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ABSTRACT

In standard reinforcement learning, an episode is defined as a se-

quence of interactions between agents and the environment, which

terminates upon reaching a terminal state or a pre-defined episode

length. Setting a shorter episode length enables the generation of

multiple episodes with the same number of data samples, thereby

facilitating an exploration of diverse states. While shorter episodes

may limit the collection of long-term interactions, they may of-

fer significant advantages when properly managed. For example,

trajectory truncation in single-agent reinforcement learning has

shown how the benefits of shorter episodes can be leveraged despite

the trade-off of reduced long-term interaction experiences. How-

ever, this approach remains underexplored in MARL. This paper

proposes a novel MARL approach, Adaptive Episode Length Ad-

justment (AELA), where the episode length is initially limited and

gradually increased based on an entropy-based assessment of learn-

ing progress. By starting with shorter episodes, agents can focus

on learning effective strategies for initial states and minimize time

spent in dead-end states. The use of entropy as an assessment metric

prevents premature convergence to suboptimal policies and ensures

balanced training over varying episode lengths. We validate our

approach using the StarCraft Multi-agent Challenge (SMAC) and

a modified predator-prey environment, demonstrating significant

improvements in both convergence speed and overall performance

compared to existing methods. To the best of our knowledge, this is

the first study to adaptively adjust episode length in MARL based

on learning progress.
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1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has become an in-

creasingly important area of research, especially in scenarios in-

volving cooperative or competitive environments with multiple

autonomous agents [1, 5, 28]. The ability of agents to make deci-

sions based on their individual perspectives while interacting with

other agents presents a complex yet realistic setting that resembles

many natural and artificial systems. As MARL evolves, researchers

have identified several key challenges, such as non-stationarity, co-

ordination among agents, and the curse of dimensionality. Among

these challenges, the impact of episode length or time limits on the

learning performance of agents is of particular interest, especially

in practical settings where time constraints are inherent.

In MARL, an episode is defined as a sequence of interactions

between agents and the environment, which terminates upon reach-

ing a terminal state or a pre-defined episode length. Typically, the

episode length is set to a fixed value throughout the training process,

and this value is sufficiently large to allow for finding an optimal pol-

icy to solve the given ask [24]. Determining an appropriate episode

length is not straightforward. Setting a shorter episode length en-

ables the generation of multiple episodes with the same number of

data samples, thereby facilitating an exploration of diverse states.

This increased exploration can help agents gather a wider variety

of experiences, which is beneficial for generalization. However, it

also has the drawback of potentially failing to collect experiences

involving long-term interactions that exceed the restricted episode

length.

Recent research in single-agent reinforcement learning has in-

creasingly focused on techniques such as time limits or trajectory

truncation, which utilize only a portion of an episode [3, 12–14].

These methods have been demonstrated to be beneficial both theo-

retically and empirically. Adjusting episode length is expected to

be even more effective in MARL, where the state-action space is
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significantly larger. Especially in multi-agent environments, the

complexity arising from interactions between agents can lead to the

existence of various types of dead-end states where agents cannot

reach a desired goal within a reasonable number of steps. Dead-

end states can severely hinder the learning process, especially if

agents frequently encounter them in early training stages [2, 6, 30].

By adjusting episode length, agents can avoid spending excessive

time in such unproductive states, focusing instead on learning ef-

fective strategies for early interactions. Despite the potential of

these approaches, their application in MARL remains relatively

underexplored.

In this paper, we propose a novel approach to MARL called

Adaptive Episode Length Approach (AELA), where the episode

length is initially limited during the early training stages and then

gradually increased based on the learning situation. AELA begins

by restricting agents to shorter episodes, allowing them to focus

on learning effective strategies for initial states and to reduce a

prolonged time in dead-end states. Then, our approach gradually

increases the episode length as learning progresses, based on an

entropy-based assessment of the agents. Entropy is used to prevent

excessive convergence to experiences of a specific episode length,

thereby ensuring adequate training over the originally defined

episode length for the task. Also, this staged increase in episode

length allows agents to incrementally expand their exploration

without being overwhelmed by the complexity of the full task from

the outset.

