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ABSTRACT

Learning diverse and high-performance behaviors from a limited
set of demonstrations is a grand challenge. Traditional imitation
learning methods usually fail in this task because most of them are
designed to learn one specific behavior even with multiple demon-
strations. Therefore, novel techniques for quality diversity imitation
learning, which bridges the quality diversity optimization and imita-
tion learning methods, are needed to solve the above challenge. This
work introduces Wasserstein Quality Diversity Imitation Learning
(WQDIL), which 1) improves the stability of imitation learning in
the quality diversity setting with latent adversarial training based
on a Wasserstein Auto-Encoder (WAE), and 2) mitigates a behavior-
overfitting issue using a measure-conditioned reward function with
a single-step archive exploration bonus. Empirically, our method
significantly outperforms state-of-the-art IL methods, achieving
near-expert or beyond-expert QD performance on the challenging
continuous control tasks derived from MuJoCo environments.
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1 INTRODUCTION

Imitation Learning (IL) aims to mimic an expert’s behavior by learn-
ing from the demonstrations. IL has achieved great success in many
real-world applications, such as robotics [53], autonomous driving
[6], and drone control [38]. However, most of the traditional imita-
tion learning methods were designed to learn one specific behavior,
even given multiple demonstrations.

Learning diverse and high-quality policies is the ultimate goal
of many real-world applications like robotic locomotion tasks [4].
Recent literature has demonstrated that quality diversity reinforce-
ment learning (QDRL) [4, 45] is a promising direction for achieving
this goal. Prior methods that combine Differentiable Quality Diver-
sity (DQD) [14] with off-policy RL achieved diverse and relatively
high-performance policies. However, the performance gap between
standard RL and QDRL still exists [4]. More recently, Batra et al.
[4] mitigate this gap by leveraging the on-policy RL method PPO
[40] with DQD. PPO estimates the gradients of diversity and perfor-
mance objectives from the online collected data. Then, the estimated
gradients are used by DQD methods like CMA-MAEGA [15] that
maintain a single search point andmove through the behavior space
by filling new regions. The synergy between PPO and DQD results
in a state-of-the-art QDRL method, Proximal Policy Gradient Ar-
borescence (PPGA) [4], that achieves the ultimate goal of robotic
locomotion. Generally, this kind of QDRL method finds a diverse
archive of high-performing locomotion behaviors for an agent by
combining PPO gradient approximations with Differentiable Qual-
ity Diversity algorithms.

However, the success of QDRL heavily relies on high-quality
reward functions, which can be intractable in practice. Quality Di-
versity Imitation Learning (QDIL) offers a more flexible strategy
for learning diverse and high-quality policies from demonstrations
with diverse behaviors. In the literature, adversarial IL methods
such as GAIL [23] have achieved great success in learning specific
behaviors for robotic locomotion tasks. Therefore, a naive solu-
tion for QDIL is to apply adversarial IL to estimate rewards from
the given demonstrations and then leverage the estimated rewards
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for learning diverse and high-quality policies. Unfortunately, ad-
versarial IL methods suffer from the training instability issue,
which usually results in worse-than-demonstrator performance
[23]. Moreover, when the demonstrations only contain a few be-
haviors, the rewards learned by adversarial IL techniques will be
behavior-overfitted and unable to guide the agent to learn more
diverse behaviors beyond the demonstrations.

The training instability issue and the behavior-overfitted reward
issue heavily limit the adversarial QDIL to learning diverse and
high-quality policies with limited demonstrations. In this work, we
propose two synergic strategies to overcome these two challeng-
ing issues. The first strategy aims to stabilize the training of the
reward model, and the second strategy focuses on encouraging the
agent to do behavior space exploration. To develop the first strategy,
we propose to stabilize the reward learning by applying Wasser-
stein adversarial training within the latent space of the Wasserstein
Auto-Encoder (WAE) [47]. Similar to VAE [26], WAE keeps the good
properties of stable training and a nice latent manifold structure
while generating higher-quality images than GAN [47]. Therefore,
we propose to applyWAE to enable a more stable training of reward
model in adversarial QDIL. In addition, we propose latent Wasser-
stein adversarial training to further improve the consistency of
the reward training stability. For the second strategy, we introduce
a bonus that enables the agent to collect data with more diverse
behaviors via single-step archive exploration. We call the resulting
method Wasserstein Quality Diversity Imitation Learning (WQDIL)
with Single-Step Archive Exploration (SSAE). Figure 1 illustrates
the two issues of the Adversarial QDIL (i.e., training instability
and behavior-overfitted reward) and the corresponding solutions
(i.e. WQDIL and Single-Step Archive Exploration). The synergy
between WQDIL and SSAE adherently address the two issues of
adversarial QDIL, resulting in diverse and high-quality policies
when learning with limited demonstrations.

We summarize our contributions as follows:

• First, we indicate the two main issues of the naive QDIL solu-
tion, i.e., the training instability and the behavior-overfitted
reward issues of the adversarial QDIL approach.
• Second, we propose Wasserstein Quality Diversity Imitation
Learning (WQDIL) to address the training instability issue by
applyingWasserstein adversarial training within the latent

space of the Wasserstein Auto-Encoder (WAE).
• Third, to alleviate the behavior-overfitted reward issue, we de-
sign a measure-conditioned reward, which makes the reward
function sensitive to the local measure space, together with a
measure-based bonus, which encourages the agent to collect
data with more diverse behaviors.

