
Insights Regarding the Success of Damping in Improving Belief
Propagation

Uriel Zaed

Ben-Gurion University

Beer Sheva, Israel

zaed@post.bgu.ac.il

Omer Lev

Ben-Gurion University

Beer Sheva, Israel

omerlev@bgu.ac.il

Roie Zivan

Ben-Gurion University

Beer Sheva, Israel

zivanr@bgu.ac.il

ABSTRACT
A common approach for solving distributed constraint optimiza-

tion problems (DCOPs) is to represent them with a graphical model

and to solve them with a message passing algorithm. Belief prop-

agation is a popular and well studied such incomplete inference

algorithm. Min-sum (often referred to as Max-sum) is the belief

propagation version that is used for solving minimization DCOPs.

Belief propagation is performed on a factor graph representation

of the problem, in which the graph nodes take an active role in

the algorithm, i.e., they perform calculations and exchange mes-

sages with their neighbors. Unfortunately, the standard version of

Min-sum fails to converge in many cases, and produces low qual-

ity solutions. Previous studies proposed methods to encourage its

convergence and improve solution quality.

Recently, empirical evidence indicated that the performance of

Min-sum can be immensely improved by enhancing it with damp-

ing of beliefs (constraint costs) that are exchanged by the graph

nodes. However, while this was empirically validated, a theoretical

understanding of this phenomenon has not yet been established.

In this research, we present a number of theoretical and empir-

ical results that achieve important mile-stones in understanding

damping’s success in improving Min-sum. These include adapting

theoretical tools that were suggested for analyzing Min-sum to

work with Damped Min-sum (DMS) and analyzing the effect of

damping on graphs with special structures. We show that when

belief propagation instantly converges, damping is redundant, and

thus, the main contribution of damping is in reducing the exponen-

tial growth of the inconsistent beliefs that are propagated in the

first steps of the algorithm’s run.

KEYWORDS
Belief Propagation, Distributed Constraint Optimization, Min-sum,

Damping

ACM Reference Format:
Uriel Zaed, Omer Lev, and Roie Zivan. 2025. Insights Regarding the Success

of Damping in Improving Belief Propagation. In Proc. of the 24th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025),
Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 9 pages.

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

1 INTRODUCTION
Distributed Constraint Optimization Problems (DCOP) are a general
model for representing and solving problems that are distributed

by nature, which have a wide range of applications in artificial

intelligence and multi agent systems [1, 16, 42]. Among the appli-

cations that can be represented as DCOPs are meeting scheduling,

multi-agent task allocation, disaster response and operating room

assignment [12, 13, 19, 24].

Two main approaches are commonly used for solving DCOPs:

first, distributed search, in which, usually, a candidate solution is

maintained and updated while traversing the solution space to find

one with higher quality than those found previously [21, 23, 43,

45]. The second is dynamic programming inference [6, 28, 31], in
which information is aggregated such that it enables the selection

of high-quality solutions. These inference algorithms are rooted in

techniques such as belief propagation and bucket elimination [7,

25], which are used to solve optimization problems represented by

graphical models.

Probabilistic inference is the general title for problems that in-

volve reasoning about complex distributions represented by graph-

ical models [22]. One such problem is the maximum a posteriori

(MAP) assignment problem, which seeks the most probable assign-

ment to a set of variables [34]. It is known to be equivalent to a

constraint optimization problem and the problems are easily trans-

formed from one to the other [10, 35, 40]. Because of this close

relationship, advancements in the design of inference algorithms

for constraint optimization problems are expected to have broader

implications for the design of algorithms for solving other combi-

natorial problems that can be represented by graphical models.

Min-sum (also called Max-sum when applied to maximization

problems) is an incomplete inference algorithm that received con-

siderable attention in recent years [3, 8, 10, 44]. It is designed as

a message-passing algorithm in which nodes of a factor graph ex-

change messages with neighboring nodes, and is a version of the

well-known belief propagation algorithm [25, 41], adjusted to solve

constraint optimization problems (COPs) and distributed COPs

(DCOPs) [2, 5, 15, 17]. It was found useful for solving multi-agent

applications such as sensor systems [36, 38, 42], task allocation for

rescue teams in disaster areas [30], and IoT applications [32].