We validated our proposed method through experiments con-

ducted on the StarCraft Multi-agent Challenge (SMAC)[18] and

modified predator-prey (MPP) [20], which are widely used bench-

marks for testing MARL algorithms. Our extensive evaluation re-

veals that our approach achieves significantly superior performance,

particularly in terms of performance and convergence speed. The

results demonstrate that limiting the episode length during the

early training stages helps agents develop a stronger understanding

of the initial state, ultimately improving final performance. To the

best of our knowledge, this is the first study to adaptively adjust

the episode length based on the learning situation in MARL.

2 RELATEDWORK

Cooperative multi-agent reinforcement learning. Methods that

decompose joint action values have been extensively studied and

have shown notable success in cooperative multi-agent reinforce-

ment learning (MARL) scenarios. The Value Decomposition Net-

work (VDN), introduced by Sunehag et al. [23], models the joint

action-value function as the sum of individual action-value func-

tions, which promotes cooperative behavior among agents. QMIX,

proposed by Rashid et al. [17], expanded on VDN by incorporat-

ing a mixing network that used monotonic utility functions under

Individual-Global-Max (IGM) conditions, enhancing the flexibility

of value decomposition while preserving the monotonicity con-

straint. To overcome the limitations of the monotonicity assump-

tion, later approaches such as QTRAN [20] and Weighted QMIX

(WQMIX) [16] were developed to relax these constraints by apply-

ing weights to the loss functions of suboptimal actions, thereby

improving performance. Furthermore, QPLEX [25] employed a

duplex dueling architecture to encode the IGM condition via a neu-

ral network, resulting in a more sophisticated value factorization

framework. Recent years have also seen increased interest in ex-

tending ideas from single-agent reinforcement learning, including

distributional RL and risk-sensitive RL, to multi-agent environ-

ments [15, 19, 21, 22]. Additionally, role-based learning methods

have been proposed to effectively decompose tasks in multi-agent

systems [8, 26, 27, 29], and the concept of bidirectional dependen-

cies has been explored to enhance cooperative behaviors among

agents [7].

Episode length adjustment. The problem of efficiently managing

episode lengths and their impact on reinforcement learning (RL)

has gained increasing attention in recent years. Various approaches

have been proposed to address issues related to time limits and

trajectory truncation. Pardo et al. [12] explored time limits in RL

and introduced methods for handling them effectively, showing

that including the remaining time as part of the agent’s input im-

proves policy learning by avoiding state aliasing and instability.

The advantages of truncating trajectories for enhancing Policy Opti-

mization via Importance Sampling (POIS) accuracy were illustrated

by [13]. Poiani et al. [14] proposed an adaptive trajectory truncation

strategy called RIDO, which allocates interaction budgets dynami-

cally to minimize variance in Monte Carlo policy evaluation. Their

results indicate that adaptive schedules outperform fixed-length

approaches across multiple RL domains. In addition to directly ad-

justing the episode length, there have also been studies addressing

uncertain episode lengths. Mandal et al. [10] tackled online RL with

uncertain episode lengths, proposing an algorithm that adapts to

variable horizons by estimating the underlying distribution. They

provided theoretical guarantees that highlight the effectiveness

of adaptive horizon management in minimizing regret. Horizon

Regularized Advantage (HRA) was proposed by [11] to improve

the generalization of RL. By averaging advantage estimates from

multiple discount factors, HRA improves policy generalization, par-

ticularly in environments with stochastic episode durations. As

described so far, there have been studies related to episode length

adjustment in single-agent environments; however, in multi-agent

environments, there has been little related research.

3 BACKGROUND

3.1 Dec-POMDP

A decentralized partially observable Markov decision process (Dec-

POMDP) is a framework used tomodelmulti-agent decision-making

in environments where agents must cooperate under conditions of

uncertainty and limited observability. In a Dec-POMDP, multiple

agents interact with a shared environment, but each agent has only

partial information about the global state and must make decisions

based on its local observations. Formally, a Dec-POMDP can be

represented as a tuple ⟨𝐼 , 𝑆, 𝐴, 𝑃,𝑂, 𝑍, 𝑅,𝛾⟩, where 𝐼 is the set of

agents, 𝑆 represents the set of global states, 𝐴 is the set of joint

actions across all agents, 𝑃 is the state transition function, 𝑂 is the

set of joint observations, 𝑍 is the observation function, 𝑅 is the

reward function, and 𝛾 is the discount factor.