2 BACKGROUND AND RELATEDWORK

This section provides background and related works for Imitation
Learning (Section 2.1), Quality Diversity Reinforcement Learning
(Section 2.2), Quality Diversity Imitation Learning (Section 2.3),
Training Stability (Section 2.4), and Exploration (Section 2.5).

2.1 Reinforcement Learning and Imitation

Learning

Reinforcement Learning (RL) searches for policies that maximize cu-
mulative reward in an environment, typically assuming the discrete-
time Markov Decision Process (MDP) formalism (𝑆,𝐴, 𝑟, 𝑃,𝛾). Here,
𝑆 and 𝐴 are the state and action spaces, 𝑟 (𝑠, 𝑎) is the reward func-
tion, 𝑃 (𝑠′ |𝑠, 𝑎) defines state transition probabilities, and 𝛾 is the
discount factor. The traditional RL objective is to maximize the
discounted episodic return of a policy E

[∑𝑇−1
𝑘=0 𝛾

𝑘𝑟 (𝑠𝑘 , 𝑎𝑘 )
]
where

𝑇 is the episode length.
Imitation learning (IL) trains an agent to mimic expert behaviors

from demonstrations [52]. Behavior Cloning (BC) uses supervised
learning to imitate expert behavior but suffers from severe error
accumulation [37]. Inverse Reinforcement Learning (IRL) seeks to
recover a reward function from the demonstrations, and use re-
inforcement learning (RL) to train a policy that best mimics the
expert behaviors [1]. Early IRL methods estimate rewards in the
principle of maximum entropy [13, 50, 54]. Adversarial Inverse
Reinforcement Learning (AIRL) [18] learns a robust reward func-
tion by training the discriminator via logistic regression to classify
expert data from policy data.

Adversarial IL methods treat IRL as a distribution-matching
problem. Generative Adversarial Imitation Learning (GAIL) [23]
trains a discriminator to differentiate between the state-action dis-
tribution of the demonstrations and the state-action distribution
induced by the agent’s policy, and output a reward to guide policy
improvement. More recently, Primal Wasserstein Imitation Learn-
ing (PWIL) [12] introduces an offline reward function based on
an upper bound of the Wasserstein distance between the expert
and agent’s state-action distributions, avoiding the instability of
adversarial IL methods. This paper includes max-entropy IRL (Max-
EntIRL), the classic adversarial IL (i.e., GAIL) and the state-of-the-art
PWIL as our baselines in QDIL with limited demonstrations.

2.2 Quality Diversity Reinforcement Learning

Quality Diversity Optimization. Distinct from traditional op-
timization which aims to find a single solution to maximize the
objective, Quality Diversity (QD) optimization aims to find a set
of high-quality and diverse solutions in an 𝑛-dimensional contin-
uous space R𝑛 . Given an objective function 𝑓 : R𝑛 → R and
𝑘-dimensional measure function 𝑚 : R𝑛 → R𝑘 , the goal is to
find solutions 𝜃 ∈ R𝑛 for each local region in the behavior space
𝐵 = 𝑚(R𝑛). QD algorithms discretize 𝐵 into 𝑀 cells, forming an
archiveA. Formally, the objective is to find a set of solutions {𝜃𝑖 }𝑀𝑖=1
which maximises 𝑓 (𝜃𝑖 ) for each 𝑖 = 1, . . . , 𝑀 . Each solution 𝜃𝑖 cor-
responds to a cell in A via its measure𝑚(𝜃𝑖 ), forming an archive
of high-quality and diverse solutions [10, 35].

Previous Quality Diversity optimization methods integrate Evo-
lution Strategies (ES) with MAP-Elites [32], such as Covariance Ma-
trix Adaptation MAP-Elites (CMA-ME) [16]. CMA-ME uses CMA-
ES [21] as an ES algorithm generating new solutions inserted into
the archive, and uses MAP-Elites to retain the highest-performing
solution in each cell. CMA-ES adapts its sampling distribution
based on archive improvements from offspring solutions. How-
ever, traditional ES faces low sample efficiency, especially for high-
dimensional parameters such as neural networks. Differentiable
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Figure 1: Illustrations of the two issues of the Adversarial QDIL (i.e., training instability and behavior-overfitted reward) and

their corresponding solutions (i.e. WQDIL and Single-Step Archive Exploration). 𝛿 (𝑠) means the Markovian Measure Proxy of

state 𝑠, a.k.a. the single-step measure.

Humanoid Walker2d

left = 81%  
right = 86% 

left = 56%  
right = 91% 

left = 42%  
right = 6% 

left = 67%  
right = 62% 

Figure 2: Illustration of diverse behaviors learned by our

Quality Diversity Imitation Learning framework on Hu-

manoid and Walker2d, where each column represents one

behavior. The “left” and “‘right” means the proportion of

time the left leg or right leg contacting the ground.

Quality Diversity (DQD) enhances exploration and optimization by
leveraging gradient information from both the objective and mea-
sure functions. The state-of-the-art DQD algorithm, CMA-MAEGA
[15], utilizes CMA-ES to maintain a distribution over coefficient
sets 𝑐𝑖 , rather than directly generating solutions 𝜃 . The objective
function is 𝑔(𝜃 ) = |𝑐0 |𝑓 (𝜃 ) +

∑𝑘
𝑗=1 𝑐 𝑗𝑚 𝑗 (𝜃 ), where coefficients 𝑐𝑖

weight the gradients of the objective 𝑓 and measures 𝑚 𝑗 . CMA-
MAEGA maintains a search policy and samples multiple coefficient
sets after computing gradients of 𝑓 and𝑚𝑖 to generate branched off-
spring solutions 𝜋𝜃1 , . . . , 𝜋𝜃𝜆 . The archive improvement from each
offspring guides the update of the coefficient distribution, which is
then used to refine the search policy.

