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ABSTRACT
We consider a one-sided matching problem where agents who

are partitioned into disjoint classes and each class must receive

fair treatment in a desired matching. This model, proposed by

Benabbou et al. [9], aims to address various real-life scenarios, such

as the allocation of public housing and medical resources across

different ethnic, age, and other demographic groups. Our focus is

on achieving class envy-free matchings, where each class receives

a total utility at least as large as the maximum value of a matching

they would achieve from the items matched to another class. While

class envy-freeness for worst-case utilities is unattainable without

leaving some valuable items unmatched, such extreme cases may

rarely occur in practice. To analyze the existence of a class envy-

free matching in practice, we study a distributional model where

agents’ utilities for items are drawn from a probability distribution.

Our main result establishes the asymptotic existence of a desired

matching, showing that a round-robin algorithm produces a class

envy-free matching as the number of agents approaches infinity.
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1 INTRODUCTION
One-sided matching is a fundamental problem that forms the eco-

nomic foundation of numerous practical applications, spanning

from kidney exchange [33], assigning drivers to customers [8], to

house allocation [1, 21, 41]. An instance of the one-sided matching

problem consists of a set of agents, a set of indivisible items, and

preferences of the agents over the items. The goal is to find an

assignment of items to agents while ensuring desirable normative

properties. In particular, guaranteeing fairness is of paramount

importance in scenarios such as allocating tasks to workers or

providing social housing to residents.

A substantial body of the literature is dedicated to ensuring

fairness among individuals, focusing on concepts such as envy-
freeness [11]. Envy-freeness ensures that no agent prefers another

agent’s allocated item to their own. On the other hand, when ad-

dressing various real-life resource allocation problems, it becomes
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increasingly crucial to consider fairness requirements among differ-

ent classes of agents, particularly when implementing solutions in

large-scale systems. For instance, consider the allocation of scarce

medical resources to different regions in a country. Another moti-

vating example involves student placement in public schools among

different ethnic groups and social housing allocation among differ-

ent income groups. To gain public acceptance, the social planner

must ensure an equitable allocation of resources across various

regional groups or classes.

The scenarios we consider are effectively captured by a model

proposed by Benabbou et al. [9]. This model consists of𝑚 items and

𝑛 agents, divided into 𝑘 disjoint classes, with each agent allocated

at most one item. A key feature of this framework is the use of

assignment valuations to evaluate envy among classes. Assignment

valuations quantify the potential value a class could derive from the

set of items allocated to another class, determined by the optimal

matching between the items and the members of the class. By

adapting fairness notions from fair division literature into the one-

sided matching problem, Benabbou et al. [9] introduced the notion

of class envy-freeness [9, 20],1 which requires that no class prefers

the set of items assigned to any other class over its own bundle, in

the sense of assignment valuations.

Unfortunately, a class envy-free matching is not guaranteed to

exist without wasting any items. Consider a simple example with

one item and two single-agent classes, both valuing the item. In any

nonempty matching, one class receives nothing whereas the other

class receives one item, violating class envy-freeness. However, this

strong conflict between fairness and efficiency does not preclude

the existence of practical solutions that strike a balance between

the two. The question then becomes: can we achieve a fair and

efficient matching on average cases?

In the context of fair division, related works have examined the

existence of envy-free allocations in probabilistic settings, where

agents’ utilities for items are modeled using probability distribu-

tions [4, 6, 7, 10, 15, 25, 28–30, 35]. These approaches of asymptotic

analysis are not limited to the fair division but have been widely

studied in broader economic models; examples include one-to-one

house allocation [19, 30], two-sided matchings [5, 23, 24], and vot-

ing theory [32, 39]. These studies provide insights into the behavior

of mechanisms in large-scale scenarios, and offer both theoretical

foundations and practical implications for real-world applications.

Our contributions. In this paper, to investigate the asymptotic

existence of a matching that is efficient and fair among classes on

average, we introduce a distributional model where each agent’s

utilities are drawn from a probability distribution.

1
In Benabbou et al. [9], the concept of class envy-freeness was referred to as typewise

envy-freeness. We adopt the terminology used in Hosseini et al. [20] who considered

class envy-freeness in the context of online matching.
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We first prove that when𝑚 increases quadratically with respect

to 𝑛, a welfare-maximizing mechanism, which returns a maximum-

weight matching between agents and items, is asymptotically class

envy-free. Importantly, this matching is also efficient since it max-

imizes the total utility of the agents. While this result provides

asymptotic fairness and efficiency guarantees, it may not be sat-

isfactory in all scenarios. Specifically, the mechanism may fail to

treat classes fairly for worst-case inputs; for example, the welfare-

maximizing mechanism could allocate all items to one class if the

members of that class assign large values to each item.

To address this limitation, we integrate the round-robin algo-
rithm from fair division into our framework. Specifically, in each

round of the algorithm, each class selects an item with the highest

marginal utility among the remaining items, creating a maximum-

weight matching. Our main result establishes that this algorithm

asymptotically yields a class envy-free matching as the number of

agents approaches infinity, contingent upon milder assumptions

regarding the number and sizes of classes. Furthermore, based on

the recent result of Amanatidis et al. [3], the round-robin algorithm

is known to produce a matching that satisfies an approximation of

class envy-freeness up to one item (CEF1) for every input. We also

prove that it achieves non-wastefulness, satisfying the property that

no item can be reallocated to increase one class’s valuation without

decreasing another’s.

While our algorithm shares similarities with the round-robin

algorithm designed for fair division instances with additive agents,

the non-additivity of valuations introduces notable distinctions in

our analysis compared to the additive setting [30], which leads to

unique technical challenges. Specifically, analyzing the behavior

of the round-robin algorithm becomes complex because the set of

items available at each round depends on the selections made in

prior rounds.

In the case of additive valuations, Manurangsi and Suksompong

[30] utilized a key property: envy between any pair of agents, based

on the output of the round-robin algorithm, can be decomposed

into the maximum value of an item obtained by another agent and

the differences in value between the items each agent received and

those received by another agent in consecutive rounds. Exploiting

this fact, they showed that these differences can “catch up to” the

maximum single-item value when there are sufficiently many items.

However, achieving such a decomposition becomes challenging for

assignment valuations due to the combinatorial structure of the

matchings. In our setting, the marginal contribution of an item to

different bundles may vary, and the domination property that an

item chosen in an earlier round has a value greater than or equal

to an item chosen later no longer holds. Consequently, unlike the

additive case, the round-robin may not yield a CEF1 matching (see

Example 1 in [20]).

To overcome these challenges, our proof critically leverages tech-

niques from random assignment theory [2, 13, 18, 36, 37]. This the-

ory considers a bipartite graphwith random edgeweights, primarily

focusing on analyzing the expected value of a minimum weight

perfect matching (which is essentially equivalent to a maximum-

weight perfect matching).

Instead of examining individual pairs of items allocated to two

classes, 𝑝 and 𝑞, in each round, we focus on the marginal utility that

class 𝑝 receives in each round. This approach helps us analyze the

expected value of the items allocated to class 𝑝 . First, we derive a

lower bound on the expected total utility for class 𝑝 by applying the

novel techniques introduced by Wästlund [37, 38] and Frieze and

Johansson [18], which involve introducing a special vertex whose

behavior explicitly determines the expected marginal gain. Next,

we evaluate the expected value of the items allocated to class 𝑞

from class 𝑝’s perspective, using a randomly selected bundle of

the same size as class 𝑝’s. Finally, we discuss the concentration of

probability around these expected values, showing that the edge

weights chosen by the round-robin algorithm are sufficiently large.

We discuss our proof techniques in Sections 4.

Related work.Our work is closely related to the growing literature
on asymptotic fair division [4, 6, 7, 15, 25, 28–30, 35]. Dickerson

et al. [15] initiated the study of asymptotic fair division. Although

the non-existence of an envy-free allocation also holds in this set-

ting, Dickerson et al. [15] demonstrated that a welfare-maximizing

algorithm for additive agents produces an envy-free allocation

with a probability that approaches 1 as 𝑚 goes to infinity when

𝑚 = Ω(𝑛 log𝑛). Following [15], Manurangsi and Suksompong [30]

showed that under the assumption that utilities are drawn from

a PDF-bounded distribution,𝑚 = Ω(𝑛 log𝑛/log log𝑛), and agents

have additive valuations, the round-robin algorithm returns an

envy-free allocation with a probability that approaches 1 as 𝑛 →∞.
Apart from requiring fewer items for establishing asymptotic envy-

freeness, the round-robin algorithm has another advantage over

the welfare-maximizing algorithm; it achieves envy-freeness up to

one item (EF1), for additive agents [14].