In this framework, each agent 𝑖 ∈ 𝐼 := 1, . . . , 𝐼 selects actions

𝑎𝑖 ∈ 𝐴 at each time step 𝑡 . The state transition function provides
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the probability of transitioning from one state to another given the

joint action of all agents, as 𝑃 (𝑠′ |𝑠, a) : 𝑆 × 𝐴 × 𝑆 ↦−→ [0, 1]. Each
agent has individual and partial observations 𝑧 ∈ 𝑍 , according to
the observation function𝑂 (𝑠, 𝑖) : 𝑆 × 𝐼 ↦−→ 𝑍 . The reward function

𝑅(𝑠, a) : 𝑆 ×𝐴 ↦−→ R assigns a numerical value to each state-action

pair, and 𝛾 ∈ [0, 1) is the discount factor. The action-observation
history for agent 𝑖 is 𝜏𝑖 ∈ 𝑇 := (𝑍 × A)∗, on which its policy

𝜋𝑖 (𝑎𝑖 |𝜏𝑖 ) : 𝑇 × A ↦−→ [0, 1] is based. The formal goal is to find a

joint policy 𝜋 that optimizes a joint action-value function, which is

represented as 𝑄𝝅
𝑗𝑡
(𝑠, a) = E𝑠0:∞,a0:∞ [

∑∞
𝑡=0

𝛾𝑡𝑟𝑡 |𝑠0 = 𝑠, a0 = a, 𝝅].

3.2 Episode length adjustment

In reinforcement learning (RL), the agent interacts with the en-

vironment in a sequence of steps called an episode, which often

has a fixed length 𝐸𝐿 . However, adjusting episode length during

training can significantly influence learning efficiency and policy

performance, particularly in environments where the complexity

or difficulty varies over time.

The goal of RL is to learn a policy 𝜋 that maximizes the expected

cumulative reward, also known as the return𝐺𝑙 , which is given by:

𝐺𝑙 =

𝐸𝐿−1∑︁
𝑘=0

𝛾𝑘𝑟 (𝑠𝑙+𝑘 , 𝑎𝑙+𝑘 ), (1)

where 𝐸𝐿 is the length of the episode and 𝑙 represents the time

step within an episode. Note that the term ’time step’ may cause

some confusion with training steps or other terms, so the time step

within an episode is referred to as an interaction step 𝑙 . 𝑙 is a natural

number ranging from 1 to the episode length, 𝐸𝐿 . Traditionally, the

episode length 𝐸𝐿 is a fixed value, but adjusting the episode length

means setting it to some value smaller than 𝐸𝐿 .

4 METHOD

In reinforcement learning, dead-end states refer to states from

which the agent cannot reach the goal state or recover once reached.

To efficiently collect experience in reinforcement learning, it is

necessary to minimize the visits to dead-end states. In single-agent

reinforcement learning, several techniques have been proposed to

estimate and avoid such dead-ends [2, 6, 30]. However, in multi-

agent reinforcement learning, the number of states and actions

grows exponentially, and the states that lead to successful rewards

are relatively few compared to the total number of states and actions.

This makes it extremely challenging to directly estimate dead-ends.

Therefore, instead of precisely estimating and completely avoid-

ing dead-ends, this paper focuses on efficiently collecting experi-

ence even in the presence of dead-ends. In multi-agent environ-

ments where dead-ends exist, effective experience collection often

involves visiting states that occur before reaching a dead-end. This

strategy is referred to as secure exploration, which emphasizes

maximizing the exploration of states that precede dead-ends to

ensure meaningful learning opportunities.