Built on the QD optimization paradigm, the Quality Diversity

Reinforcement Learning (QDRL) problem can be viewed as max-
imizing 𝑓 (𝜃 ) = E𝜋𝜃

[∑𝑇−1
𝑘=0 𝛾

𝑘𝑟 (𝑠𝑘 , 𝑎𝑘 )
]
with respect to diverse 𝜃

in a policy archive defined by measure𝑚 [11]. In QDRL, both the
objective and measure are non-differentiable, requiring approxima-
tions by DQD approaches. The state-of-the-art QDRL algorithm,
Proximal Policy Gradient Arborescence (PPGA), employs a vector-
ized PPO (VPPO) architecture to approximate the gradients of the
objective and measure functions [5]. PPGA introduced the Mar-
kovian Measure Proxy (MMP), a surrogate measure function that
correlates strongly with the original measure and allows gradient

approximation via policy gradient by treating it as a reward func-
tion. Specifically, MMP decomposes trajectory-based measures𝑚
into individual steps by computing:

𝑚𝑖 (𝜃 ) =
1
𝑇

𝑇∑︁
𝑡=0

𝛿𝑖 (𝑠𝑡 ), (1)

where 𝛿𝑖 (𝑠𝑡 ) represents the single-step measure dependent on the
state 𝑠𝑡 . By breaking down the measure in this way, it becomes state-
dependent and adheres to theMarkov property. Then PPGA uses 𝑘+
1 parallel environments with distinct reward functions – one for the
original reward and 𝑘 for the surrogate measures. It approximates
the gradients of both the objective and the 𝑘 measure functions by
comparing the policy parameters before and after multiple PPO
updates. These gradients are then passed to the modified CMA-
MAEGA to update the policy archive.

2.3 Quality Diversity Imitation Learning

Definition 1 (Quality-Diversity Imitation Learning (QDIL)). Given
expert demonstrations D = {(𝑠𝑖 , 𝑎𝑖 , 𝛿 (𝑠𝑖 ))}𝑛𝑖=1, where 𝑠 ,𝑎,𝛿 (𝑠) rep-
resent state and action and the Markovian measure proxy of state 𝑠 .
QDIL aims to learn an archive of diverse policies {𝜋𝜃𝑖 }𝑀𝑖=1 that col-
lectively maximizes 𝑓 (𝜃 ) (i.e., cumulative reward) without access to
the true reward. The archive is defined by a 𝑘-dimensional measure
function𝑚(𝜃 ), representing behavior patterns. After dividing the
archive into 𝑀 cells, the objective of QDIL is to find M solutions,
each occupying one cell, to maximize:

max
{𝜃𝑖 }

𝑀∑︁
𝑖=1

𝑓 (𝜃𝑖 ) . (2)

In this paper, we focus onAdversarial QDIL, in which we apply
adversarial IL, based on GAIL [19] in particular, to estimate rewards
from the given demonstrationsD. This adversarial training scheme
considers the policy as an adversary and an additional neural net-
work, the disciminator 𝐷 , which discriminates between samples of
the policy and samples of the demonstrations. The resulting reward
model is based on the discriminator, and indicates the likelihood
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of the parameters based on the demonstration behaviours. This
reward model is then used for the objective of QDIL.

2.4 Improving Stability of Adversarial IL

The methodology of adversarial IL comes from Generative Adver-
sarial Networks (GAN) [19]. Although adversarial IL methods like
GAIL have achieved great success in low-dimensional environ-
ments, they also inherit the training instability issue of GAN that
limits its generalization to more diverse tasks [29]. This problem
will be exacerbated in the QDIL setting due to the variety of policies
being trained.

Wasserstein GAN (WGAN) [2] was proposed to stabilize the
training of GANs by minimizing the Wasserstein distance instead
of the Jensen-Shannon divergence between true data distribution
and generated data distribution. However, the original WGAN with
weight clipping can lead to undesired behaviors [20]. Gradient
penalty (GP) was later proposed to address this issue, and has be-
come a widely-used strategy for improving the stability of GAN and
WGAN [20, 31, 34, 36, 39, 44]. We have applied these stabilization
methods in adversarial QDIL, and conduct preliminary investiga-
tion experiments on continuous control tasks derived fromMuJoCo.
However, we only observed negligible effects of these methods on
stabilizing adversarial QDIL.

Wasserstein Auto-Encoder (WAE) [47] minimizes the optimal
transport cost𝑊𝑐 (𝑃𝑋 , 𝑃𝐺 ) based on the novel auto-encoder formu-
lation. In the resulting optimization problem, the decoder tries to
accurately reconstruct the encoded training examples as measured
by the cost function 𝑓𝑐 . Similar to VAE [26], the encoder tries to
simultaneously achieve two conflicting goals: it tries to match the
encoded distribution of training examples 𝑄𝑍 := E𝑃𝑋 [𝑄 (𝑍 |𝑋 )] to
the prior 𝑃𝑍 as measured by any specified divergence 𝐷𝑧 (𝑄𝑍 , 𝑃𝑍 ),
while making sure that the latent codes provided to the decoder
are informative enough to reconstruct the encoded training exam-
ples. Using the squared cost 𝑓𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥22, WAE keeps the
good properties of VAEs (stable training and a nice latent manifold
structure) while generating better-quality images than GAN [47].
This observation inspired us to apply WAE to improve the stability
of adversarial QDIL. The resulting framework is called Wasserstein
Quality Diversity Imitation Learning (WQDIL).