Bai and Gölz [7] extend these results to the case where agents

have asymmetric distributions when distributions are PDF-bounded.

Benadè et al. [10] demonstrated that the round-robin algorithm pro-

duces an SD envy-free allocation with a probability that approaches

1 as𝑚 → ∞ when agents have order-consistent valuation func-

tions, items are renamed by a uniformly random permutation,𝑚 is

divisible by 𝑛, and𝑚 = 𝜔 (𝑛2).
Omitted proofs can be found in the full version of the paper [40].

2 MODEL
We use [𝑘] to denote the set {1, 2, . . . , 𝑘}. Let 𝑁 = [𝑛] be the set of
𝑛 agents, and 𝐼 = [𝑚] be the set of𝑚 items. The set of agents 𝑁 is

partitioned into 𝑘 classes, labeled as 𝑁1, 𝑁2, . . . , 𝑁𝑘 . Let 𝑛𝑝 = |𝑁𝑝 |
for each class 𝑝 . We assume that 𝑛𝑝 ≥ 1 for every 𝑝 ∈ [𝑘]. Each 𝑁𝑝

is referred to as class 𝑝 . We call a subset of 𝐼 a bundle.
We consider a matching problemwhere each item in 𝐼 is matched

to at most one agent in 𝑁 , and each agent receives at most one item.

Each agent 𝑖 ∈ 𝑁 is endowed with a non-negative utility 𝑢𝑖 ( 𝑗) for
every item 𝑗 ∈ 𝐼 where 𝑢𝑖 ( 𝑗) ranges within the interval [0, 1]. We

assume that 𝑢𝑖 ( 𝑗) is drawn from a distribution over [0, 1]. Detailed
assumptions on distributions are presented later in the section.

We define a complete bipartite graph 𝐺 = (𝑁 ∪ 𝐼 , 𝐸), where the
set of agents in 𝑁 forms the left vertices and the set of items in

𝐼 forms the right vertices. Here, 𝐸 denotes the set of edges. We

consider the weights of edges where the weight of edge {𝑖, 𝑗} ∈ 𝐸
is given by 𝑢𝑖 ( 𝑗) for each 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝐼 . A matching 𝑀 of a

bipartite graph is defined as a set of edges wherein each vertex

appears in at most one edge of 𝑀 . For 𝑆 ⊆ 𝑁 , let 𝑀 (𝑆) be the set
of items which are assigned to some agent in 𝑆 by matching𝑀 , i.e.,
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𝑀 (𝑆) = { 𝑗 ∈ 𝐼 | ∃ 𝑖 ∈ 𝑆 : {𝑖, 𝑗} ∈ 𝑀}. Each matching 𝑀 induces

an allocation that assigns the bundle𝑀 (𝑁𝑝 ) to every class 𝑝 . For

bundle 𝐼 ′ ⊆ 𝐼 , letM(𝑁𝑝 , 𝐼
′) denote the set of possible matchings

between 𝑁𝑝 and 𝐼 ′ in 𝐺 . We define the total utility obtained by

class 𝑝 under matching𝑀 as 𝑢𝑝 (𝑀) =
∑
{𝑖, 𝑗 }∈𝑀,𝑖∈𝑁𝑝

𝑢𝑖 ( 𝑗).
To define envy between classes, we introduce an assignment

valuation, which determines how much hypothetical value each

class can derive from a bundle allocated to another class.

Definition 2.1 (Assignment valuation). An assignment valuation
𝑣𝑝 (𝐼 ′) of class 𝑝 for a bundle 𝐼 ′ ⊆ 𝐼 is defined as the maximum total

weight of a matching between the agents in 𝑁𝑝 and the items in 𝐼 ′.
Namely, 𝑣𝑝 (𝐼 ′) is given by max𝑀 ∈M(𝑁𝑝 ,𝐼

′)
∑
{𝑖, 𝑗 }∈𝑀 𝑢𝑖 ( 𝑗).

It is worth noting that the assignment valuation 𝑣𝑝 (𝐼 ′) for bundle
𝐼 ′ ⊆ 𝐼 is upper bounded by the size 𝑛𝑝 of each class 𝑝 ∈ [𝑘]
since 𝑢𝑖 ( 𝑗) ≤ 1 for each 𝑖, 𝑗 . Here, each 𝑣𝑝 (𝐼 ′) can be computed in

polynomial time by computing a maximum-weight matching in

the given bipartite graph with edge weights; see Section 9 in [27].

Next, we introduce a concept of fairness among classes—class
envy-freeness. This notion requires that the total utility each class

receives must be greater than or equal to the maximum total utility

that the class can derive from the items allocated to other classes.

Definition 2.2 (Class envy-freeness). For a matching 𝑀 , we say

that class 𝑝 envies class 𝑞 if 𝑢𝑝 (𝑀) < 𝑣𝑝 (𝑀 (𝑁𝑞)). A matching𝑀 is

called class envy-free if no class envies another class, i.e., 𝑢𝑝 (𝑀) ≥
𝑣𝑝 (𝑀 (𝑁𝑞)) holds for every pair 𝑝, 𝑞 ∈ [𝑘] of distinct classes.

If we allow each class to optimally reassign items within the

members of the class, then the class would select a maximum-

weight matching between the members of the class and their bundle.

In such a scenario, the class envy-freeness requirement is equivalent

to the above-mentioned definition, where the left-hand side 𝑢𝑝 (𝑀)
is replaced by 𝑣𝑝 (𝑀 (𝑁𝑝 )).

As is observed in [9, 20], unfortunately, there exists an input

where a class envy-free matching may not exist without allowing

us to dispose items. Thus, the following approximation of class

envy-freeness has been considered in [20]. A matching𝑀 is 𝛼-class
envy-free matching up to one item (CEF1) if for every pair of classes

𝑝, 𝑞 ∈ [𝑘], either class 𝑝 does not envy class 𝑞, or there exists an

item 𝑗 ∈ 𝑀 (𝑁𝑞) such that 𝛼−1 ·𝑢𝑝 (𝑀) ≥ 𝑣𝑝 (𝑀 (𝑁𝑞) \ { 𝑗}). If 𝛼 = 1,

we call such a matching CEF1 [20].
Next, we define ameasure of efficiency, called non-wastefulness [9].

Non-wastefulness requires that valuable items are not wasted.

Definition 2.3 (Non-wastefulness). For a matching 𝑀 , an item

𝑗 ∈ 𝐼 is said to be wasted if either

(a) item 𝑗 is an unallocated and can increase the total util-

ity of some class, i.e., 𝑗 ∉ 𝑀 (𝑁 ) and 𝑣𝑝 (𝑀 (𝑁𝑝 ) ∪ { 𝑗}) −
𝑣𝑝 (𝑀 (𝑁𝑝 )) > 0 for some class 𝑝 , or

(b) item 𝑗 can be reallocated from class 𝑞 to class 𝑝 in a way

that increases the total utility of class 𝑝 without reducing

the total utility of class 𝑞, i.e., there exist classes 𝑝, 𝑞 such

that 𝑗 ∈ 𝑀 (𝑁𝑞), 𝑣𝑝 (𝑀 (𝑁𝑞)) − 𝑣𝑝 (𝑀 (𝑁𝑞) \ { 𝑗}) = 0, and

𝑣𝑝 (𝑀 (𝑁𝑝 ) ∪ 𝑗) − 𝑣𝑝 (𝑀 (𝑁𝑝 )) > 0.

A matching is non-wasteful if no item is wasted.

As mentioned in Introduction, a class envy-free matching that

satisfies non-wastefulness may not exist. For example, consider

the case of a single item being allocated between two classes. We

also remark that if we do not impose non-wastefulness, a CEF1

matching that allocates all items always exists and can be found

in polynomial time using the envy-graph algorithm introduced

by Lipton et al. [26]. However, the matching produced by the envy-

graph algorithm may not satisfy non-wastefulness as pointed out

by Benabbou et al. [9].