4.1 Theoretical background

In this section, we theoretically describe the relationship between

reducing episode length and visiting secure states. First, we define

a dead-end state and a secure state as follows:

Definition 1 (Dead-end State). Once the agent reaches dead-end
states 𝑠𝑑 at time step 𝑡 in a trajectory, no policy 𝜋 can lead it to the
goal state 𝑠𝑔 for any 𝑡 ′ > 𝑡 .

Definition 2 (Secure state). A state that is not a dead-end state is
referred to as a secure state 𝑠𝑠 , as there exists at least one policy that
guarantees reaching the goal state.

According to these definitions, the properties of 𝑃𝑠 with respect

to the interaction step can be proven as follows.

Lemma 1. Let 𝐸𝐿 denote the episode length, and let 𝑙 (where 𝑙 =
1, 2, . . . , 𝐸𝐿) denote the interaction step (i.e., the time step within
each episode). Let 𝑃𝑠 (𝑙) be the probability that the state is secure at
interaction step 𝑙 . Then, it holds that:

𝑃𝑠 (𝑙 + 1) ≤ 𝑃𝑠 (𝑙) . (2)

Proof. Let the probability of falling into a dead-end state at

time step 𝑙 be denoted by 𝑃𝑑 (𝑙). To remain in a secure state up to

time step 𝑙 , the agent must avoid falling into a dead-end state at

every previous time step. Thus, we have:

𝑃𝑠 (𝑙) =
𝑙∏

𝑘=1

(1 − 𝑃𝑑 (𝑘)). (3)

To prove that 𝑃𝑠 (𝑙) is not increasing with respect to 𝑙 , we compare

𝑃𝑠 (𝑙) and 𝑃𝑠 (𝑙 + 1):
𝑃𝑠 (𝑙 + 1) = 𝑃𝑠 (𝑙) × (1 − 𝑃𝑑 (𝑙 + 1)), (4)

where 1−𝑃𝑑 (𝑙 +1) represents the probability of avoiding a dead-end
state at time step 𝑙 + 1. Since 0 ≤ 1 − 𝑃𝑑 (𝑙 + 1) ≤ 1, it follows that:

𝑃𝑠 (𝑙 + 1) = 𝑃𝑠 (𝑙) × (1 − 𝑃𝑑 (𝑙 + 1)) ≤ 𝑃𝑠 (𝑙) . (5)

Hence, by comparing 𝑃𝑠 (𝑙) and 𝑃𝑠 (𝑙 + 1), it can be concluded that

𝑃𝑠 (𝑙) is a non-increasing function of 𝑙 . Therefore, the probability of

being in a secure state decreases monotonically or remains constant

as the interaction step 𝑙 increases. □

Based on Lemma 1, we prove that reducing the episode length in-

creases or maintains the probability of being a secure state, thereby

enabling efficient experience collection. The following two theo-

rems build upon Lemma 1 to establish the theoretical foundation

for our approach. Specifically, Theorem 1 provides a theoretical

hint that effectively adjusting the episode length can yield benefits

(proof in Appendix A). Therefore, in AELA, we implement adaptive

control of the episode length based on this insight. Subsequently,

Theorem 2 elucidates the impact of decreasing the probability of

visiting dead-end states and the benefits in terms of regret mini-

mization. These two theorems provide the theoretical foundation

for the design of the AELA algorithm.

Theorem 1. Let 𝐸𝐿 be the fixed episode length, and 𝑁𝑠 be the ex-
pected number of secure state visits over all episodes. Then,𝑁𝑠 remains
constant or increases if 𝐸𝐿 is reduced.

Definition 3 (The probability of visiting dead-end states). Let𝑁total
denote the total number of collected data samples. When 𝑁𝑑 denotes
the expected number of dead-end state visits across all episodes, then
𝑁𝑑 can be expressed as 𝑁total − 𝑁𝑠 . The probability 𝑃𝑑 of visiting
dead-end states can be defined as 𝑁𝑑

𝑁total
.
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Algorithm 1: Adaptive Episode Length Adjustment (AELA)