Belief propagation in general (andMin-sum specifically) is known

to converge to the optimal solution for problems in which the con-

straint graph is acyclic, but there is no such guarantee for problems

which include cycles [10, 41]. Furthermore, in graphs with multiple

cycles, duplicated information is propagated, leading to inaccu-

rate and inconsistent inference [25]. Unfortunately, the underlying

problem-representation graphs of many realistic applications do

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

include multiple cycles (e.g., [14, 23]). To improve Min-sum’s perfor-

mance on problems with multiple cycles, recent studies proposed

methods that reduce the effect of duplicated information and trigger

convergence to high quality solutions [4, 31, 47].

One such method is damping [20, 29, 33, 37], which has been

empirically shown to overcome the double counting effect of multi-

ple cycles when solving distributed constraint optimization prob-

lems [4, 6]. Moreover, a recent study showed that by allowing a

subjective dynamic (attentive) damping factor for each edge in the

factor graph, and adjusting weights that can reduce beliefs received

from neighboring nodes, further improvement can be achieved [9].

However, while such attentive damping factors and belief weights

were tuned using deep neural nets, showing the potential of be-

lief propagation for solving COPs, they do not shed light on the

fundamental properties that underlie this success.

In order to gain theoretical understanding of the properties of

Min-sum, Zivan et al. [46] proposed the backtracking cost tree (BCT)

as an analytical tool, which traces the cost accumulation procedure

of the algorithm that results in beliefs sent from one node in the

factor graph to another. The BCT reveals and explains some of the

properties of Min-sum, such as scenarios in which it is guaranteed

to converge [46] and the conditions in which belief equalities are

generated in single-cycle graphs [5]. However, the structure and

content of the BCT of damped Min-sum (DMS) has not yet been

explored, and it is clear that to gain greater understanding of the

success of DMS, one must investigate the coefficients of its BCT.

In this paper we extend the theory on belief propagation Min-

sum optimization by investigating the success of damping in en-

couraging convergence of Min-sum to high quality solutions. Our

approach is to formalize the BCT of DMS and analyze the coeffi-

cients of costs exchanged by nodes in the BCT

More specifically we:

(1) Formalize the coefficients of the components of the BCT

when using DMS, as a function of the damping factor, in

chain structure, single-cycle, and lemniscate graphs; and we

give an overview for the general case.

(2) Prove that in a single-cycle graph, when the algorithm does

not converge, the coefficients are similar to the coefficients

in a specific single-cycle graph where the cycle’s size is equal

to a single interval of the repeated minimal route and on

which the algorithm does converge.

(3) Demonstrate that on single-cycle graphs where Min-sum

does not converge, the convergence achieved by DMS is a

result of value equalities between the beliefs of different

assignment alternatives.

(4) Prove that on problems with immediate convergence damp-

ing is not needed, regardless of the graph’s structure. This

result highlights the role of damping in reducing the effect

of the first iterations of the algorithm in which value assign-

ments that are not part of the optimal solution are selected

and included in the BCT – reducing the overall quality of

the ultimate solution.

2 BACKGROUND
A DCOP is a tuple ⟨A,X,D, C⟩, where A is a finite set of agents

{𝐴1, 𝐴2, . . . , 𝐴𝑛}; X is a finite set of variables {𝑋1, 𝑋2, . . . , 𝑋𝑚},

where each variable is held by a single agent (an agent may hold

more than one variable); D is a set of domains {𝐷1, 𝐷2, . . . , 𝐷𝑚},
where each domain𝐷𝑖 contains the finite set of values that can be as-

signed to variable 𝑋𝑖 and we denote an assignment of value 𝑑 ∈ 𝐷𝑖

to 𝑋𝑖 by an ordered pair ⟨𝑋𝑖 , 𝑑⟩; and C is a set of constraints (rela-

tions), where each constraint𝐶 𝑗 ∈ C defines a non-negative cost for
every possible value combination of a set of variables and is of the

form𝐶 𝑗 : 𝐷 𝑗1×𝐷 𝑗2×. . .×𝐷 𝑗𝑘 → R+∪{0}. A binary constraint refers
to exactly two variables and is of the form𝐶𝑖 𝑗 : 𝐷𝑖 ×𝐷 𝑗 → R+∪{0}.
In our discussion of Min-sum we often refer to 𝐶𝑖 𝑗 as the cost table
and to 𝐶𝑖 𝑗 [𝑤, 𝑟] as the entry corresponding to𝑤 ∈ 𝐷𝑖 and 𝑟 ∈ 𝐷 𝑗 .