2.5 Encouraging exploration in RL and IL

Exploration bonuses have a long history in bandits and reinforce-
ment learning as part of the “optimism in face of uncertainty” prin-
ciple, and include but are not limited to visitation count based
approaches. In bandits, upper confidence bound (UCB, e.g. [3])
computes a bonus based on

√︃
2 ln(𝑡 )
𝑛 (𝑎𝑡 ) for action 𝑎𝑡 at time 𝑡 . In

tabular reinforcement learning, upper confidence reinforcement
learning (UCRL) techniques (e.g. [24]) provide upper confidence
bounds to the reward based on a bonus proportional to

√︃
1

𝑛 (𝑠𝑡 ,𝑎𝑡 ) .
R-MAX [8] and E3 [25] explicitly distinguish between known and
unknown states, where in unknown states R-MAX assigns the max-
imal reward of the MDP and E3 performs balanced wandering (i.e.
taking the action with lowest visitation count for the current state).
Related concepts have also been applied in deep reinforcement
learning [22, 30, 41, 43]. Related to exploration bonuses, recent

techniques in imitation learning also considered curiosity-based
exploration [9, 33, 51], which relates to discrepancy between the
transition model’s prediction and the true transition. For instance,
GIRIL [51] computes rewards offline by pretraining a reward model
using a conditional VAE [42].

Our measure bonus differs from these approaches in that it is
designed to explore the behavior space rather than the (state-)action
space. Further, contrasting to UCRL type bonuses, due to dividing
by the proportion of visits, rather than the count, our measure
bonus does not shrink to zero such that underexplored behaviors
will continue to receive a bonus. This is somewhat comparable in
aim to the balanced wandering of E3 but differs in that it is a reward
bonus rather than a policy definition (since we do not have control
over the measures) and that it is maintained throughout the entire
optimization process as we are interested in behavioral diversity.

3 WASSERSTEIN QUALITY DIVERSITY

IMITATION LEARNING (WQDIL)

This section introduces our proposed framework-WQDIL. We first
introduce the behavior overfitted reward problem and propose
two solutions called Single-Step Archive Exploration Bonus and
Measure Conditioning (Section 3.1). We then introduce Wasserstein
Auto-encoders (Section 3.2), and propose a WQDIL instance WAE-
WGAIL that applies latentWasserstein adversarial training forWAE
optimization (Section 3.3).

3.1 Mitigating behavior overfitting

Compared to the vast behavior space, expert behaviors tend to be
limited in diversity. This poses a problem for learning diverse be-
haviors, as the reward model in the traditional IL paradigm focuses
solely on shaping rewards around specific expert behaviors while
neglecting other behavior patterns. This presents a challenge for
balancing exploration and exploitation and makes reward functions
local in that they only count a single behavior as high-performing
[49]. We refer to this as the “behavior-overfitted reward” problem.
This problem significantly inhibits the learning of diverse behaviors,
since any RL method inherently converges to high-reward behav-
iors. To address this problem, we introduce a single-step archive-
exploration reward bonus and measure-conditioning, which to-
gether ensure exploration across the behavior space as well as the
sensitivity of the reward function to the local measure information.

Single-Step Exploration Bonus and Measure Conditioning. In both
the bonus and themeasure conditioning, we are primarily interested
in single-step measures building on the Markovian Measure Proxy
mentioned in Section 2.2 to make the measure information more
fine-grained. This is not merely for convenience purposes but also
as this will yield richer data from the demonstrations, which would
otherwise be sparse (e.g. only a few episodic measures since we
focus on limited-expert-demonstrations in our setting). Meanwhile,
focusing on single step measure will allow exploring behaviors
with similar episodic measure but different single-step measure for
potentially yielding higher fitness within a particular behavioral
region. This is because the episodic measure is the average (or sum)
of each single-step measure and is less fine-grained.

For the exploration bonus, we establish the single-step archive
A𝑠𝑖𝑛𝑔𝑙𝑒 , which corresponds to the state-dependent measure 𝛿 (𝑠).
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Similar to the behavior archiveA, we partitionA𝑠𝑖𝑛𝑔𝑙𝑒 into numer-
ous cells for discretization. Notably, instead of merely recording
whether a cell is occupied, we track the visitation count 𝑛𝑖 for
each cell𝐶𝑖 inA𝑠𝑖𝑛𝑔𝑙𝑒 . The exploration reward bonus is formulated
as

𝑟𝑒𝑥𝑝 (𝑠, 𝑎, 𝛿 (𝑠)) =
1

1 + 𝑝 (𝛿 (𝑠)) , (3)

where
𝑝 (𝛿 (𝑠)) = 𝑛(𝐶 (𝛿 (𝑠)))∑

𝑖 𝑛(𝐶𝑖 )
. (4)

In these equations,𝐶𝑖 denotes the 𝑖-th cell inA𝑠𝑖𝑛𝑔𝑙𝑒 ,𝐶 (𝛿 (𝑠)) repre-
sents the cell corresponding to the single-step measure proxy 𝛿 (𝑠),
and 𝑛 signifies the visitation count. Each time a state 𝑠 activates a
cell in A𝑠𝑖𝑛𝑔𝑙𝑒 , the visitation count of that cell is incremented by
one. This mechanism allows the single-step archive A𝑠𝑖𝑛𝑔𝑙𝑒 to be
dynamically updated during training.