1 Initialize each agent’s policy or Q-value network parameters 𝜃1, 𝜃2, . . . , 𝜃𝐼 , the centralized critic network parameters 𝜙 , an empty

replay buffer D, the initial episode length 𝐸𝐿0
, an empty list L𝐻 for storing entropy values, the window size𝑤 for collecting entropy

values, and the batch size 𝐵

2 Set the current episode length as the initial episode length 𝐸𝐿 ← 𝐸𝐿0

3 Set target network parameters
¯𝜃𝑖 ← 𝜃𝑖 for 𝑖 = 1, 2, . . . , 𝐼 , and ¯𝜙 ← 𝜙

4 Set target network update interval 𝑇𝑈

5 Set 𝐸𝑚𝑎𝑥 to the episode length of the original task

6 Initialize both the time step 𝑡 and the previous time step 𝑡𝑝 to 0

7 while 𝑡 < 𝑡𝑚𝑎𝑥 do

8 Initialize the interaction step 𝑙 to 0

9 Initialize the state as the initial state 𝑠0

10 while 𝑙 < 𝐸𝐿 do

11 Each agent 𝑖 takes action 𝑎𝑖,𝑙 ∼ 𝜋𝜃𝑖 (·|𝑜𝑖,𝑙 )
12 Step into state 𝑠𝑙+1
13 Receive reward 𝑟𝑙 and observe 𝑜𝑖,𝑙+1
14 Add transition data to the replay buffer: D ← D ∪ {(𝑠𝑙 , 𝑜𝑙 , 𝑎𝑙 , 𝑟𝑙 , 𝑠𝑙+1, 𝑜𝑙+1)}
15 𝑙 = 𝑙 + 1 , 𝑡 = 𝑡 + 1

16 if |D| > 𝐵 then

17 Sample a random batch of episodes from D
18 Calculate the total entropy of q-values 𝐻

total

19 Add the entropy 𝐻
total

to L𝐻
20 Update the parameters of the centralized critic 𝜙 with the sampled batch

21 Update each agent’s policy or Q-value network parameters 𝜃1, 𝜃2, . . . , 𝜃𝐼 with the sampled batch

22 if |L𝐻 | mod 𝑤 = 0 then

23 Fit a linear model to the last𝑤 values in L𝐻
24 if (slope of linear model < 0) and (𝐸𝐿 < 𝐸𝑚𝑎𝑥 ) then
25 𝐸𝐿 ← 𝐸𝐿 + 1

26 if (𝑡 − 𝑡𝑝 ) > 𝑇𝑈 then

27 Update the target network of centralized critic
¯𝜙 ← 𝜙 , and target networks of agents

¯𝜃1 ← 𝜃1, . . . , ¯𝜃𝐼 ← 𝜃𝐼

28 𝑡𝑝 = 𝑡

Definition 4 (Regret). In the context of reinforcement learning, the
regret after𝑇 time steps, denoted by Regret(𝑇 ), measures the difference
in cumulative rewards between the optimal policy 𝜋∗ and the agent’s
policy 𝜋 :

Regret(𝑇 ) = 𝑅(𝜋∗) − 𝑅(𝜋), (6)

where 𝑅(𝜋) =
∑𝑇
𝑡=1

𝑟𝑡 and 𝑅(𝜋∗) =
∑𝑇
𝑡=1

𝑟∗𝑡 . Here, 𝑟𝑡 represents
the reward obtained by the agent’s policy 𝜋 at time step 𝑡 , and 𝑟∗𝑡
represents the reward obtained by the optimal policy 𝜋∗ at the same
time step.

Corollary 1. According to Theorem 1, reducing the episode length
𝐸𝐿 either increases or preserves the number of visits to secure states
𝑁𝑠 . Consequently, reducing 𝐸𝐿 will cause 𝑃𝑑 to either decrease or at
least remain unchanged.

Proof. From Theorem 1, we know that reducing 𝐸𝐿 causes 𝑁𝑠

to either increase or remain unchanged. Given that 𝑃𝑑 =
𝑁𝑑

𝑁total

=

1 − 𝑁𝑠

𝑁total

(defined in Definition 3), a non-decreasing change in 𝑁𝑠

(i.e., an increase or no change) results in a non-increasing change

in 𝑃𝑑 (i.e., a decrease or no change).

