𝑠) = max

𝑎
𝑄∗ (𝑠, 𝑎) .

The update mechanism for 𝑓 ensures that adjustments are made

only when they result in an improvement. This is achieved by

minimizing the mean squared error (MSE) between the observed

outcomes and the predicted values, corresponding to minimizing

the following loss function:

𝐿(𝑤,𝑞) = 1

𝑛

𝑛∑︁
𝑖=1

[
𝑌𝑖 − 𝑓(𝑤,𝑞) (𝑠𝑖 , 𝑎𝑖 )

]
2

.
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Since 𝑓 ∗ (𝑠) = max𝑎 𝑄
∗ (𝑠, 𝑎), it follows that 𝐿(𝑤∗, 𝑞∗) attains the

minimum value possible within the system. Thus, no other pair

(𝑤,𝑞) can yield a lower loss, making (𝑤∗, 𝑞∗) the optimal parameter

set, which implies that 𝑓 ∗ (𝑠) = 𝑇 𝑓 ∗ (𝑠).
□

Theorem 2. Let 𝑅(𝑓 ) be the expected squared loss function, where
the expectation is with respect to an arbitrary distribution over 𝑋 ×𝑌 .
Let 𝜆 > 0 be a scalar, 𝑓 is an additive rule ensemble with 𝑘 rules, ¯𝑓

has 𝑘0 rules, if
𝑘 + 1 ≥ 𝑘0 (1 + 16/𝜆2), (15)

and assume that 𝑅 is (𝑘 + 1 + 𝑘0, 𝜆)-sparsely-strongly convex. Addi-
tionally, let 𝜏 be an integer such that

𝜏 ≥ 𝜆(𝑘 + 1 − 𝑘0)
2𝛽

log

(
𝑅(0) − 𝑅( ¯𝑓 )

𝜖

)
. (16)

Then if the fully corrective boosting (Algorithm 2) is run for 𝑘 itera-
tions and its last predictor is provided as input for the post-processing
replacement procedure (Algorithm 3), which is then run for 𝜏 itera-
tions, then when the procedure terminates at time 𝑡 (which may be
smaller than 𝜏), we have

𝑅(𝑓 (𝑡 ) − 𝑅( ¯𝑓 ) ≤ 𝜖.

Proof. See Theorem 2.9 in [24] for proof. □

Theorem 3. Assume there exists a reference function ˆ𝑓 which is
the optimal solution for 𝑇 𝑓target, where ˆ𝑓 = 𝑇 𝑓target for all 𝑠 ∈ 𝑆

and 𝑎 ∈ 𝐴. Let 𝑓 be updated iteratively towards this target function
𝑇 𝑓target. We have 𝑓 converges to ˆ𝑓 .

Proof. We first calculate the risk for rule ensembles for
ˆ𝑓 and

𝑓𝑘 based on the loss functions:

𝑅( ˆ𝑓 ) = [ ˆ𝑓 (𝑠, 𝑎) −𝑇 𝑓target (𝑠, 𝑎)]2,

and

𝑅(𝑓𝑘 ) = [𝑓𝑘 (𝑠, 𝑎) −𝑇 𝑓target (𝑠, 𝑎)]2 .

Based on Theorem 2, when (15) and (16) are satisfied, we have

𝑅(𝑓𝑘 ) − 𝑅( ˆ𝑓 ) ≤ 𝜖,

[𝑓𝑘 (𝑠, 𝑎) −𝑇 𝑓target (𝑠, 𝑎)]2 − [ ˆ𝑓 (𝑠, 𝑎) −𝑇 𝑓target (𝑠, 𝑎)]2 ≤ 𝜖,

(𝑓𝑘 − ˆ𝑓 ) (−2𝑇 𝑓target (𝑠, 𝑎) + 𝑓𝑘 + ˆ𝑓 ) ≤ 𝜖,

(𝑓𝑘 − ˆ𝑓 ) (𝑓𝑘 − ˆ𝑓 ) ≤ 𝜖,

⇒ (𝑓𝑘 − ˆ𝑓 ) ≤ 𝜖.