Distributions. For each agent 𝑖 ∈ 𝑁 and item 𝑗 ∈ 𝐼 , the utility𝑢𝑖 ( 𝑗)
is independently drawn from a given distribution D supported on

[0, 1]. Let 𝑓D and 𝐹D denote the probability density function (PDF)

and the cumulative distribution function (CDF) of D, respectively.

A distribution is said to be non-atomic if it does not assign a positive

probability to any single point.

We say that a distributionD is (𝛼, 𝛽)-PDF-bounded for constants

0 < 𝛼 ≤ 𝛽 if it is non-atomic and 𝛼 ≤ 𝑓D (𝑥) ≤ 𝛽 for all 𝑥 ∈ [0, 1].
When 𝛼 = 𝛽 = 1, D represents the uniform distribution over

[0, 1] since 𝑓D (𝑥) = 1 for all 𝑥 ∈ [0, 1]. The PDF-boundedness

assumption is introduced by Manurangsi and Suksompong [30] as

a natural class of distributions, which includes, for example, the

uniform distribution and the truncated normal distribution.

Let Exp(𝜆) denote the exponential distribution with rate 𝜆 over

[0,∞). Furthermore, let ReExp(𝜆) denote a distribution with the

density function 𝑓𝜆 (𝑥) = 𝜆e
−𝜆 (1−𝑥)

on the interval (−∞, 1]. We

call this probability distribution the reversed exponential distribu-
tion, which mirrors the exponential distribution Exp(𝜆) across the
line 𝑥 = 1/2. The cumulative distribution of ReExp(𝜆) is given by

𝐹
ReExp(𝜆) (𝑥) = e

−𝜆 (1−𝑥)
. We say that an event occurs almost surely

if it occurs with probability 1.

Known results on maximum-weight matchings.We present

several known results on maximum-weight matchings in a bipartite

graph with random edge weights. Let 𝐻 be a complete bipartite

graph with bipartition (𝐴, 𝐵). For 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵, let 𝐻 [𝐴′, 𝐵′]
denote the subgraph of 𝐻 induced by 𝐴′ and 𝐵′. We first present

the following lemma, which can be proven by a proof similar to

that of the isolation lemma [22, 34]. Note that after edge weights

on 𝐻 have been sampled, we can select 𝐴′ and 𝐵′ while referring
to the values of those edge weights.

Lemma 2.4. Let 𝐻 be a complete bipartite graph with bipartition
(𝐴, 𝐵) whose edge weights are drawn independently from a non-
atomic distribution on [0, 1]. Let 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵. Then, no pair
of distinct matchings has the same total weight in 𝐻 [𝐴′, 𝐵′] almost
surely.

Lemma 2.4 implies that, almost surely, a maximum-weight match-

ing of a fixed size in 𝐻 [𝐴′, 𝐵′] is uniquely determined. We next

explain the nesting lemma, which follows from Lemma 3 in [13] or

Lemma 2.1 in [38].

Lemma 2.5 (The nesting lemma). Let 𝐻 be a complete bipartite
graph with bipartition (𝐴, 𝐵) whose edge weights are drawn inde-
pendently from a non-atomic distribution on [0, 1]. Let 𝐴′ ⊆ 𝐴 and
𝐵′ ⊆ 𝐵. Then, for each 𝑟 with 1 < 𝑟 ≤ min( |𝐴′ |, |𝐵′ |), every vertex
that appears as an element of the maximum-weight matching with
𝑟 − 1 edges in 𝐻 [𝐴′, 𝐵′] also appears as an element of the maximum-
weight matching with 𝑟 edges in 𝐻 [𝐴′, 𝐵′] almost surely.

We introduce notations and definitions related to matchings in

a bipartite graph. For a bipartite graph 𝐻 and each vertex 𝑖 that
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appears in a matching𝑀 of 𝐻 (namely {𝑖, 𝑗} ∈ 𝑀 for some 𝑗 ), we

denote by 𝑀 (𝑖) the vertex matched to 𝑖 under 𝑀 . An alternating
path 𝑃 (resp. a cycle𝐶) of matching𝑀 in bipartite graph𝐻 is a path

(resp. a cycle) in 𝐻 where, for every pair of consecutive edges on 𝑃 ,

one of them is in𝑀 and the other one is not in𝑀 .

3 MAXIMUM-WEIGHT MATCHING
We introduce our first result, which states that if the number of

items is quadratically large, then the probability that a maximum-

weight matching is class envy-free approaches 1 as𝑚 →∞.

Theorem 3.1. Suppose that D is non-atomic and there exists a
constant 𝑐 > 0 with 𝑚/log𝑚 ≥ 𝑐 · (𝑘2

max𝑝∈[𝑘 ] 𝑛𝑝 )2. Then, as
𝑚 →∞, the probability that a maximum-weight matching is class
envy-free approaches 1.

To prove Theorem 3.1, we rely on the following simple obser-

vation: if each class desires a disjoint bundle, then the maximum-

weight matching is class envy-free.

Lemma 3.2. Suppose that there exist 𝑘 disjoint bundles 𝐼1, 𝐼2, . . . , 𝐼𝑘
such that such that for every 𝑝 ∈ [𝑘], 𝐼𝑝 is a most favorite bundle
of class 𝑝 , i.e., 𝐼𝑝 ∈ argmax𝐼 ′⊆𝐼 , |𝐼 ′ |=𝑛𝑝 𝑣𝑝 (𝐼

′). Then, any maximum-
weight matching in 𝐺 is class envy-free and non-wasteful.

Proof of Theorem 3.1. By Lemma 2.4, amaximum-weightmatch-

ing in 𝐺 of size 𝑛 is uniquely determined almost surely. Since

each edge weight is drawn from the same non-atomic distribu-

tion, we have that Pr
[
argmax𝐼 ′′⊆𝐼 , |𝐼 ′′ |=𝑛𝑝 𝑣𝑝 (𝐼

′′) = 𝐼 ′
]
= 1

(𝑚𝑛𝑝 )
for

all 𝑝 ∈ [𝑘] and 𝐼 ′ ⊆ 𝐼 with |𝐼 ′ | = 𝑛𝑝 .

Let A be an event that there exists a class envy-free and non-

wasteful matching. Let B be an event that there exist 𝑘 disjoint

bundles 𝐼1, 𝐼2, . . . , 𝐼𝑘 such that 𝐼𝑝 ∈ argmax𝐼 ′⊆𝐼 , |𝐼 ′ |=𝑛𝑝 𝑣𝑝 (𝐼
′) for

every 𝑝 ∈ [𝑘]. By Lemma 3.2, if the most favorite bundles of any

two classes are disjoint, then there exists a class envy-free and non-

wasteful matching. Then, we have Pr[A] ≥ Pr[B]. Let 𝑃 denote

the set of partitions of the𝑚 items into disjoint bundles of sizes

𝑛1, 𝑛2, . . . , 𝑛𝑘 . We provide a lower bound for Pr[B] as follows.

Pr[B]

=
∑︁

(𝐼1,𝐼2,...,𝐼𝑘 ) ∈𝑃
Pr

[
argmax

𝐼 ′⊆𝐼 , |𝐼 ′ |=𝑛𝑝
𝑣𝑝 (𝐼 ′) = 𝐼𝑝 for every 𝑝 ∈ [𝑘]

]
=

∑︁
(𝐼1,𝐼2,...,𝐼𝑘 ) ∈𝑃

1(𝑚
𝑛1

) · 1(𝑚
𝑛2

) · · · · · 1(𝑚
𝑛𝑘

)
=

(𝑚
𝑛1

)(𝑚
𝑛1

) · (𝑚−𝑛1

𝑛2

)(𝑚
𝑛2

) · · · · · (𝑚−∑𝑘−1

𝑖=1
𝑛𝑖

𝑛𝑘

)(𝑚
𝑛𝑘

)
≥

(
1 − 𝑛2

𝑚 − 𝑛1 + 1

)𝑛1

(
1 − 𝑛3

𝑚 − 𝑛1 − 𝑛2 + 1

)𝑛1+𝑛2

· · ·
(
1 − 𝑛𝑘

𝑚 −∑𝑘−1

𝑖=1
𝑛𝑖 + 1

)∑𝑘−1

𝑝=1
𝑛𝑝

≥ exp
©«− 𝑛1𝑛2

𝑚 − 𝑛1 + 1

− (𝑛1 + 𝑛2)𝑛3

𝑚 − 𝑛1 − 𝑛2 + 1

− · · · −
(∑𝑘−1

𝑖=1
𝑛𝑖 )𝑛𝑘

𝑚 −∑𝑘−1

𝑝=1
𝑛𝑝 + 1

ª®¬

≥ exp
©«−

𝑘2 (max𝑝∈[𝑘 ] 𝑛𝑝 )2

𝑚 −∑𝑘−1

𝑝=1
𝑛𝑝 + 1

ª®¬
≥ exp

(
− 1/𝑐 ·𝑚 log𝑚

𝑚 −
√︁

1/𝑐 ·𝑚 log𝑚 + 1

)
.