A binary DCOP is a DCOP in which all constraints are binary.

Agents are neighbors if they are involved in the same constraint. A

partial assignment (PA) is a set of value assignments to variables, in

which each variable appears at most once. A constraint 𝐶 𝑗 ∈ C of

the form𝐶 𝑗 : 𝐷 𝑗1 ×𝐷 𝑗2 × . . . ×𝐷 𝑗𝑘 → R+ ∪ {0} is applicable to 𝑃𝐴
if each of the variables 𝑋 𝑗1 , . . . , 𝑋 𝑗𝑘 are included in the PA. The cost
of a partial assignment 𝑃𝐴 is the sum of all applicable constraints to

𝑃𝐴 over the value assignments in 𝑃𝐴. A complete assignment (i.e.,
solution) is a partial assignment that includes all variables (X). An

optimal solution is a complete assignment with minimal cost.

For simplicity, we assume that each agent holds exactly one vari-

able (i.e.,𝑛 =𝑚) and we focus on binary DCOPs. These assumptions

are common in DCOP literature (e.g., [27, 43]).

2.1 Min-sum Belief Propagation
Min-sum operates on a factor-graph, a bipartite graph in which the

nodes represent variables and constraints [18]. Each variable-node,

representing a variable of the original DCOP, is connected to all

function-nodes representing constraints that it is involved in. Simi-

larly, a function-node is connected to all variable-nodes involved in

the constraint it represents. Variable-nodes and function-nodes take

an active role in Min-sum, i.e., they can send and receive messages,

and can perform computation. When used to solve a DCOP, each

node’s role is performed by an autonomous agent.

In Min-sum, a message sent to – or from – variable-node 𝑋 (for

simplicity, we use the same notation for a variable and the variable-

node representing it) is a vector of size |𝐷𝑋 | including a cost (or the
belief of a cost) for each value in 𝐷𝑋 . In the first iteration, all nodes

assume that all messages they previously received (in iteration 0)

include vectors of zeros. A message 𝑄𝑖
𝑋→𝐹

that variable-node 𝑋

sends to function-node 𝐹 in iteration 𝑖 is formalized as follows:

𝑄𝑖
𝑋→𝐹

=
∑

𝐹 ′∈𝐹𝑋 \{𝐹 }
𝑅𝑖−1
𝐹 ′→𝑋

− 𝛼 , where 𝐹𝑋 is the set of function-

node neighbors of variable-node 𝑋 and 𝑅𝑖−1
𝐹 ′→𝑋

is the message sent

to variable-node 𝑋 by function-node 𝐹 ′ in iteration 𝑖 − 1. 𝛼 is a

constant that is reduced from all costs included in the message in

order to prevent the costs from growing arbitrarily large.

A message 𝑅𝑖
𝐹→𝑋

sent from a function-node 𝐹 to a variable-

node 𝑋 in iteration 𝑖 , includes for each value 𝑥 ∈ 𝐷𝑋 : 𝑅
𝑖
𝐹→𝑋

=

min

𝑃𝐴−𝑋
𝑐𝑜𝑠𝑡 (⟨𝑋, 𝑥⟩, 𝑃𝐴−𝑋), where 𝑃𝐴−𝑋 is a possible combination

of value assignments to variables involved in 𝐹 not including 𝑋 .

𝑐𝑜𝑠𝑡 (⟨𝑋, 𝑥⟩, 𝑃𝐴−𝑋) represents the cost of a partial assignment 𝑎 =

{⟨𝑋, 𝑥⟩, 𝑃𝐴−𝑋 }, which is: 𝑓 (𝑎) + ∑
𝑋 ′∈𝑋𝐹 \{𝑋 },⟨𝑋 ′,𝑥 ′ ⟩∈𝑎

(𝑄𝑖−1
𝑋 ′→𝐹

) [𝑥 ′],

where 𝑓 (𝑎) is the original cost in the constraint represented by 𝐹 for

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2282

the partial assignment 𝑎, 𝑋𝐹 is the set of variable-node neighbors

of 𝐹 , and (𝑄𝑖−1
𝑋 ′→𝐹

) [𝑥 ′] is the cost that was received in the message

sent from variable-node 𝑋 ′
in iteration 𝑖 − 1, for the value 𝑥 ′ that is

assigned to𝑋 ′
in 𝑎.𝑋 selects its value assignment 𝑥 ∈ 𝐷𝑋 following

iteration 𝑘 as follows: 𝑥 = argmin

𝑥∈𝐷𝑋

∑
𝐹 ∈𝐹𝑋 (𝑅𝑘

𝐹→𝑋
) [𝑥].