□

5 EXPERIMENTS AND RESULT
We evaluated the performance of our rule-based reinforcement

learningmodel across seven distinct RL environments:MountainCar-

v0, Cliffwalk, Blackjack, Taxi [8, 27], and three variations of Post-

man in grid sizes of 4x4, 5x5 and 7x7. To thoroughly assess the

effectiveness of our proposed model, we conducted a comprehen-

sive comparison against several well-known benchmark algorithms,

including Q-Tabular methods, DQN, PPO, and A2C with Stable-

BaseLine3 [20]. To illustrate the interpretability of our proposed

model, we use the Cliffwalk and Mountain Car environments as ex-

amples to provide a detailed analysis. These examples demonstrate

the explainability and transparency of our method by breaking

down the model’s actions across scenarios, offering clear insights

into the agent’s behavior and making the decision-making process

more self-interpretable than benchmark reinforcement learning

methods.

5.1 Performance
5.1.1 Environments Description. In this paragraph, we provide a

brief overview of the settings for each environment.

MountainCar-V0: The agent controls a car in a valley and must

build up enough momentum by moving back and forth between

two hills to reach the flag at the top of the right hill. The challenge

lies in the car’s weak engine, which requires strategic movement

to gain enough speed.

Cliffwalk: The agent navigates a gridworld along the edge of a

cliff. The objective is to reach a goal while avoiding falling off the

cliff, which results in a penalty. The challenge lies in balancing risk

and reward while moving through.

Blackjack-V1: The agent plays a simplified version of Blackjack,

where the goal is to maximize the score without going over 21. The

agent must decide whether to ‘hit’ or ‘stick’ based on the current

hand and visible dealer’s card.

Taxi: The agent operates as a taxi driver in a gridworld, tasked

with picking up passengers at one location and delivering them to

a destination. The agent must plan its route efficiently to minimize

the number of moves.

Postman (4x4, 5x5, 7x7): In this custom environment, the agent

acts as a postman, tasked with picking up and delivering items at

different locations within a grid. The agent must plan routes for

picking up and dropping off items, navigating larger grids in the

5x5 and 7x7 environments.

5.1.2 Performance Analysis. Based on the results presented in Ta-

ble 1, when the number of rules was set to 10, our proposed method

demonstrated performance comparable to other established algo-

rithms. The results, averaged over 10 runs with standard devia-

tion, provide reliable and consistent evaluation across all tested

environments. In most cases, our algorithm achieved performance

comparable to that of benchmark RL methods, including PPO. No-

tably, in environments like Mountain Car, Blackjack, CliffWalk

and Postman, our rule-based model even outperformed benchmark

approaches. In scenarios like Taxi, although our model performed

comparably to PPO, it did not outperform benchmark methods.

This is because the fixed number of rules limits its ability to capture

effective strategies in highly complex situations. This highlights

the trade-off between interpretability and precision, where the sim-

plicity and transparency of a rule-based model come at the cost of

reduced flexibility in highly complex environments.

5.1.3 Ablation Study. In our ablation study, we explored the impact

of increasing the number of rules and adjusting the model update

frequency on both performance and interpretability. Specifically, we

tested theMountainCar-v0 environment with different rule settings,

using 5, 10, 20, and 50 rules per action. As shown in Figure 3, the

model with 10 rules per action achieved the best reward as themodel
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Table 1: Performance of RBQL and Benchmarks.

Mountain-Car Cliff-Walk Taxi Blackjack Postman4 Postman5 Postman7

Q-tabular −148.99 ± 9.04 -13.00 ± 0.00 10.60 ± 3.26 0.464 ± 0.05 34.83 ± 1.58 35.75 ± 0.11 28.23 ± 4.89