For the last inequality, we use 𝑘2 (max𝑝∈[𝑘 ] 𝑛𝑝 )2 ≤ 1/𝑐 ·𝑚 log𝑚

and

∑𝑘−1

𝑝=1
𝑛𝑝 ≤

√︁
1/𝑐 ·𝑚 log𝑚. From this, we have Pr[A] → 1 as

𝑚 →∞. □

We note that the asymptotic existence of a class envy-free match-

ing where every agent obtains exactly one item can be readily de-

rived from the existing result on the one-to-one house allocation

problem given by Manurangsi and Suksompong [30]. They showed

that an envy-free assignment can be obtained by considering a

greedy algorithm. This algorithm selects, in each step, an agent

who has not yet been assigned an item. This agent then chooses

their favorite item from those that have not been discarded (in-

cluding items that have already been assigned to other agents). If

the selected item was previously chosen by another agent in an

earlier step, it is removed from further consideration. When there

are sufficiently many items, this algorithm asymptotically produces

a matching where each agent receives their most preferred item

among those that were not discarded, resulting in a class envy-free

matching.

As previously mentioned, both the maximum-weight matching

and the matching produced by the greedy algorithm of [30] can be

inherently unfair for worst-case inputs. This raises the question of

whether there exists a matching mechanism that is fair for both

worst-case and average-case inputs.

4 ROUND-ROBIN ALGORITHM
We next present our second result that a round-robin algorithm,

presented as Algorithm 1, produces a class envy-free asymptotically.

Moreover, based on recent results of [3, 31], we show that the

resulting matching satisfies 1/2-CEF1. Also, we prove that it is

non-wasteful.

Theorem 4.1. Suppose that D is (𝛼, 𝛽)-PDF-bounded, and the
following three conditions (a), (b) and (c) hold.
(a) The number of items 𝑚 is sufficiently large such that 𝑚 ≥

𝑘 ·max𝑝∈[𝑘 ] (𝑛𝑝 + 2),
(b) the class sizes are almost proportional to the total population;

more precisely, there exists a constant 𝐶 > 0 such that 𝑛 ≤
𝐶 · (min𝑝∈[𝑘 ] 𝑛𝑝 )5/4, and

(c) the number of classes 𝑘 satisfies that 𝑘 > max

(
1

2𝛼 ,
𝛽

𝛼2

)
and

𝑘2 = 𝑂 (𝑛1/6).
Then, as 𝑛 → ∞, the probability that Algorithm 1 produces a class
envy-free and non-wasteful matching converges to 1.

Proposition 4.2. The matching produced by the round-robin al-
gorithm is 1/2-CEF1 and non-wasteful.

Note that the first condition (a) of Theorem 4.1 is slightly stronger

than the condition where𝑚 ≥ 𝑛. The third condition (c) is very
mild for some distributions, e.g. for uniform distributions, 𝑘 >
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Algorithm 1 The round-robin algorithm for classes with assign-

ment valuations

Input: 𝑁 = 𝑁1 ∪ 𝑁2 ∪ · · · ∪ 𝑁𝑘 , 𝐼 , {𝑢𝑖 ( 𝑗)}𝑖∈𝑁,𝑗 ∈𝐼
Output: Matching𝑀

1: 𝑀 ← ∅, 𝐼0 ← 𝐼 , 𝑟 ← 1, and𝑀0

𝑝 ← ∅ ∀𝑝 ∈ [𝑘]
2: while there is a remaining item which some class desires do
3: for 𝑝 = 1, 2, . . . , 𝑘 do
4: if there is a remaining item which class 𝑝 desires then
5: Let 𝑗𝑟𝑝 ∈ argmax𝑗 ∈𝐼0𝑣𝑝 (𝑀 (𝑁𝑝 ) ∪ { 𝑗}) − 𝑣𝑝 (𝑀 (𝑁𝑝 ))
6: 𝑀𝑟

𝑝 ← the maximum-weight matching between 𝑁𝑝 and

𝑀 (𝑁𝑝 ) ∪ { 𝑗𝑟𝑝 }
7: 𝑀 ← (𝑀 \𝑀𝑟−1

𝑝 ) ∪𝑀𝑟
𝑝

8: 𝐼0 ← 𝐼0 \ { 𝑗𝑟𝑝 }
9: end if
10: end for
11: 𝑟 ← 𝑟 + 1

12: end while
13: return 𝑀 .

max

(
1

2𝛼 ,
𝛽

𝛼2

)
is equivalent to 𝑘 > 1 since 𝛼 = 𝛽 = 1. A perhaps

more intuitive but stronger condition of (b) is the case where the
total number of agents is within a constant factor of the minimum

size of a class, i.e., 𝑛 = 𝑐 · min𝑝∈[𝑘 ] 𝑛𝑝 , where 𝑐 ≥ 1 is a constant.

This is relevant in scenarios where the class sizes under consid-

eration are proportional to the total population, such as gender

groups, ethnic groups, and groups of people with the same political

interests.

Algorithmic description. Let us now explain the round-robin

algorithm (Algorithm 1). Each iteration of the while loop (Lines 2–

12) in Algorithm 1 is referred to as a round. In each round 𝑟 , each

class selects its most preferred item, which has the highest marginal

utility to the current bundle (Line 5) and updates its matching

to create a new maximum-weight matching with an additional

edge (Line 6). If a class encounters several items with the highest

marginal utility, it selects one item arbitrarily among them. In Line 7,

the matching between 𝑁 and 𝐼 is updated to reflect the new item

acquired by the class 𝑝 . Observe that in Algorithm 1, we allow

each class to optimally reassign items within its members in each

round, thereby selecting a maximum-weight matching between its

members and the items allocated to them. Consequently, the total

utility𝑢𝑝 (𝑀) that class 𝑝 receives under Algorithm 1 is 𝑣𝑝 (𝑀 (𝑁𝑝 )).
In contrast to the round-robin algorithm for additive valuations,

Algorithm 1 may not produce a CEF1 matching; in fact, the factor of

1/2 is the best that can be achieved by the round-robin algorithm;

see Example 1 of [20]. Below, we illustrate the behavior of the

algorithm.

Example 4.3. Consider an instance with two classes, each consist-
ing of two agents, and four items in Table 1. The unique maximum-

weight matching for this instance is given by {{𝑖1, 𝑗1}, {𝑖2, 𝑗4},
{𝑖3, 𝑗2}, {𝑖4, 𝑗3}}. However, this matching does not satisfy class

envy-freeness as the second class receives a total utility of 3 despite

having a maximum-weight matching of value 5 with the bundle

allocated to the first class. In contrast, Algorithm 1 produces match-

ing {{𝑖1, 𝑗1}, {𝑖2, 𝑗2}, {𝑖3, 𝑗4}, {𝑖4, 𝑗3}}, which can be easily checked

to be both class envy-free and non-wasteful.

Table 1: Maximum-weight matching (left) and the matching
produced by round-robin algorithm (right).

𝑗1 𝑗2 𝑗3 𝑗4

𝑁1

𝑖1 5 0 0 0

𝑖2 0 1 0 5

𝑁2

𝑖3 2 1 0 3

𝑖4 1 0 2 0

𝑗1 𝑗2 𝑗3 𝑗4

𝑁1

𝑖1 5 0 0 0

𝑖2 0 1 0 5

𝑁2

𝑖3 2 1 0 3

𝑖4 1 0 2 0

Outline of the proof. The remainder of this section is devoted to

proving Theorem 4.1. Throughout this section, let 𝑀 denote the

matching produced by Algorithm 1 and𝑀𝑟
denote the matching

at the end of round 𝑟 in the algorithm. Furthermore, 𝑀𝑟 (𝑁𝑝 ) is
defined as the set of items matched to an agent in class 𝑝 under

matching𝑀𝑟
. Let 𝐼𝑟𝑝 denote the set of remaining items just before

class 𝑝 selects an item in round 𝑟 , i.e., 𝐼𝑟𝑝 = 𝐼 \
(
𝑀𝑟 (𝑁1) ∪ · · · ∪

𝑀𝑟 (𝑁𝑝−1) ∪ 𝑀𝑟−1 (𝑁𝑝 ) ∪ · · · ∪ 𝑀𝑟−1 (𝑁𝑘 )
)
. We fix two classes 𝑝

and 𝑞 and analyze the behavior of the following random variables:

𝑋𝑝 = 𝑣𝑝 (𝑀 (𝑁𝑝 )) and 𝑋𝑝𝑞 = 𝑣𝑝 (𝑀 (𝑁𝑞)) .