2.2 Single-cycle factor graphs
Belief propagation is known to converge to the optimal solution

in linear time when solving factor graphs with a tree structure

(includes no cycles). For factor graphs with a single-cycle, if be-

lief propagation converges at all, it converges to the optimal so-

lution [11, 39] (though it is not guaranteed to converge on such

factor graphs). When it does not converge it periodically changes

its selected assignments.

To explain this behavior, Forney et al. [11] show the similarity

of the performance of the algorithm on a cycle to its performance

on a chain-structured graph, with nodes similar to the nodes in the

cycle, but the chain length is the number of iterations performed

by the algorithm so far. Consider a sequence of messages starting

at the first node of the chain and heading towards the other end.

Each message conveys beliefs accumulated from the costs added by

function-nodes. Specifically, each function-node adds a cost to each

belief, which is the constraint cost of a pair of values assigned to its

neighboring variable-nodes. Each such sequence of cost accumula-

tions (i.e., each route) must become periodic at some point, and the

minimal belief is generated by the minimal periodic route. If this

periodic route is consistent, i.e., if the set of assignments implied

by the costs within it contain the same value for each variable, the

algorithm converges and the implied assignment is the optimal

solution; otherwise, it does not converge [11].

2.3 Damped Min-sum (DMS)
In order to add damping to Min-sum, a parameter 𝜆 ∈ [0, 1) is used.
Before sending a message in iteration 𝑘 , a node performs calcula-

tions as in standard Min-sum. We use
�
𝑚𝑘
𝑖→𝑗

to denote the result

of the calculation made in standard Min-sum for the content of a

message intended to be sent from node 𝑖 to node 𝑗 in iteration 𝑘

and𝑚𝑘−1
𝑖→𝑗

to denote the message sent by 𝑖 to 𝑗 at iteration 𝑘 − 1.

The message sent by 𝑖 to 𝑗 at iteration 𝑘 is calculated as follows:

𝑚𝑘
𝑖→𝑗

= 𝜆𝑚𝑘−1
𝑖→𝑗

+ (1 − 𝜆)�𝑚𝑘
𝑖→𝑗

. Thus, 𝜆 expresses the weight given

to previously performed calculations with respect to the most re-

cent calculation performed. When 𝜆 = 0 the resulting algorithm is

standard Min-sum.

2.4 Backtrack Cost Trees
For analyzing the behavior of Min-sum, the use of a backtrack cost
tree (BCT) was proposed by Zivan et al. [46]. It allows tracing for

each belief the entries in the cost tables held by function-nodes that

were used to compose it.

A BCT is defined for a belief that appears in a message (either from

some variable 𝑋𝑖 to a function-node 𝐹𝑖 𝑗 , or from some function-

node 𝐹𝑖 𝑗 to a variable 𝑋𝑖). The belief is on the cost of assigning

some value 𝑥 ∈ 𝐷𝑖 to variable 𝑋𝑖 . Without loss of generality, we

will elaborate on messages from variables to function-nodes.

X1

F12

F13

X2

X3

F23

X4

F24F25

X5

F45

0

R(X1=a;X3=b)

0

R(X4=c;X5=d)

R(X1=a;X3=b) R(X4=c;X5=d)

F13

X1=x

F12

X2

F23 F25 F24

X3 X4

F45F13 F45

X4

0

X5

X1 X5

X3

R(X4=c;X5=d)

R(X4=c;X5=d)

R(X3=b;X2=e) +
R(X1=a;X3=b)

R(X5=d;X2=e) +
R(X4=c;X5=d)

R(X4=c;X2=e) +
R(X4=c;X5=d)

R(X3=b;X2=e) + R(X1=a;X3=b) +
R(X4=c;X2=e) + R(X4=c;X5=d) +
R(X5=d;X2=e) + R(X4=c;X5=d)

R(X1=x;X2=e) +
R(X3=b;X2=e) + R(X1=a;X3=b) +
R(X4=c;X2=e) + R(X4=c;X5=d) +
R(X5=d;X2=e) + R(X4=c;X5=d)

(a) (b)

Figure 1: (a) A lemniscate factor-graph. (b) An example of a
BCT for a belief in the message sent from 𝑋1 to the function-
node 𝐹13 at time 𝑡 = 6 in the lemniscate depicted on the left.