The exploration bonus assigns higher rewards to regions in
A𝑠𝑖𝑛𝑔𝑙𝑒 that are less frequently visited, thereby promoting the
agent to explore unseen behavior patterns. Additionally, once a
region within the single-step behavior space has been sufficiently
explored, the bonus decreases, facilitating the exploitation of that
region to discover high-performing policies. However, note that
the bonus is defined relative to the exploration of other measures
such that the bonus never shrinks to zero for a particular measure.
The form in Eq. 3 also avoids extreme values due to the +1 offset in
the denominator. With these features together, the reward bonus
can effectively mitigate the “behavior-overfitted reward” issue by
always encouraging new behavior patterns, thus facilitating diverse
behaviors.

In addition to the exploration bonus, the reward model is also
conditioned on the measure. Specifically, using GAIL for imitation
learning, the reward model is formulated as

R̃ (𝑠, 𝑎, 𝛿 (𝑠)) = max
𝜋

min
𝐷

E(𝑠,𝑎)∼D [− log𝐷 (𝑠, 𝑎, 𝛿 (𝑠))]

+ E(𝑠,𝑎)∼𝜋 [− log(1 − 𝐷 (𝑠, 𝑎, 𝛿 (𝑠)))] . (5)

This contributes to a solution to behavior overfitting: since the
goal is to form behaviorally diverse policies, different behaviors
require different policies to be imitated – and hence correspond to
a different reward function. Combining with the exploration bonus,
we obtain the combined reward model

R(𝑠, 𝑎, 𝛿 (𝑠)) = R̃ (𝑠, 𝑎, 𝛿 (𝑠)) + 𝑟𝑒𝑥𝑝 (𝑠, 𝑎, 𝛿 (𝑠)) . (6)

3.2 Wasserstein auto-encoders

The Wasserstein distance is a formulation that occurs within the
context of optimal transport [48]. Kantorovich’s formulation of the
problem is given by

W𝑐 (𝑃𝑥 , 𝑃𝐺 ) := inf
Γ∈P(𝑥∼𝑃𝑋 ,𝑦∼𝑃𝐺 )

E(𝑥,𝑦)∼Γ [𝑓𝑐 (𝑥,𝑦)] , (7)

where 𝑓𝑐 (𝑥,𝑦) : X × X → R+ is the cost function and P(𝑥,𝑦) is
the set of joint distributions of (𝑥,𝑦) with marginals 𝑃𝑥 and 𝑃𝐺
respectively. We are interested in the set X = 𝑆 ×𝐴 ×𝑀 , where𝑀
is the measure space.

Auto-encoders aim to represent input data in a low-dimensional
latent space.Modern generativemodels like variational auto-encoders
(VAEs) [26] and generative adversarial networks (GANs) [19] do so
by minimizing a discrepancy measure between the data distribution

𝑃𝑥 and the generative model 𝑃𝐺 . To formulate a Wasserstein based
generative model, the form in Eq. 7 is intractable; however, follow-
ing [7], one can equate the Wasserstein distance to the following
WAE objective [47]:

𝐷WAE (𝑃𝑥 , 𝑃𝐺 ) := inf
𝑄 (𝑧 |𝑥 ) ∈Q

E𝑃𝑥E𝑄 (𝑧 |𝑥 )
[
𝑓𝑐
(
𝑥,𝐺 (𝑧)

) ]
+ 𝜆 · 𝐷𝑧 (𝑄𝑧 , 𝑃𝑧),

(8)

where 𝑃𝑧 is the latent distribution, 𝐷𝑧 is a divergence measure,
and 𝑃𝐺 is the decoder (i.e. generative model). We restrict our cost
function to the squared Euclidian distance, i.e. 𝑓𝑐 (𝑥,𝑦) = | |𝑥 − 𝑦 | |22,
resulting in the 2-Wasserstein distance.

WAE-GAN [47] is an instance ofWAEwhen choosing𝐷𝑧 (𝑄𝑧 , 𝑃𝑧) =
𝐷JS (𝑄𝑧 , 𝑃𝑧) and using adversarial training to estimate 𝐷𝑧 . Specifi-
cally, WAE-GAN uses an adversary and discriminator in the latent
spaceZ trying to separate “true” points sampled from 𝑃𝑧 and “fake”
ones sampled from 𝑄𝑧 [19]. In the imitation learning setting, 𝑃𝑧
corresponds to the distribution of latent data obtained from the
encoded demonstrations while 𝑄𝑧 corresponds to the distribution
of latent data obtained from the encoded trajectory data from the
policy.

It has been noted previously that WAE-GAN still suffers from
instabilities due to the mode collapse property of GANs [27]. There-
fore, we propose WAE-WGAN, which is equivalent to WAE-GAN
except that it sets the divergence measure to the 1-Wasserstein dis-
tance, i.e. 𝐷𝑧 (𝑄𝑧 , 𝑃𝑧) =W1 (𝑄𝑧 , 𝑃𝑧). We choose this option based
on results on the improved stability during adversarial training [2].
Due to strong duality with 𝑝 = 1, the Kantorovic-Rubinstein duality
can be applied, i.e.

W1 (𝑄𝑧 , 𝑃𝑧) = sup
| | 𝑓 | |𝐿≤1

E𝑧∼𝑄𝑧
[𝑓 (𝑧)] − E𝑧∼𝑃𝑧 [𝑓 (𝑧)], (9)

where 𝑓 is a 1-Lipschitz function 𝑓 : X → R.

3.3 WQDIL: WAE Meets Adversarial QDIL

This section introduces our Wasserstein Quality Diversity Imita-
tion Learning (WQDIL) framework, which is built on top of the
Proximal Policy Gradient Arborescence (PPGA) algorithm [5]. The
pseudo-code of WQDIL is given in Algorithm 1, where the blue
color indicates the WQDIL’s operations that are distinct from the
PPGA algorithm.