□

Based on Corollary 1, we establish the following Theorem 2

(proof is provided in Appendix B). To do so, we introduce an as-

sumption that ensures the agent prioritizes reaching the goal state

over accumulating intermediate rewards.

Assumption 1. The reward 𝑟𝑔 obtained at the goal state is suffi-
ciently large compared to the rewards received over any interval of
time steps within the episode. Formally, for any 1 ≤ 𝑘 ≤ 𝑙 ≤ 𝑇 ,

𝑙∑︁
𝑡=𝑘

𝑟𝑡 < 𝑟𝑔 . (7)

This assumption ensures that the agent prioritizes reaching the goal
state over accumulating intermediate rewards.

Theorem 2. Under Assumption 1, as 𝑃𝑑 decreases, the difference in
cumulative rewards between the optimal policy and the agent’s policy
also decreases, thereby reducing Regret(T) (defined in Definition 4).

Combining Theorem 1 and Theorem 2, we conclude that re-

ducing the episode length decreases the probability of entering a
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dead-end state 𝑃𝑑 , which in turn reduces the regret term, except

when the episode length reduction preserves 𝑃𝑑 . Building upon the

theoretical insights established in this Section 4.1, we introduce

the Adaptive Episode Length Adjustment (AELA) algorithm in the

following section.

4.2 Algorithm : AELA

AELA leverages the relationship between episode length and se-

cure exploration, as demonstrated by Theorems 1 and 2, to optimize

learning efficiency. By adaptively controlling the episode length

based on the agent’s learning progress, AELA effectively minimizes

the probability of encountering dead-end states, thereby reducing

regret and enhancing overall performance in multi-agent environ-

ments. To summarize, we realized the advantages of training with

reduced episode lengths. However, starting with shorter episodes

requires adjusting their length as the agent needs to gather expe-

riences beyond the reduced episode lengths. To address this, we

propose an adaptive method within the AELA framework that incre-

mentally increases the episode length based on the agent’s learning

progress. Specifically, the algorithm monitors the entropy of the

learned policy or Q-values; a decreasing trend in entropy indicates

that the agent’s policy is converging toward stability. When such

convergence is detected, the episode length is extended to allow

the agent to gather more experiences beyond the initial secure

exploration phase.

Given a set of Q-values 𝑄 (𝑠, 𝑎) for each action 𝑎 in a state 𝑠 ,

the action probability distribution 𝑃 (𝑎) can be defined using the

softmax function:

𝑃 (𝑎 | 𝑠) = exp(𝑄 (𝑠, 𝑎)/𝜏)∑
𝑎 exp(𝑄 (𝑠, 𝑎)/𝜏) , (8)

where 𝜏 is the temperature parameter that controls the smoothness

of the action probability distribution. If a policy-based method is

used, the action probability distribution represents the policy 𝜋 .

The entropy 𝐻 of the action distribution can then be calculated as:

𝐻 = −
∑︁
𝑎

𝑃 (𝑎 | 𝑠) log 𝑃 (𝑎 | 𝑠) . (9)

Then, we sum all the entropy values over a mini-batch:

𝐻
total

=

𝐵∑︁
𝑏=1

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

(
−

∑︁
𝑎

𝑃 (𝑎 (𝑏,𝑖 )𝑡 | 𝑠 (𝑏,𝑖 )𝑡 ) log 𝑃 (𝑎 (𝑏,𝑖 )𝑡 | 𝑠 (𝑏,𝑖 )𝑡 )
)
,

(10)

where, 𝐻
total

represents the total entropy accumulated across all

batches, time steps, and agents. The variable 𝐵 refers to the batch

size, which indicates the number of independent episodes being

processed simultaneously. The variable 𝑇 denotes the number of

time steps within each episode, and 𝐼 is the number of agents in the

multi-agent system. The action taken by agent 𝑖 at time step 𝑡 in

batch 𝑏 is denoted by 𝑎
(𝑏,𝑖 )
𝑡 , while the state observed by the same

agent at the same time step and batch is represented by 𝑠
(𝑏,𝑖 )
𝑡 . The

probability of taking action 𝑎 given the state 𝑠 for agent 𝑖 at time

step 𝑡 in batch 𝑏 is given by 𝑃 (𝑎 (𝑏,𝑖 )𝑡 | 𝑠 (𝑏,𝑖 )𝑡 ).
The entropy 𝐻

total
is collected over a window size of 𝑤 . If the

entropy is decreasing, the episode length is increased by 1 as:

𝐸𝐿 ← 𝐸𝐿 + 𝑓 (𝐻trend
), 𝑓 (𝐻

trend
) =

{
1 if 𝛼 < 0,

0 otherwise,
(11)

where 𝐻
trend

= 𝛼𝐻𝑡𝑜𝑡𝑎𝑙 + 𝛽 represents the linear fitting func-

tion for the entropy values in a window. If the slope 𝛼 is negative,

𝑓 (𝐻
trend
) returns 1; otherwise, it returns 0. The detailed descrip-

tion of the algorithm is presented in Algorithm 1. This adaptive

adjustment ensures that the agent benefits from reduced dead-end

probabilities during the critical early learning stages while still

being able to explore and learn from more complex scenarios in the

latter parts of episodes.

5 EXPERIMENT

In this section, we present the experimental results of AELA under

two well-known MARL test-beds: the StarCraft multi-agent chal-

lenge (SMAC) and modified predator-prey (MPP). We evaluated the

effectiveness of our proposed algorithm by combining it with two

widely known algorithms in MARL: VDN and QMIX. We named

these combinations AELA-VDN and AELA-QMIX, respectively.
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Figure 1: Median test return in the MPP tasks

5.1 Modified predator-prey

The modified predator-prey scenario is an extended version of the

classical predator-prey problem, widely used in MARL research

to evaluate agent coordination and learning capabilities. In this

scenario, multiple predators collaborate to capture prey within an

environment, emphasizing the need for cooperative learning. The

modified predator-prey scenario employs a more intricate reward

structure compared to the original. If two or more predators catch

the prey, a reward of +10 is given, whereas if only one predator
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(f) Corridor

Figure 2: Median test win rates with different SMAC scenarios
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Figure 3: Limited episode length during training

catches the prey, a negative reward of 𝑃 is given. We tested AELA

with eight predators and eight prey, and set 𝑃 as −2 and −4. The

experiment is conducted over 16 episodes, and the median return

from five independent runs is recorded every 10,000 training steps."

As shown in Figure 1(a), the proposed methods AELA-VDN and

AELA-QMIX, which combine AELA with the original algorithms,

demonstrate a faster increase in cumulative rewards compared to

the original algorithms. In particular, for QMIX, which is known

to be highly sensitive to the order in which states are visited [4,

9, 31], performance significantly improves after combining with

AELA due to its ability to prevent the repetition of incorrect actions

early in an episode by limiting the episode length. In the scenario

with 𝑃 = −4 depicted in Figure 1(b), only VDN found a policy

that achieves high cumulative rewards, and even here, AELA-VDN

exhibited a faster rise in cumulative rewards. Although there may

be cases where a good policy is not found depending on the value
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Figure 4: Number of samples with interaction steps

decompositionmethod, the results in Figure 1(b) are still meaningful

as the experimental findings show no degradation in performance,

consistent with the theoretical background discussed in Section 4.1.
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(a) 𝑙 = 1 (b) 𝑙 = 7 (c) 𝑙 = 15

(d) 𝑙 = 22 (e) 𝑙 = 33 (f) 𝑙 = 58

Figure 5: Snapshot of the final policy for AELA-QMIX in 6h_vs_8z with interaction steps 𝑙
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Figure 6: Interaction step at which an episode ends when

following the current best policy during testing

5.2 StarCraft multi-agent challenge

In SMAC, agents are tasked with solving micromanagement scenar-

ios where they must coordinate their actions to defeat opponent

units controlled by the StarCraft II game engine. These scenarios

vary in difficulty, unit types, and the number of agents involved,

offering various challenges for evaluating MARL methods. The re-

ward function in SMAC is typically defined based on damage dealt,

units killed, and victory in the game, thus incentivizing effective

coordination and combat tactics. Agents must make decisions with

limited observability, requiring efficient exploration and accurate

value estimation to achieve optimal performance. We performed

five runs per scenario, and in each run, we conducted 32 tests every

10,000 training steps to calculate the win rate.