The belief is a sum of various components from which the BCT is

composed. At the root is the cost for a decision to assign some value

to a variable at a time 𝑡 and the directed edges from its children

in the tree include the beliefs that were summed to generate that

belief. These edges lead to nodes representing the neighbors from

which the parent node received messages in time 𝑡−1. Each of those
nodes is connected to the nodes from which it received messages

at time 𝑡 − 2, with the edges containing the beliefs that were passed

to it. The tree leaves represent the nodes at time 0 (see Figure 1(b)).

For a single-cycle factor graph, the BCT for every belief is a

chain. Factor graphs with multiple cycles include variable-nodes

with more than two neighbors, and thus, the BCTs of their beliefs

include nodes with multiple children.

For each BCT, there is an implied assignment tree including the

value assignments that the variables at each time-point of the tree

would need to be assigned in order to incur the costs included in

the BCT. The value assignment selected by a variable at time 𝑡 is

the one with the minimal sum of beliefs sent to the corresponding

variable-node at iteration 𝑡 − 1.

3 FORMALIZING THE COEFFICIENTS OF A
DMS BCT

The difference between regular Min-sum BCT and DMS BCT is the

weight that every node in the BCT is given in the calculation of

the belief at the root of the BCT. In standard Min-sum BCT, the

belief is a sum of the costs in all nodes of the BCT, i.e., the cost

taken from the entries in the function-node cost table and added in

the node of the BCT, is just itself. Thus, the belief is composed of

the sum of cost table entries of function-nodes, each multiplied by

the number of nodes in the BCT in which this cost table entry was

added. In contrast, in a BCT that is used to analyze the performance

of DMS, the cost added in each such BCT node is multiplied by a

coefficient that is a result of damping. These coefficients are calcu-

lated using a non trivial formula (as past messages are repeatedly

added, multiplied by an updated coefficient). Thus, to understand

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2283

the difference between the BCTs, we must formalize the coefficients

within the BCT generated by DMS. We begin by examining graphs

with simple structures, before elaborating on the general case.

3.1 DMS Coefficients for Chain-Structured
Graphs

Consider a factor graph with 𝑛 variable-nodes, structured as a chain.

W.l.o.g., we assume an order on the variable-nodes coinciding with

their indexes. While messages are sent in both directions, in a chain

structure factor graph a message does not affect the messages in

the opposite direction [5], thus, we will only consider the messages

in ascending index order. Denote by 𝑅𝑘
𝑖 𝑗→𝑗

, 1 ≤ 𝑖 < 𝑛, 𝑗 = 𝑖 + 1 the

message sent by function-node 𝐹𝑖 𝑗 to 𝑋 𝑗 in iteration 𝑘 and 𝑣𝑘
𝑖 𝑗→𝑗

,

the vector it is carrying (to avoid redundancy, we will use 𝑅𝑘
𝑖 𝑗→𝑗

and 𝑣𝑘
𝑖 𝑗→𝑗

for the message and the vector it carries interchangeably).

Recall that we use 𝐶𝑖 𝑗 [𝑤, 𝑟] to denote the entry in the cost table of

𝐹𝑖 𝑗 corresponding to values𝑤 ∈ 𝐷𝑖 and 𝑟 ∈ 𝐷 𝑗 and similarly, that

𝑄𝑘
𝑖→𝑖 𝑗

[𝑤] and 𝑅𝑘
𝑖 𝑗→𝑗

[𝑟] correspond to the relevant entries in the

vectors included in the messages sent in iteration 𝑘 . Thus:

𝑅𝑘
12→2

[𝑟] = (1 − 𝜆)
𝑘∑︁

𝑞=1

𝜆𝑞−1 min

𝑤∈𝐷1

𝐶12 [𝑤, 𝑟]

This is because 𝑅12→2 depends solely on the cost table 𝐶12. In each

iteration, we compute a new message as a weighted sum of all

previous computations, where (1 − 𝜆) is the weight for the current
computation and 𝜆 is the weight of the message from the previous

iteration. The min operation within the sum corresponds to the

standardMin-Summessage computation, which selects theminimal

value for the sending variable.

For 𝐹𝑖 𝑗 (𝑖 ≥ 2), we must also account for the incoming message

𝑄𝑖→𝑖 𝑗 from the previous variable node𝑋𝑖 and the previous message

of 𝐹𝑖 𝑗 , in iteration 𝑘 − 1.