In WQDIL, we first initialize the reward model R and input the
expert demonstrations D. Then we repeat iterations as follows.
First, approximate the gradients ∇𝑓 and ∇𝑚 (in l.4) using the re-
wards estimated from R (Algorithm 2). Lines 5-15 are QD optimiza-
tion options used in PPGA. In line 16, we update the search policy
using the reward model R. Line 17 updates the reward model R
using the input expert demonstrationsD. We now discuss different
algorithms for updating the reward model R in WQDIL.

WAE-GAIL. The first reward updating algorithm is WAE-GAIL,
which is a naive adaptation of WAE-GAN in the QDIL framework.
Algorithm 4 in Appendix A summarizes the details of WAE-GAIL.

WAE-WGAIL. Although WAE-GAIL achieves better stability
and higher QD performance than GAIL in some tasks, the improve-
ments are not consistent. To further improve WAE-GAIL, we pro-
pose to apply Wasserstein adversarial training in the latent space
of WAE, which is analogous to the WAE-WGAN proposed in Sec-
tion 3.2. The loss function of the auto-encoder in WAE-WGAIL is
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Algorithm 1 Wasserstein Quality Diversity Imitation Learning
(WQDIL)
1: Input: Initial policy 𝜃0, VPPO instance to approximate ∇𝑓 ,
∇𝑚 and move the search policy, number of QD iterations 𝑁𝑄 ,
number of VPPO iterations to estimate the objective-measure
functions and gradients𝑁1, number of VPPO iterations to move
the search policy 𝑁2, branching population size 𝜆, and an initial
step size for xNES 𝜎𝑔 . Initial reward model R, Expert demon-
strations D.

2: Initialize the search policy 𝜃𝜇 = 𝜃0. Initialize NES parameters
𝜇, Σ = 𝜎𝑔𝐼

3: for iter← 1 to 𝑁 do

4: 𝑓 ,∇𝑓 ,m,∇m← VPPO.compute_jacobian(𝜃𝜇 ,R,m(·), 𝑁1)
⊲ approx gradients ∇𝑓 and ∇𝑚 using the rewards estimated
by R (Algorithm 2)

5: ∇𝑓 ← normalize(∇𝑓 ), ∇m← normalize(∇m)
6: _← update_archive(𝜃𝜇 , 𝑓 ,m)
7: for 𝑖 ← 1 to 𝜆 do // branching solutions
8: 𝑐 ∼ N(𝜇, Σ) // sample gradient coefficients
9: ∇𝑖 ← 𝑐0∇𝑓 +

∑𝑘
𝑗=1 𝑐 𝑗∇𝑚 𝑗

10: 𝜃 ′
𝑖
← 𝜃𝜇 + ∇𝑖

11: 𝑓 ′, ∗,m′, ∗ ← rollout(𝜃 ′
𝑖
,R)

12: Δ𝑖 ← update_archive(𝜃 ′
𝑖
, 𝑓 ′,m′) ⊲ get archive improve-

ment of each solution using Algorithm 2 of PPGA paper.
13: Rank gradient coefficients ∇𝑖 by archive improvement Δ𝑖
14: Adapt xNES parameters 𝜇 = 𝜇′, Σ = Σ′ based on improve-

ment ranking Δ𝑖
15: 𝑓 ′ (𝜃𝜇 ) = 𝑐𝜇,0 𝑓 +

∑𝑘
𝑗=1 𝑐𝜇,𝑗𝑚 𝑗 , where 𝑐𝜇 = 𝜇′

16: 𝜃 ′𝜇 = VPPO.train(𝜃𝜇 , 𝑓 ′,m′, 𝑁2,R) ⊲ walk search policy us-
ing reward model R

17: R .update(D, 𝜃 ′𝜇 ) ⊲ update reward model using Algorithm 4
(Appendix A) for WAE-GAIL, Algorithm 5 (Appendix A) for
WAE-WGAIL, or Algorithm 6 for mCWAE-WGAIL.

18: if there is no change in the archive then
19: Restart xNES with 𝜇 = 0, Σ = 𝜎𝑔𝐼

20: Set 𝜃𝜇 to a randomly selected existing cell 𝜃𝑖 from the
archive

21: Output: Updated policy archive.

Algorithm 2 Reward Estimation

1: Initialize: Reward model R
2: Method: Reward estimation in Algorithm 1 (step 4)

3: def get_episode_reward(episode, current archive A):
4: 𝑠1, 𝑎1, 𝛿 (𝑠1), 𝑠2, 𝑎2, 𝛿 (𝑠2) . . . , 𝑠𝑘 , 𝑎𝑘 , 𝛿 (𝑠𝑘 ) ← episode()
5: 𝑟1, 𝑟2, . . . , 𝑟𝑘 ← R(𝑠, 𝑎, 𝛿 (𝑠)) ⊲ batch reward (see Eq.5)
6: compute exploration bonuses 𝑟1,𝑒𝑥𝑝 , 𝑟2,𝑒𝑥𝑝 , . . . , 𝑟𝑘,𝑒𝑥𝑝 ⊲ (see

Eq.3)
7: For 𝑖 = 1, . . . , 𝑘
8: 𝑟𝑖 ← 𝑟𝑖 + 𝑟𝑖,𝑒𝑥𝑝 ⊲ calculate total reward for each step
9: return 𝑟1, 𝑟2, . . . , 𝑟𝑘

based on the reconstruction loss for expert demonstrations, the
reconstruction loss for policy data, and the Wasserstein distance

between latent variables of expert demonstrations and policy data:

L(𝜙,𝜓 ) = L𝑒
recon + L𝜋

recon + 𝜆𝐷𝑧 (𝑧𝑒 , 𝑧𝜋 )
= E𝑥𝑒∼D,𝑧𝑒∼𝑄𝜙 (𝑧𝑒 |𝑥𝑒 ) [𝑓𝑐 (𝑥

𝑒 ,𝐺𝜓 (𝑧𝑒 ))]
+ E𝑥𝜋∼𝜋,𝑧𝜋∼𝑄𝜙 (𝑧𝜋 |𝑥𝜋 ) [𝑓𝑐 (𝑥𝜋 ,𝐺𝜓 (𝑧𝜋 ))]

+ 𝜆E𝑥𝑒∼D,𝑥𝜋∼𝜋
[
𝐷W (𝐺𝜓 (𝑥𝑒 )) − 𝐷W (𝐺𝜓 (𝑥𝜋 ))

]
, (10)

where 𝜙 and 𝜓 are the parameters of the encoder and decoder,
respectively, 𝑥 = (𝑠, 𝑎) is the state-action pair,𝑄𝜙 is the encoder,𝐺𝜓

is the decoder, and𝐷W is theWasserstein discriminator. Algorithm
5 in Appendix A summarizes the details of WAE-WGAIL.

mCWAE-WGAIL. Compared to GAIL, WAE-WGAIL has sig-
nificantly better stability and consistency across different tasks.
However, the latent space of WAE-WGAIL is learned from the
state-action pairs. Since the demonstrations only contain very lim-
ited behaviors, the learned latent space is not adaptive to more
diverse behaviors that the agent may encounter. To improve the
adaptivity of the latent space and the reward model R, we propose
measure-conditioned WAE-WGAIL (mCWAE-WGAIL) that learns
latent space by reconstructing state-action-measure triplet, i.e. for-
mulating 𝑥 = (𝑠, 𝑎, 𝛿 (𝑠)) in Eq. 10. Algorithm 6 summarizes the
details of mCWAE-WGAIL, our proposed algorithm for WQDIL.
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Figure 3: Visualization of the behavior space. The x and y axes

are the proportions of time leg 1 and 2, respectively, touch

the ground. Green indicates the full expert behavior space,

blue indicates the selected top-500 elites, and red indicates

the selected demonstrators.

4 EXPERIMENTS

4.1 Experiment Setup

We evaluate our framework on three popular MuJoCo [46] envi-
ronments: Halfcheetah, Humanoid, and Walker2d. The measure
function is the number of times a leg contacts with the ground,
divided by the trajectory length. We implement all the methods
based on the PPGA implementation, which utilizes the Brax sim-
ulator [17] with QDax wrappers for measure calculation [28]. All
experiments were conducted on A40 GPUs for three runs per task.

4.2 Demonstrations

We use a policy archive obtained by PPGA to generate expert
demonstrations. To follow real-world scenario with limited demon-
strations, we first sample the top 500 high-performance elites from
the archive as candidate pool and then select 4 policies from these
candidates such that they are as diverse as possible. We generate
1 demonstration for each selected policy, resulting in the final 4
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Expert WAE-WGAIL mCWAE-WGAIL-BonusWAE-WGAIL-BonusGAIL WAE-GAIL

Figure 4: Visualization of the policy archive of Expert, GAIL, WAE-GAIL, WAE-WGAIL, WAE-WGAIL-Bonus and mCWAE-

WGAIL-Bonus on Humanoid. The color indicates the cumulative rewards of best performing policy in the archive cells.
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Figure 5: Learning curve comparison of our mCWAE-WGAIL-Bonus against WAE-WGAIL and state-of-the-art IL methods.

The curves (and shaded areas) represent the means (and standard deviations) of the algorithms. Columns indicate the metric

(QD-Score, Coverage, Best Reward, and Average Reward) while the rows represent the different benchmarks (Halfcheetah,

Walker2d, and Humanoid).

demonstrations for QDIL. This process results in 4 diverse demon-
strations (episodes) per environment. Figure 3 visualizes the demon-
strators in the policy archive, and Table 4 in Appendix C provides
the statistical properties of the demonstrations.

4.3 Performance

To validate the effectiveness of WQIL with Single-Step Archive
Exploration, we compare our mCVAE-WAIL-Bonus against state-
of-the-art IL methods within QDIL framework. These methods
includes our WAE-WGAIL (Algorithm 5, Appendix A), GAIL [23],

PWIL [12], AIRL [18], MaxEntIRL [54] and GIRIL [51]. We apply a
gradient penalty to all the methods that require the online update
of the reward model. Appendix B summarizes the hyperparameters.

We compare the performance under four QD metrics [5]: 1)
QD-Score, the sum of scores of all nonempty cells in the archive.
QD-score is the most important metric in QDIL as it aligns with the
objective of QDIL as in equation (2); 2) Coverage, the percentage
of nonempty cells, indicating the algorithm’s ability to discover
diverse behaviors; 3) Best Reward, the highest score found by
the algorithm; and 4) Average Reward, the mean score of all
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nonempty cells, reflecting the ability to discover both diverse and
high-performing policies. We use the true reward functions to
calculate these metrics.