To prove Theorem 4.1, we first examine expectedmarginal weights

of maximum-weight matchings (Lemma 4.4) in Section 4.1. This

lemma claims that the difference in expected values can be ex-

pressed in terms of the probability that the special vertex belongs

to a maximum matching in a modified graph. In the proof of

Lemma 4.4, we adopt a technique pioneered by [37, 38]. These

works introduced an additional vertex and connected it to every

vertex on the other side by an edge with weights following an ex-

ponential distribution to analyze the expected marginal weight of

minimum weight matchings; we adapt this technique to the context

of maximum-weight matchings.

By utilizing Lemma 4.4, we establish bounds on the expected

values of𝑋𝑝 and𝑋𝑝𝑞 (Lemmas 4.5 and 4.6). In the proof, we analyze

the probabilities that special vertices belong tomaximummatchings

in the graphs between 𝑁𝑝 and𝑀 (𝑁𝑝 ), as well as between 𝑁𝑝 and

𝑀 (𝑁𝑞). Due to the uniqueness of the maximum-weight matching

(Lemma 2.4), we consider the unique augmenting path updating it

in each round.

In Section 4.4, by Lemmas 4.5 and 4.6, and by demonstrating that

the edge weights in maximum-weight matchings between 𝑁𝑝 and

𝑀 (𝑁𝑞) are sufficiently “heavy” (the second bullet in Lemma 4.7),

we prove that the difference in the expected values of 𝑋𝑝 and 𝑋𝑝𝑞

is lower-bounded (Lemma 4.8). Finally, we achieve stochastic con-

centrations on the expectations of 𝑋𝑝 and 𝑋𝑝𝑞 , establishing Theo-

rem 4.1.

4.1 Expected Marginal Weight of a
Maximum-Weight Matching

In this section, we show Lemma 4.4 by examining the difference

in expected values arising from a maximum-weight matching of

consecutive sizes. Consider a complete bipartite graph 𝐻 with the

left set 𝐴 of vertices and the right set 𝐵 of vertices. The weights

of all edges in 𝐻 are derived from non-atomic distributions over

the interval [0, 1], without the requirement for these weights to be

drawn independently. We make the following assumptions:
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Assumption 1. No two distinct matchings have the same total
weight almost surely in 𝐻 .

Assumption 2. For every size 𝑟 = 1, 2, . . . ,min{|𝐴|, |𝐵 |} and for
any pair of vertices 𝑖, 𝑖 ′ ∈ 𝐴, the probability that 𝑖 belongs to the
maximum-weight matching of size 𝑟 in 𝐻 is the same as that for 𝑖 ′.

Now, we modify 𝐻 by introducing a new vertex 𝑗 to 𝐵, and

create edges {𝑖, 𝑗} for all 𝑖 ∈ 𝐴 (see Figure 1). The weight of each

edge {𝑖, 𝑗} for 𝑖 ∈ 𝐴 is independently drawn from ReExp(𝜆) on
(−∞, 1] where 0 < 𝜆 ≤ 1. Let �̂� denote the modified bipartite graph.

Later, we will consider the limit probability of 𝑗 being included

in a maximum-weight matching when 𝜆 converges to 0. Let �̂� =

𝐵 ∪ { 𝑗}. Note that edges with negative weights between 𝐴 and { 𝑗}
will not be included in any maximum-weight matching of size up

to min{|𝐴|, |𝐵 |} in �̂� since the edges in 𝐻 are non-negative. Let

�̂�𝑟 represent the set of vertices in �̂� under the maximum-weight

matching of size 𝑟 between 𝐴 and �̂�. Note that no two distinct

matchings have the same total weight almost surely in �̂� by non-

atomicity of ReExp(𝜆), by the assumption that the weights of edges

incident to 𝑗 are drawn independently, and by the assumption that

no two distinct matchings in 𝐻 have the same total weight.

Let 𝑋𝑟
denote the maximum weight of a matching of size 𝑟 in

𝐻 . Lemma 4.4 states that the difference in expected values of 𝑋𝑟

and 𝑋𝑟−1
can be expressed in terms of the probability of 𝑗 being

included in �̂�𝑟 .

Lemma 4.4. Under Assumptions 1 and 2,

E[𝑋𝑟 ] − E[𝑋𝑟−1] = 1 − 1

𝑟
lim

𝜆→0

1

𝜆
Pr

[
𝑗 ∈ �̂�𝑟

]
, (1)

for every size 𝑟 = 1, 2, . . . ,min( |𝐴|, |𝐵 |).

Proof. Let𝑊 (𝑖, 𝑗) denote the random variable representing the

weight of the edge {𝑖, 𝑗} for each 𝑖 ∈ 𝐴. Let 𝐴𝑟
denote the set of

vertices in𝐴 that arematched under themaximum-weightmatching

of size 𝑟 in 𝐻 . By The maximum-weight matching of size 𝑟 between

𝐴𝑟
and �̂� is denoted by �̂� , and for each 𝑖 ∈ 𝐴𝑟

, let 𝑋𝑟−1

𝑖
be the

maximum weight of matchings of size 𝑟 − 1 between𝐴𝑟 \ {𝑖} and 𝐵.
Select 𝑖 from 𝐴𝑟

uniformly at random. By definition, the maxi-

mum weight of a matching of size 𝑟 between 𝐴𝑟
and �̂� under the

constraint that the edge {𝑖, 𝑗} is included is 𝑋𝑟−1

𝑖
+𝑊 (𝑖, 𝑗). We

claim that Pr
[
𝑋𝑟−1

𝑖
+𝑊 (𝑖, 𝑗) > 𝑋𝑟

]
= Pr

[
{𝑖, 𝑗} ∈ �̂�

]
+ 𝑂 (𝜆2) .

If edge {𝑖, 𝑗} is included in �̂� , we have 𝑋𝑟−1

𝑖
+𝑊 (𝑖, 𝑗) > 𝑋𝑟

by

Assumption 1. Thus, Pr[{𝑖, 𝑗} ∈ �̂�] ≤ Pr[𝑋𝑟−1

𝑖
+𝑊 (𝑖, 𝑗) > 𝑋𝑟 ].

Next, suppose that𝑊 (𝑖, 𝑗) > 𝑋𝑟−𝑋𝑟−1

𝑖
. Then, �̂� must include an

edge incident to 𝑗 . If no 𝑖 ′ ∈ 𝐴𝑟
other than 𝑖 satisfies the inequality

𝑊 (𝑖 ′, 𝑗) > 𝑋𝑟 − 𝑋𝑟−1

𝑖′ , then we get {𝑖, 𝑗} ∈ �̂� . Let F𝑖 denote the
event that there exists no vertex 𝑖 ′ ≠ 𝑖 such that it satisfies 𝑋𝑟−1

𝑖′ +
𝑊 (𝑖 ′, 𝑗) > 𝑋𝑟

. By the above argument, we have

Pr
[
𝑋𝑟−1

𝑖 +𝑊 (𝑖, 𝑗) > 𝑋𝑟
]

= Pr
[
(𝑋𝑟−1

𝑖 +𝑊 (𝑖, 𝑗) > 𝑋𝑟 ) ∧ F𝑖
]
+ Pr

[
(𝑋𝑟−1

𝑖 +𝑊 (𝑖, 𝑗) > 𝑋𝑟 ) ∧ F𝑖
]

≤ Pr
[
{𝑖, 𝑗} ∈ �̂�

]
+ Pr

[
(𝑋𝑟−1

𝑖 +𝑊 (𝑖, 𝑗) > 𝑋𝑟 ) ∧ F𝑖
]
.