DQN -147.51 ± 11.44 -13.00 ± 0.00 3.27 ± 3.25 0.464 ± 0.12 22.95 ± 10.78 33.84 ± 1.05 27.26 ± 5.54

A2C −157.24 ± 37.12 −14.62 ± 0.80 − 0.455 ± 0.10 −90.28 ± 9.70 15.79 ± 21.60 2.87 ± 4.37

PPO −150.4 ± 40.5 −101.31 ± 46.27 −64.14 ± 0.16 0.455 ± 0.19 24.52 ± 2.14 −58.11 ± 28.70 −91.58 ± 11.01

RBQL(OURS) -147.65 ± 9.45 -13.00 ± 0.00 −21.49 ± 5.01 0.464 ± 0.06 34.25 ± 1.02 32.51 ± 0.54 28.60 ± 1.12
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Figure 3: Rewards and success ratios of models with different
number of rules for MountainCar-v0.

with 50 rules provided the best win rate. This result implies that with

10 rules per action, the model has enough flexibility to capture the

key dynamics of the environment without being overly simplistic.

Using fewer than 10 rules (such as 5) may not provide enough

coverage to handle the complexity of the environment, leading to

suboptimal performance. On the other hand, with too many rules

(such as 20 or 50), the model may start to overfit the training data,

capturing noise or irrelevant patterns and reducing its ability to

generalize to new scenarios. When the number of rules is very

high, the model may still experience overfitting; however, it has the

potential to learn a diverse policy that could guarantee success with

wasted movements. This result from the ablation study indicates a

balance between the number of rules and the model performance.

It suggests that increasing the number of rules does not always

lead to better results, as too many rules can introduce complexity

and overfitting, while too few rules may limit the model’s ability to

generalize across different situations.

5.2 Case Study for Interpretability
Commonly used RL approaches, whether using Q-tabular methods

or neural network-based models, offer the values represents the

expected payoff for taking an action in a given state. However,

these approaches lack transparency in explaining why a particular

value is assigned or how the decision-making process is influenced

by different aspects of the environment. In contrast, our model

not only achieves performance levels on par with these classical

approaches but also offers clear self-interpretability by the model.

Our framework allows us to understand why certain actions are

preferred and how specific rules or features influence the outcome.

In this section, we will use Blackjack and Mountain-car from Ope-

nAI Gym as example to show the interpretability of our proposed

RL algorithm.

5.2.1 Blackjack-V1. In the OpenAI GymBlackjack-v1 environment,

the player attempts to get as close to a hand value of 21 without

12
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Figure 4: Rule Visualization for Blackjack with Ace.
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Figure 5: Rule Visualization for Blackjack w/o Ace.

exceeding it. The player makes decisions based on their current

hand and the dealer’s visible card, choosing whether to ‘hit’ (take
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Figure 6: Rule Visualization for Mountain-Car.

another card) or ‘stand’ (keep their hand). The game incorporates

a simple reward structure: +1 for a win, -1 for a loss, and 0 for a

tie. A basic strategy for this environment involves maximizing the

expected return by learning when to hit or stand based on prob-

abilities. The strategy typically considers factors like the player’s

current hand value and the dealer’s visible card, aiming to balance

risk and reward by minimizing the chance of going bust while

capitalizing on favorable situations to outplay the dealer.

Rule Examples: 1. Positive Encouragement to Stick (+0.349) if 𝑝 ≥
20 A hand with a total of 20 (or more with an Ace) is an extremely

strong hand, just 1 point away from the best possible total of 21.

At this point, the chance of improving the hand by hitting is very

low. 2. Negative Incitement to Stick with Ace (-0.538) if 𝑑 ≥ 9 𝑝 ≤ 20:
The negative value (-0.538) reflects that standing with 20 against a

strong dealer card like 9 might lead to a loss or a push. Given the

high probability that the dealer can reach a total of 20 or more, the

model suggests that taking the risk of hitting could provide a better

chance of securing a stronger hand. 3. Positive Encouragement to
Hit with Ace (+1.107) if 𝑑 ≤ 7 and 𝑑 ≥ 3 𝑝 ≤ 14: In Blackjack,

when the player’s hand totals 14 and includes an Ace (which can

be counted as either 1 or 11), and the dealer’s visible card is a 7

to 3, the player should hit because the hand is considered a soft

14. The key advantage is that if the player hits and draws a higher

card that would normally cause the hand to exceed 21, the Ace

can switch its value to 1, effectively preventing a bust. 4. Negative
Incitement to Hit with Ace (-0.125) if 𝑑 ≤ 3 𝑝 ≥ 20: For palyer, a
hand value of 20 is already very strong, just 1 point away from the