𝑅𝑘
𝑖 𝑗→𝑗 [𝑟] = (1 − 𝜆)

𝑘∑︁
𝑞=1

𝜆𝑞−1 min

𝑤∈𝐷1

(𝐶𝑖 𝑗 [𝑤, 𝑟] +𝑄𝑘−1
𝑖→𝑖 𝑗 [𝑤])

Next, we consider the limit of the iterations of each message 𝑅:

lim

𝑘→∞
𝑅𝑘
12→2

[𝑟] = min

𝑤∈𝐷1

𝐶12 [𝑤, 𝑟]

lim

𝑘→∞
𝑅𝑘
𝑖 𝑗→𝑗 [𝑟] = min

𝑤∈𝐷1

(𝐶𝑖 𝑗 [𝑤, 𝑟] +𝑄𝑘−1
𝑖→𝑖 𝑗 [𝑤])

We can observe that the use of damping on a chain results in each

message converging to the same value as it would without damping.

This indicates that applying damping in chain structures does not

significantly alter the behavior of the algorithm.

Furthermore, in trees structures, while the function nodes receive

additional vectors their behavior essentially remains unchanged,

maintaining the same overall message dynamics.

3.2 DMS Coefficients for Single-Cycle Graphs
When Min-sum solves a single-cycle factor graph, it reaches a

repeated minimal route that it executes until termination [5, 11,

39]. Convergence is achieved if this route is consistent, i.e., each

variable-node is assigned the same value. Otherwise, it repeats an

inconsistent minimal route, whose length is the number of values

assigned to a variable-node in the route, multiplied by the size of

the cycle [5]. Before reaching the infinitely repeated minimal route,

the algorithm may traverse value assignments that are not part of

the repeated minimal route, which we term as the tail [5].

3.2.1 DMS Coefficients for Single-Cycle Structured Graph with a
Consistent Minimal Route. For simplicity, we begin by analyzing

the case in which the algorithm converges instantly, i.e., there is

no tail. W.l.o.g., we will consider a single-cycle factor graph with

three variable-node, so the algorithm converges right away to the

optimal solution, which we term 𝑋1 = 0, 𝑋2 = 0, 𝑋3 = 0.

Our approach is to investigate the coefficients of the costs added

in the BCT, separately, for each function-node. W.l.o.g., we will

analyze the generation of the coefficient of the entry 𝐶12 [0, 0] and
we denote the cost in this entry by 𝑐 [0,0] .

Iteration 1: (1 − 𝜆)𝑐 [0,0]
Iteration 2: 𝜆 (1 − 𝜆)𝑐 [0,0] + (1 − 𝜆)𝑐 [0,0] = 𝑐 [0,0] (1 − 𝜆) (1 + 𝜆)
Iteration 3: 𝜆 (1 − 𝜆) (1 + 𝜆)𝑐 [0,0] + (1 − 𝜆)𝑐 [0,0] = 𝑐 [0,0] (1 − 𝜆) (1 +

𝜆 + 𝜆2)
Iteration 4: 𝜆𝑐 [0,0] (1 − 𝜆) (1 + 𝜆2) + (1 − 𝜆)𝑐 [0,0] = 𝑐 [0,0] (1 − 𝜆) (1 +

𝜆 + 𝜆2 + 𝜆3)
...
Iteration 7: 𝜆𝑐 [0,0] (1 − 𝜆) (1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5) + (1 − 𝜆) (𝑐 [0,0] +

(1 − 𝜆)3𝑐 [0,0]) = 𝑐 [0,0] (1 − 𝜆) (1 + 𝜆 + 𝜆2 + 𝜆3 + ... + 𝜆6 + (1 − 𝜆)3)
...
Iteration 13: 𝜆𝑐 [0,0] (1−𝜆) (1+𝜆2 + ...+𝜆11 + (1−𝜆)3 (1+4𝜆+10𝜆2 +

20𝜆3 + 35𝜆4 + 56𝜆5)) + 1 − 𝜆) (𝑐 [0,0] + 𝑐 [0,0] (1 − 𝜆)3 (1 + 3𝜆 + 6𝜆2 +
10𝜆3 +15𝜆4 +21𝜆5 +28𝜆6 + (1−𝜆)6) = 𝑐 [0,0] (1−𝜆) (1+𝜆+𝜆2 +𝜆3 +
...+𝜆12+ (1−𝜆)3 (1+4𝜆+10𝜆2+20𝜆3+35𝜆4+56𝜆5+84𝜆6) + (1−𝜆)6)

...