The right term of the above inequality can be bounded as follows:

Pr
[
𝑋𝑟−1

𝑖 +𝑊 (𝑖, 𝑗) > 𝑋𝑟 ∧ F𝑖
]

𝐴 𝐵
�̂�

𝑗

�̂�

Figure 1: The modified graph �̂� with the additional vertex 𝑗 .

≤
∑︁

𝑖′∈𝐴𝑟 \{𝑖 }
Pr

[
𝑋𝑟−1

𝑖 +𝑊 (𝑖, 𝑗) > 𝑋𝑟 ∧ 𝑋𝑟−1

𝑖′ +𝑊 (𝑖
′, 𝑗) > 𝑋𝑟

]
=

∑︁
𝑖′∈𝐴𝑟 \{𝑖 }

E
[
(1 − e

−𝜆 (1−𝑋 𝑟+𝑋 𝑟−1

𝑖
) ) (1 − e

−𝜆 (1−𝑋 𝑟+𝑋 𝑟−1

𝑖′ ) )
]

= 𝑂 (𝜆2),
where we use the fact that 1−e

−𝑥 ≤ 𝑥 for any 𝑥 for the last relation.

Thus, summing over all 𝑖 ∈ 𝐴𝑟
, we get

Pr
[
𝑗 ∈ �̂�𝑟

]
=

∑︁
𝑖∈𝐴𝑟

Pr
[
{𝑖, 𝑗} ∈ �̂�

]
=

∑︁
𝑖∈𝐴𝑟

(
Pr

[
𝑋𝑟−1

𝑖 +𝑊 (𝑖, 𝑗) > 𝑋𝑟
]
−𝑂 (𝜆2)

)
=

∑︁
𝑖∈𝐴𝑟

(
E

[
1 − e

−𝜆 (1−𝑋 𝑟+𝑋 𝑟−1

𝑖
)
]
−𝑂 (𝜆2)

)
.

By Assumption 2, for all 𝑖1, 𝑖2 ∈ 𝐴, both Pr[𝑖1 ∈ 𝐴𝑟 ] = Pr[𝑖2 ∈
𝐴𝑟 ] and Pr[𝑖1 ∉ 𝐴𝑟−1] = Pr[𝑖2 ∉ 𝐴𝑟−1] hold. This implies that

E[𝑋𝑟−1] = E[𝑋𝑟−1

𝑖
] since 𝑖 is selected from𝐴𝑟

uniformly at random.

Thus, E[𝑋𝑟−1] = 1

𝑟

∑
𝑖′∈𝐴𝑟 E[𝑋𝑟−1

𝑖′ ]. Thus, lim𝜆→0

1

𝜆
Pr

[
𝑗 ∈ �̂�𝑟

]
=∑

𝑖′∈𝐴𝑟 E
[
1 − 𝑋𝑟 + 𝑋𝑟−1

𝑖′
]
= 𝑟 − 𝑟 (E[𝑋𝑟 ] − E[𝑋𝑟−1]). □

4.2 Bounds on Expected Values of 𝑋𝑝 and 𝑋𝑝𝑞

Next, we establish a lower bound on the expected value of 𝑋𝑝 , as

well as an upper bound on the expected value of 𝑋𝑝𝑞 . By utilizing

the linearity of expectation, we can decompose the expected value

into the expected difference accumulated in each round. We then

leverage Lemma 4.4 to analyze the difference between the expected

values achieved by each class in two consecutive rounds.

A key observation is that the augmenting path updating the

maximum-weight matching in each round can be uniquely deter-

mined due to Lemma 2.4. This uniqueness allows us to identify an

edge incident to a newly added vertex in the path and condition on

the weight of such an edge. Consequently, for the expected value

of 𝑋𝑝 , we obtain an upper bound on the limiting probability of

the special vertex being included in a maximum-weight matching.

Moreover, following a similar proof strategy, we derive an upper

bound on the expected value of 𝑋𝑝𝑞 .

It is important to note that calculating the exact expectation of

𝑋𝑝 and 𝑋𝑝𝑞 proves challenging. While exact computations of the

expected minimum total weight of matchings have been explored in

random assignment theory, these studies typically assume that the

edge weight is drawn from the exponential distribution, whereas in

our setting, the edge weight is drawn from the (𝛼, 𝛽)-PDF-bounded
distribution that lacks the memorylessness property. Nevertheless,

we are able to establish lower and upper bounds on 𝑋𝑝 and 𝑋𝑝𝑞 by

carefully applying Lemma 4.4.
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We now present a lower bound on the expected value of 𝑋𝑝 .

Lemma 4.5. Suppose that D is (𝛼, 𝛽)-PDF-bounded and condi-
tion (a). Then, we have

E[𝑋𝑝 ] ≥ 𝑛𝑝 −
1

𝛼

𝑛𝑝∑︁
𝑟=1

1

𝑟

𝑟∑︁
𝑟 ′=1

1

𝑚 − 𝑟 ′ · 𝑘 . (2)

We next turn our attention to the upper bound on the expected

value of 𝑋𝑝𝑞 = 𝑣𝑝 (𝑀 (𝑁𝑞)). Since there are almost surely no edges

with zero weight between 𝑁𝑝 and𝑀 (𝑁𝑞), the size of the maximum-

weight matching between 𝑁𝑝 and 𝑀 (𝑁𝑞) is min(𝑛𝑝 , 𝑛𝑞) almost

surely. Also, by Lemma 2.4, the maximum-weight matching of a

fixed size between 𝑁𝑝 and𝑀 (𝑁𝑞) is uniquely determined. Now, for

each 𝑟 = 1, 2, . . . ,min(𝑛𝑝 , 𝑛𝑞), let 𝑗𝑟𝑞 denote the item which appears

in the maximum-weight matching of size 𝑟 but does not appear

in that of size 𝑟 − 1. Here, 𝑗𝑟𝑞 is also uniquely determined from

Lemma 2.5. In addition, let𝑊
(𝑟 )
𝑞 be the random variable represent-

ing the weight of the edge that is adjacent to 𝑗𝑟𝑞 and included in the

maximum-weight matching of size 𝑟 between 𝑁𝑝 and𝑀 (𝑁𝑞).
With these in hand, we present an upper bound on the expected

value of 𝑋𝑝𝑞 .

Lemma 4.6. Suppose that D is (𝛼, 𝛽)-PDF-bounded and𝑚 ≥ 𝑛.
Then, we have

E
[
𝑋𝑝𝑞

]
≤ min(𝑛𝑝 , 𝑛𝑞) −

𝛼

𝛽

min(𝑛𝑝 ,𝑛𝑞 )∑︁
𝑟=1

1

𝑟

𝑟∑︁
𝑟 ′=1

E
[
𝑊
(𝑟 ′)
𝑞

]
𝑛𝑞 − 𝑟 ′ + 2

.

A natural way to obtain an upper bound is to estimate the ex-

pected value E[𝑋𝑝𝑞] directly. However, it is difficult to do this since

we do not know how class 𝑝 evaluates the marginal gain class 𝑞

enjoys at each round. Instead, we consider a bundle 𝐵𝑢 of size 𝑛𝑞 ,

which is selected uniformly at random from 𝐼 . By conditioning on

𝑀 (𝑁𝑞) = 𝐵𝑢 and analyzing the maximum matching between 𝑁𝑝

and 𝐵𝑢 , we circumvent the difficulty and apply a similar argument

to that for Lemma 4.5 to establish Lemma 4.6.

4.3 No Light Edges in Maximum-Weight
Matchings

Using Lemmas 4.5 and 4.6, we can obtain a lower bound for E[𝑋𝑝 ]−
E[𝑋𝑝𝑞]. To achieve probabilistic concentrations around expected

values, we demonstrate that the edge weights in the maximum-

weightmatching between𝑁𝑝 and𝑀 (𝑁𝑝 ) and those in themaximum-

weight matching between 𝑁𝑝 and 𝑀 (𝑁𝑞) are sufficiently heavy.

This is formalized in Lemma 4.7.