The heatmaps in Figure 4 visualize the performance across the
policy archive for Expert, GAIL, WAE-GAIL, WAE-WGAIL, WAE-
WGAIL-Bonus and mCWAE-WGAIL-Bonus on Humanoid. Even
using true rewards, the expert explores less than half of the archive
in the Humanoid environment. The high-performance policies are
more restricted, covering around a quarter of the full archive. GAIL
nearly explores the full archive space, however, most of the learned
policies are low-performance (in dark color). Due to the training
instability and behavior-overfitting issues, GAIL only learns high-
performance policies within a small region of the behavior space.
WAE-GAIL learns more high-performance policies than GAIL since
it maintains better stability than GAIL. However, the explored re-
gion is still limited. By applying latent Wasserstein adversarial
training, WAE-WGAIL further enlarges the explored archive region
and coverage of high-performance policies. WAE-WGAIL-Bonus
updates the archive using the rewards learned by WAE-WGAIL and
the estimated single-step archive exploration bonus. The explored
region of WAE-WGAIL-Bonus is clearly larger than WAE-WGAIL,
which we attribute to the exploration bonus yielding improved cov-
erage of the measure space. Thanks to the measure conditioning,
the explored archive space of mCWAE-WGAIL-Bonus is slightly
smaller but is more focused in the sense that it yields the largest
set of high-performing policies among the five QDIL methods.

Figure 5 shows the learning curve comparison of QD perfor-
mance for different QDIL methods. Among the four metrics, QD-
Score is the most important because it reflects both high diver-
sity and high quality of performance. In HalfCheetah, our method
mCWAE-WGAIL-Bonus achieves one of the highest QD-Score with
much better sample efficiency than the other counterparts (i.e.,
achieving the sameQD-Scorewithmuch fewer iterations). InWalker2d
and Humanoid environments, our method achieves a significantly
higher QD-Score than the other methods. PWIL achieves a slightly
higher QD-Score than our method in HalfCheetah, however, it per-
forms the worst in Humanoid. MaxEntIRL performs worse than
GAIL, while AIRL outperforms GAIL slightly. Pretraining from lim-
ited demonstrations, GIRIL performs similar to GAIL in HalfChee-
tah and similar to WAE-WGAIL in Humanoid but much worse in
Walker2d. For Coverage, our mCWAE-WGAIL-Bonus is the best in
HalfCheetah and Walker2d. Although our coverage in Humanoid is
not the best, we significantly outperform the baselines in terms of
AverageReward. The quantitative results are summarized in Table
5 of Appendix D.1.

4.4 Ablations

We conduct two ablations to study the effects of each component of
our method mCWAE-WGAIL-Bonus. The first ablation in Section
4.4.1 studies the effects of latent Wasserstein adversarial training in
the QDIL framework. On the other hand, Section 4.4.2 focuses on
studying the effects of single-step archive exploration bonus and
measure conditioning.

4.4.1 Ablation on Latent Wasserstein Adversarial Training. To study
the effect of latent Wasserstein adversarial training, we addition-
ally introduce mCWAE-GAIL-Bonus, which reinforces WAE-GAIL

with measure conditioning and a single-step archive exploration
bonus. Table 7 in Appendix D.2 compares the QD performance of
our mCWAE-WGAIL-Bonus with mCWAE-GAIL-Bonus and WAE-
WGAIL. As we can see, applying Wasserstein adversarial training
improves the QD-Score of WAE-GAIL and mCWAE-GAIL-Bonus
by 27.5% and 23.7% respectively on HalfCheetah. In Walker2d, the
latent Wasserserstein adversarial training enhances the QD-Score
of WAE-GAIL and mCWAE-GAIL-Bonus by 74.3% and 62.4%, which
is significant. Moreover in Humanoid, mCWAE-WGAIL-Bonus
achieves 2x QD-Score of mCWAE-GAIL-Bonus, impressively out-
performing the expert (i.e., PPGA-trueReward) by 12%. The learning
curves are shown in Figure 6 in Appendix D.2.

4.4.2 Ablations on Single-Step Archive Exploration and Measure
Conditioning. Table 8 in of Appendix D.2 compares the effects of
single-step archive exploration bonus and measure conditioning.
Measure conditioning improves the QD-Score for WAE-WGAIL-
Bonus by 42.8%. In Walker2d, the contributions of measure con-
ditioning to WAE-WGAL and WAE-WGAIL-Bonus are 12.3% and
20.3% respectively. In Humanoid, mCWAE-WGAIL-Bonus outper-
forms WAE-WGAIL-Bonus by 28.7%. Now, we study the effect of
the single-step archive exploration bonus. The bonus does not show
much improvement on HalfCheetah. Comparing mCWAE-WGAIL-
Bonus and mCWAE-WGAIL, we found that the contributions of
bonus on the QD-Score improvement are 29.5% inWalker2d and 80%
in Humanoid. Comparing WAE-WGAIL-Bonus and WAE-WGAIL,
the contributions of the bonus on the QD-Score improvement are
20.8% in Walker2d and 24.8% in Humanoid. We illustrate the cor-
responding learning curves of this ablation study in Figure 7 of
Appendix D.2.

5 CONCLUSION

This paper focuses on addressing two key issues of adversarial
QDIL, i.e., the training instability of adversarial training and the
behavior-overfitting in the design of the reward function. We pro-
pose WQDIL and a measure-conditioned reward function with
Single-Step Archive Exploration to address these two issues re-
spectively. Through two thorough ablation studies, we confirm
the significance of each component (latent Wasserstein training,
measure conditioning, and single-step exploration bonus) and find
that latent Wasserstein adversarial training contributes most signif-
icantly to the QD-Score. The collaboration between these compo-
nents contributes to the superior QD performance of our method
on three continuous control tasks. Our method enables the agent
to stably learn diverse and high-quality behaviors from limited
demonstrations.
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