Figure 2 shows the median win rate over five runs for VDN,

QMIX, AELA-VDN, and AELA-QMIX. In the relatively easier sce-

narios, such as 3m and 2s_vs_1sc, both methods reach a final win

rate of nearly 100%, but the convergence speed is faster when AELA

is applied. In the remaining, evenmore challenging scenarios, AELA

leads to improved final performance. Notably, in the 6h_vs_8z and
Corridor scenarios, the win rate with the original QMIX was close

to zero, whereas AELA-QMIX achieved a significantly higher win

rate.

Interestingly, performance improvements were achieved solely

by adaptively limiting the episode length based on the learning

situation without applying additional intrinsic rewards or other

complicated value factorizationmechanisms.We analyze that AELA

improves performance by focusing on exploring diverse states early

in the episode. Figure 3 shows the restricted episode length val-

ues applied as constraints during the training phase. With these

restrictions applied, the number of samples in interaction steps was

encouraged to be concentrated in the early part of the episode, as

shown in Figure 4. Due to this intensive data collection early in

the episode, AELA can reduce visitation to unnecessary states later

in the episode, particularly dead-end states. We analyzed cases in

SMAC where the presence of dead-end states prevents finding a

winning policy. Figure 6 shows the episode length during testing.

There is a tendency for QMIX to converge to a policy that has

longer episode lengths, which is associated with dead-end states.

To examine this situation in more detail, a snapshot of the actual

final policy is shown in Figure 5 and 7. As shown in Figures 5, in

the 6h_vs_8z scenario, an effective strategy involves having a few

allied units lure some enemy units away. This prevents those enemy

units from participating in the battle, allowing the remaining allied

units to first attack the rest of the enemy units, and then finally

engage the lured enemy units. However, as shown in Figure 7, if

the strategy of luring enemy units is not properly learned, it can

lead to an incorrect strategy where an allied unit moves away alone

from the rest of the allied units, even when the enemy units are not
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(a) 𝑙 = 1 (b) 𝑙 = 7 (c) 𝑙 = 21

(d) 𝑙 = 38 (e) 𝑙 = 75 (f) 𝑙 = 149

Figure 7: Snapshot of the final policy for QMIX in 6h_vs_8z with interaction steps 𝑙

following. Such a state, where all allied units die in combat against

enemy units, leaving one isolated allied unit due to the failure of

luring, can be considered a dead-end state. This is because a single

allied unit cannot defeat all the remaining enemy units, making it

impossible to transition to a winning state. Therefore, as shown in

Figure 7, all states after 𝑙 = 38 can be considered dead-end states.

AELA mitigates the risk of entering dead-end states by terminating

episodes at appropriate times and starting new episodes, which

results in improved performance.

6 CONCLUSION

In this paper, we presented an adaptive approach to episode length

adjustment for MARL. We theoretically demonstrated that limiting

the episode length reduces the visitation probability of dead-end

states, thereby allowing the learned value function to be closer

to the optimal value function. Based on this background, we pro-

posed a practical algorithm that initially limits the episode length

and gradually extends it while assessing convergence through the

entropy of Q-values. The proposed AELA algorithm was experi-

mentally verified to outperform the traditional fixed episode length

approach across various scenarios in multi-agent environments.

To the best of our knowledge, this paper is the first attempt to

improve learning performance in multi-agent reinforcement learn-

ing by adjusting the episode length. Adjusting the episode length

can be applied to any method, regardless of value decomposition

techniques, additional intrinsic rewards, or network architecture,

suggesting the potential for performance improvement from a new

perspective. Future work could focus on extending this approach

to more complex domains and incorporating additional metrics

that could further enhance the adaptiveness of the episode length,

ensuring optimal policy convergence even in highly dynamic envi-

ronments.
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