Lemma 4.7. Suppose that distribution D is (𝛼, 𝛽)-PDF-bounded
and condition (b) of Theorem 4.1 holds. Then, we have the followings:
• Let 𝑐𝑝 be a constant such that 𝑐𝑝 > 7000𝛼−1 > 0. For every
𝑟 = 1, 2, . . . , 𝑛𝑝 , every edge in the maximum-weight matching
of size 𝑟 between 𝑁𝑝 and 𝑀 (𝑁𝑝 ) has a weight at least 1 −
𝑐𝑝
(log𝑛𝑝 )2

𝑛𝑝
with a probability of at least 1 −𝑂 (𝑛−3

𝑝 ).
• Let 𝑐𝑞 be a constant such that 𝑐𝑞 > 60𝑐𝑝 + 400𝛼−1 > 0. For
every 𝑟 = 1, 2, . . . ,min(𝑛𝑝 , 𝑛𝑞), every edge in the maximum-
weight matching of size 𝑟 between𝑁𝑝 and𝑀 (𝑁𝑞) has a weight
at least 1 − 𝑐𝑞

(log min(𝑛𝑝 ,𝑛𝑞 ))4
min(𝑛𝑝 ,𝑛𝑞 ) with a probability of at least

1 −𝑂 (min(𝑛𝑝 , 𝑛𝑞)−3).

To prove this, we employ an approach inspired by a technique

for expanding bipartite graphs in the random assignment the-

ory [17, 18, 36]. Although [17] and [18] consider the assignment

problem with minimum cost, we use a similar argument to analyze

maximum-weight matchings. Specifically, we analyze edge weights

of a maximum-weight matching in a bipartite graph by considering

an alternating cycle of a maximum-weight matching in the bipar-

tite graph restricted to the “heavy” edges and bounding its length.

Furthermore, to demonstrate that such an alternating cycle can be

found, we show “expander” properties of sub-bipartite graphs of

certain size.

4.4 Putting All the Pieces Together
Under conditions (a) and (b) of Theorem 4.1, we establish a lower

bound on the difference in expected values that class 𝑝 assigns

to the bundles allocated to classes 𝑝 and 𝑞 under the matching

produced by the round-robin algorithm.

Lemma 4.8. Suppose that D is (𝛼, 𝛽)-PDF-bounded and two con-
ditions (a) and (b) of Theorem 4.1 hold. Then,

E[𝑣𝑝 (𝑀 (𝑁𝑝 ))] − E[𝑣𝑝 (𝑀 (𝑁𝑞))] ≥
(
1 − 1

2𝛼𝑘

) (
𝑛𝑝 −min(𝑛𝑝 , 𝑛𝑞)

)
+

(
𝛼

𝛽
−

𝑛𝑞 + 1

𝛼 (𝑚 − 𝑘)

)
min(𝑛𝑝 , 𝑛𝑞)

𝑛𝑞
−𝑂 (min(𝑛𝑝 , 𝑛𝑞)−1) .

We explain implications of Lemma 4.8. If we have that 𝑘 >

max( 1

2𝛼 ,
𝛽

𝛼2
) and𝑚 ≥ 𝑘 max𝑝 (𝑛𝑝 + 2), then we have 1 − 1

2𝛼𝑘
> 0

and
𝛼
𝛽
− 𝑛𝑞+1

𝛼 (𝑚−𝑘) ≥
𝛼
𝛽
− 1

𝛼𝑘
> 0. Therefore, when 𝑛𝑝 ≥ 𝑛𝑞 , there

exists a positive constant 𝑐 > 0 such that the expected difference

is at least 𝑐 −𝑂 (𝑛−1

𝑞 ). When 𝑛𝑝 < 𝑛𝑞 , the expected difference is at

least

(
𝛼
𝛽
− 𝑛𝑞+1

𝛼 (𝑚−𝑘)

)
𝑛𝑝
𝑛𝑞
−𝑂 (𝑛−1

𝑝 ), where the lower bound is mainly

determined by the ratio of 𝑛𝑝 to 𝑛𝑞 .

Proof. By the second bullet in Lemma 4.7, for every 𝑟 = 1, 2,

. . . ,min(𝑛𝑝 , 𝑛𝑞), there is a constant 𝑐 > 0 such that

Pr

[
𝑊
(𝑟 )
𝑞 ≥ 1 − 𝑐

(log min(𝑛𝑝 , 𝑛𝑞))4

min(𝑛𝑝 , 𝑛𝑞)

]
= 1 −𝑂 (min(𝑛𝑝 , 𝑛𝑞)−3).

For every 𝑟 = 1, 2, . . . , min(𝑛𝑝 , 𝑛𝑞), since 𝑊 (𝑟 )𝑞 ≥ 0, we obtain

E[𝑊 (𝑟 )𝑞 ] = 1−𝑂 (min(𝑛𝑝 , 𝑛𝑞)−1). Thus, combined with Lemma 4.6,

we get

E[𝑋𝑝𝑞] ≤ min(𝑛𝑝 , 𝑛𝑞) −
𝛼

𝛽

min(𝑛𝑝 ,𝑛𝑞 )∑︁
𝑟=1

1

𝑟

𝑟∑︁
𝑟 ′=1

1

𝑛𝑞 − 𝑟 ′ + 2

+ 𝛼

𝛽

min(𝑛𝑝 ,𝑛𝑞 )∑︁
𝑟=1

1

𝑟

𝑟∑︁
𝑟 ′=1

1

𝑛𝑞 − 𝑟 ′ + 2

𝑂 (min(𝑛𝑝 , 𝑛𝑞)−1) .

Here, we can show

∑min(𝑛𝑝 ,𝑛𝑞 )
𝑟=1

1

𝑟

∑𝑟
𝑟 ′=1

1

𝑛𝑞−𝑟 ′+2 = 𝑂 (1). Combin-

ing this and Lemma 4.5 implies that

E[𝑋𝑝 ] − E[𝑋𝑝𝑞] ≥ 𝑛𝑝 −min(𝑛𝑝 , 𝑛𝑞) −𝑂 (min(𝑛𝑝 , 𝑛𝑞)−1)

+
(
𝛼

𝛽
−

𝑛𝑞 + 1

𝛼 (𝑚 − 𝑘)

) min(𝑛𝑝 ,𝑛𝑞 )∑︁
𝑟=1

1

𝑟

𝑟∑︁
𝑟 ′=1

1

𝑛𝑞 − 𝑟 ′ + 2
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− 1

𝛼

𝑛𝑝∑︁
𝑟=min(𝑛𝑝 ,𝑛𝑞 )+1

1

𝑟

𝑟∑︁
𝑟 ′=1

1

𝑚 − 𝑟 ′ · 𝑘

≥ 𝑛𝑝 −min(𝑛𝑝 , 𝑛𝑞) −𝑂 (min(𝑛𝑝 , 𝑛𝑞)−1)

+
(
𝛼

𝛽
−

𝑛𝑞 + 1

𝛼 (𝑚 − 𝑘)

) min(𝑛𝑝 ,𝑛𝑞 )∑︁
𝑟=1

1

𝑟

𝑟∑︁
𝑟 ′=1

1

𝑛𝑞
− 1

𝛼𝑘

𝑛𝑝∑︁
𝑟=min(𝑛𝑝 ,𝑛𝑞 )+1

1

𝑟

𝑟∑︁
𝑟 ′=1

1

2

=

(
1 − 1

2𝛼𝑘

) (
𝑛𝑝 −min(𝑛𝑝 , 𝑛𝑞)

)
+

(
𝛼

𝛽
−

𝑛𝑞 + 1

𝛼 (𝑚 − 𝑘)

)
min(𝑛𝑝 , 𝑛𝑞)

𝑛𝑞

−𝑂 (min(𝑛𝑝 , 𝑛𝑞)−1),

where we use𝑚 ≥ 𝑘 (𝑛𝑞 + 2), 1

𝑛𝑞−𝑟 ′+2 ≥
1

𝑛𝑞
and

1

2
≥ 1

𝑚−𝑟 ′ ·𝑘 for the

second inequality. □

Finally, we prove Theorem 4.1. We denote the right hand-side of

the inequality in Lemma 4.8 by 𝐷 (𝑛𝑝 , 𝑛𝑞). We first introduce the

Efron-Stein inequality and Chebyshev’s inequality in the following.

Lemma 4.9 (Efron–Stein ineqality [12, 16]). Suppose that
𝑛 random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent. Let 𝑓 : R𝑛 →
R be an arbitrary measurable function of 𝑛 random variables. Let
𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) and 𝑋 (𝑖) = (𝑋1, 𝑋2, . . . , 𝑋𝑖−1, 0, 𝑋𝑖+1, . . . , 𝑋𝑛).
Then we haveVar[𝑓 (𝑋1, 𝑋2, . . . , 𝑋𝑛)] ≤

∑𝑛
𝑖=1
E[(𝑓 (𝑋 )−𝑓 (𝑋 (𝑖) ))2+].