maximum hand value of 21. The chance of improving this hand by

hitting is extremely low because almost any card drawn will result

in a bust (exceeding 21). 5. Negative Incitement to Stick without Ace
(-0.538) if 𝑑 ≥ 9 and 𝑝 ≤ 20 𝑝 ≥ 8: Negative encouragement to

avoid standing in this scenario reflects the fact that standing with

a hand of 8 to 20, without an Ace, leaves the player in a vulnerable

position when the dealer is showing a 9 or higher, as the dealer

has a high probability of winning or pushing with a stronger hand.

6. Strong Negative Incitement to Hit without Ace (-0.769) if 𝑝 ≥ 17 :
The main reason for not hitting on 𝑝 ≥ 17 without an Ace is that

the risk of busting is far greater than the chances of improving the

hand. Standing gives the player a strong enough chance to compete

or win, especially if the dealer busts, while hitting increases the

likelihood of losing.

5.2.2 Mountain-Car-v0. In the Mountain Car simulation, the car

must utilize momentum gained from oscillating back and forth to

overcome gravitational forces that inhibit direct ascent. The agent’s

goal is to navigate the car to the flag located at 𝑝 ≥ 0.5 using the

least amount of time, hence the reward structure of −1 for each

timestep taken until the goal is reached. As shown in Figure 6,

we visualize our policy on the state space of the Mountain Car

environment (x-axis: position, y-axis: velocity). For any given state,

we can easily identify the rules that contribute to the value of each

action and obtain explanations for why these rules are applied to

the state by interpreting the rules themselves.

Rule Examples: 1. Positive Encouragement to Left (+3.1242) if
𝑝 ≥ −0.346 and (+1.5851) if 𝑝 ≥ −0.395 and 𝑣 ≤ −0.0005: Supports
moving left to subtly adjust the car’s positioning or to slightly

increase backward momentum, facilitating a strategic setup for

the upcoming rightward push. If the car is currently moving to

the left, the benefits gets higher. 2. Strong Negative Incitement to
Left (-8.3498) if 𝑣 ≤ 0.009 & 𝑣 ≥ −0.006: Significantly penalizes

leftward actions when the car has moderate forward velocity. This

prevents unnecessary leftward moves that could destabilize the

car’s approach to the goal or waste energy by moving opposite

to the desired direction. 3. Positive Encouragement to No Action
(+5.638) if 𝑝 ≤ −0.424 and 𝑣 ≥ 0.008: In the Mountain Car problem,

applying no action when the car has high velocity and is on the high

left side is a strategic choice to preserve momentum and conserve

energy. At this point, gravity will help the car descend, and its

existing speed is sufficient to carry it across the valley without

additional acceleration. 4. Negative Incitement to No Action (-5.777)
if 𝑣 ≤ 0.007 and 𝑣 ≥ −0.007: This scenario discouraging the agent

from taking no action when the car’s velocity is very close to zero.

In this case, the car is not making progress either up or down the

hills. If the car remains idle without action, it will fail to gain the

necessary momentum to eventually reach the goal. 5. Negative
Incitement to Right (-28.2) if 𝑣 ≤ 0: In the Mountain Car problem,

when the velocity is negative (i.e., the car is moving left), attempting

to move right would counteract the natural movement and slow

the car down. This is inefficient because the car needs to build up

momentum by swinging back and forth between the two hills.

6 CONCLUSION AND LIMITATIONS
In conclusion, we have proposed a novel, self-interpretable rein-

forcement learning algorithm that leverages rule ensembles to guide

decision-making. Our approach not only achieves performance com-

parable to representative reinforcement learning methods but also

provides a clear and transparent understanding of the decision-

making process. By combining domain knowledge with rule-based

strategies, our model offers enhanced interpretability without sac-

rificing effectiveness. This interpretability is particularly valuable

in applications where understanding and trust in the model’s be-

havior are critical. We will explore the scalability of our method

in more complex environments and refine the balance between

interpretability and performance.
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