Here, (𝑥)+ = max(𝑥, 0).

Lemma 4.10 (Chebyshev’s ineqality). If𝑋 is any random vari-
able, then for any 𝜀 > 0 we have Pr[ |𝑋 − E[𝑋 ] | ≥ 𝜀 ] ≤ Var[𝑋 ]

𝜀2
.

Proof sketch of Theorem 4.1. First, we investigate the prob-

ability that the value of the random variable 𝑋𝑝 deviates from

its expected value. Let𝑊 (𝑖, 𝑗) = 𝑢𝑖 ( 𝑗) denote the weight of edge
{𝑖, 𝑗} for 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝐼 . Let 𝑋𝑝 (𝑊 ) denote the total utility

that class 𝑝 obtains from the matching produced by the round-

robin algorithm when the input is (𝑊 (𝑖, 𝑗))𝑖, 𝑗 . We now consider

another weight function. Let 𝛿𝑝 = 𝑐𝑝
(log𝑛𝑝 )2

𝑛𝑝
, and let𝑊 (𝑖, 𝑗) =

max(𝑊 (𝑖, 𝑗), 1 − 𝛿𝑝 ) for 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝐼 . We denote by 𝑋𝑝 (𝑊 )
the utility attained by class 𝑝 under the round-robin algorithm

when weights of edges are {𝑊 (𝑖, 𝑗)}𝑖, 𝑗 . By some calculations, we

have Var[𝑋𝑝 (𝑊 )] ≤ 2Var[𝑋𝑝 (𝑊 )] + 2𝑛2

𝑝 · Pr[𝑋𝑝 (𝑊 ) ≠ 𝑋𝑝 (𝑊 )].
Let 𝑊

(𝑖, 𝑗)
denote the weights obtained by setting the (𝑖, 𝑗)-th

entry of 𝑊 to zero while keeping all other entries unchanged.

By applying the Efron–Stein inequality, we obtain Var[𝑋𝑝 (𝑊 )]
≤ ∑𝑛

𝑖=1

∑𝑚
𝑗=1
E[(𝑋𝑝 (𝑊 )−𝑋𝑝 (𝑊

(𝑖, 𝑗) ))2+]. By the definition of𝑊 , we

have (𝑋𝑝 (𝑊 )−𝑋𝑝 (𝑊
(𝑖, 𝑗) ))2+ ≤ 2𝛿2

𝑝 for all 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝐼 . We claim

that the number of edges involved in the matching produced by the

algorithm is, with a probability at least 1−𝑂 (min𝑝∈[𝑘 ] 𝑛
−3

𝑝 ), at most∑𝑘
𝑝=1

𝑂 (log𝑛𝑝 )𝑛𝑝 . Thus, Var[𝑋𝑝 (𝑊 )] ≤ 𝛿2

𝑝

∑𝑘
𝑝=1

𝑂 (log𝑛𝑝 )𝑛𝑝 +
𝑂 (𝑛−1

𝑝 ) ≤ 𝛿2

𝑝𝑛𝑂 (log𝑛) +𝑂 (𝑛−1

𝑝 ). Moreover, from the first bullet in

Lemma 4.7, we have 2𝑛2

𝑝 · Pr[𝑋𝑝 (𝑊 ) ≠ 𝑋𝑝 (𝑊 )] = 2𝑛2

𝑝 ·𝑂 (𝑛−3

𝑝 ) =
𝑂 (𝑛−1

𝑝 ). Hence, we get Var[𝑋𝑝 ] = Var[𝑋𝑝 (𝑊 )] ≤ 2𝛿2

𝑝𝑛𝑂 (log𝑛)
+𝑂 (𝑛−1

𝑝 ). From the Chebyshev’s inequality, we get

Pr
[
𝑋𝑝 − E[𝑋𝑝 ] < −

1

2

𝐷 (𝑛𝑝 , 𝑛𝑞)
]

≤
4Var

[
𝑋𝑝

]
𝐷 (𝑛𝑝 , 𝑛𝑞)2

≤
8𝛿2

𝑝𝑛𝑂 (log𝑛) +𝑂 (𝑛−1

𝑝 )
𝐷 (𝑛𝑝 , 𝑛𝑞)2

.

Subsequently, we investigate the concentration around the ex-

pected value of the random variable 𝑋𝑝𝑞 . Similarly to 𝑋𝑝 , letting

𝛿𝑝𝑞 = 𝑐𝑞
(log min(𝑛𝑝 ,𝑛𝑞 ))4

min(𝑛𝑝 ,𝑛𝑞 ) , we obtain

Pr
[
𝑋𝑝𝑞 − E[𝑋𝑝𝑞] >

1

2

𝐷 (𝑛𝑝 , 𝑛𝑞)
]

≤
4Var

[
𝑋𝑝𝑞

]
𝐷 (𝑛𝑝 , 𝑛𝑞)2

≤
8𝛿2

𝑝𝑞𝑛𝑂 (log𝑛) +𝑂 (min(𝑛𝑝 , 𝑛𝑞)−1)
𝐷 (𝑛𝑝 , 𝑛𝑞)2

.

From Lemma 4.8, if class 𝑝 envies class 𝑞, then 𝑋𝑝 < E[𝑋𝑝 ] −
1

2
𝐷 (𝑛𝑝 , 𝑛𝑞) or 𝑋𝑝𝑞 > E[𝑋𝑝𝑞] + 1

2
𝐷 (𝑛𝑝 , 𝑛𝑞) must hold. Thus, we

obtain

Pr [Class 𝑝 envies class 𝑞] ≤ Pr
[
𝑋𝑝 < E[𝑋𝑝 ] −

1

2

𝐷 (𝑛𝑝 , 𝑛𝑞)
]

+ Pr
[
𝑋𝑝𝑞 > E[𝑋𝑝𝑞] +

1

2

𝐷 (𝑛𝑝 , 𝑛𝑞)
]

≤
(
8(𝛿2

𝑝 + 𝛿2

𝑝𝑞)𝑛𝑂 (log𝑛) +𝑂 (min(𝑛𝑝 , 𝑛𝑞)−1)
)
𝐷 (𝑛𝑝 , 𝑛𝑞)−2

≤
(
16𝑐𝑞 ·min(𝑛𝑝 , 𝑛𝑞)−2𝑛𝑂 (log

9 𝑛)

+𝑂 (min(𝑛𝑝 , 𝑛𝑞)−1)
)
𝐷 (𝑛𝑝 , 𝑛𝑞)−2,

where we use 𝛿2

𝑝 + 𝛿2

𝑝𝑞 ≤ 2𝑐𝑞 min(𝑛𝑝 , 𝑛𝑞)−2
log

8 𝑛 for the last in-

equality.

By condition (b) (i.e., max(𝑛𝑝 , 𝑛𝑞) ≤ 𝑛 ≤ 𝐶 ·min(𝑛𝑝 , 𝑛𝑞)5/4) and
Lemma 4.8, we can show that the probability that class 𝑝 envies class

𝑞 is at most �̃� (𝑛−1/5) for every pair of 𝑝, 𝑞 ∈ [𝑘], where �̃� is the

big-O notation that ignores logarithmic factors. By condition (c),
the probability that matching 𝑀 is not class envy-free is at most

𝑘2 · �̃� (𝑛−1/5) = 𝑜 (1). □

5 CONCLUDING REMARKS
This paper addressed the problem of achieving fairness in match-

ing across different classes and suggests several open problems for

future research. In Theorem 4.1, we made several assumptions. In

particular, while Dickerson et al. [15] and Manurangsi and Suksom-

pong [30], as well as our Theorem 3.1, provide asymptotic results

when the number of items approaches infinity, Theorem 4.1 as-

sumes the number of agents approaches infinity. This assumption

is necessary for our analysis because the assignment valuation

of each class is bounded by the number of agents in that class.

However, it remains unclear whether the round-robin algorithm

produces asymptotically a class envy-free matching when these

assumptions do not hold. We leave this as an interesting open ques-

tion for future work. Moreover, it would be interesting to explore

the case of asymmetric agents, where each agent has a different

probability distribution for their utilities.
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