We focus on iterations 7 and 13 because the cycle size is 6, thus,

these iterations follow the first and second times that the cycle has

been completed by the algorithm, respectively. This analysis leads

to the following general coefficient Γ1 formula in a cycle including

𝑛 variable-nodes at iteration 𝑘 :

Γ1 = (1 − 𝜆) ·
𝑘∑︁

𝑞=1

𝜆𝑞−1 + (1 − 𝜆)𝑛+1
𝑘−2𝑛∑︁
𝑞=1

(
𝑞 + 𝑛 − 1

𝑛

)
𝜆𝑞−1

+ (1 − 𝜆)2𝑛+1
𝑘−4𝑛∑︁
𝑞=1

(
𝑞 + 2𝑛 − 1

2𝑛

)
𝜆𝑞−1 ...

The structure of the equation is based on the iterative logic of

the algorithm. Each time a route returns to its starting point, a

new term is added to the equation, marking the completion of a

cycle. The coefficient for each newly added term is determined

by the expression (1 − 𝜆) , raised to a power that corresponds to

the number of function nodes traversed, and is also influenced by

the expression (1 + 𝜆 · 𝑐1 + 𝜆2 · 𝑐2 + 𝜆3 · 𝑐3 + . . .). As the process
iterates, past messages are progressively combined with the current

value, causing the power of 𝜆 to increase. The numerical constants

are derived from the binomial coefficient

(𝑞+⌊ 𝑘−1
2𝑛

⌋𝑛−1
⌊ 𝑘−1

2𝑛
⌋𝑛

)
, which is

influenced by the number of function nodes traversed in the process.

To generalize this process, each part, representing a set of mes-

sages during one cycle, is:

(1 − 𝜆) ⌊
𝑘−1
2𝑛 ⌋𝑛+1

𝑘−⌊ 𝑘−1
2𝑛 ⌋2𝑛∑︁

𝑞=1

(
𝑞 + ⌊ 𝑘−1

2𝑛
⌋𝑛 − 1

⌊ 𝑘−1
2𝑛

⌋𝑛

)
𝜆𝑞−1

To perform a more in-depth analysis of the coefficient, we ana-

lyzed the changes in coefficient values across iterations with differ-

ent damping factors. Figure 2 demonstrates that these coefficients

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2284

maintain a monotonically increasing, approximately linear trend,

regardless of the damping factor used. Thus, the main claim used in

Forney et al. [11], Weiss [39] to prove the optimally of the solution

of belief propagation when it converges on single-cycle graphs is

maintained in the presence of damping.

Figure 2: Function-Node coefficient

In order to understand the relationship between this coefficient

and the coefficient of each cost added in the BCT nodes from which

it is composed, we formalize its components, each representing the

factor that a particular function-node cost table entry is multiplied

by in the different levels of the BCT. Thus, we denote the coefficients

of the three function-nodes𝛼 , 𝛽 and𝛾 , andw.l.o.g. we investigate the

componnents that are composed to generate 𝛼 . These are denoted

by: 𝛼1, 𝛼2, 𝛼3, . . . , 𝛼𝑚 where 𝛼1 represents the contribution from (or

the weight of) the first function-node cost table entry added in the

BCT node that is the farthest from the root (i.e., closest to the leaf –

the “oldest” one) in the BCT, 𝛼2 from the one above it that refers to

the same entry, and so forth until 𝛼𝑚 , which is the closest to the

root.

We formalize 𝛼1 at iteration k as follows:

𝛼𝑘𝑖 = (1 − 𝜆)
{ ∑𝑘

𝑞=1 𝜆
𝑞−1 , ⌊ 𝑘−1

2𝑛 ⌋ = 0∑𝑘
𝑞=𝑘−2𝑛 𝜆

𝑞−1 , otherwise

+(1 − 𝜆)𝑛+1

0 , ⌊ 𝑘−1
2𝑛 ⌋ < 1∑𝑘−2𝑛

𝑞=1

(𝑞+𝑛−1
𝑛

)
𝜆𝑞−1 , ⌊ 𝑘−1

2𝑛 ⌋ = 1∑𝑘−2𝑛
𝑞=𝑘−4𝑛

(𝑞+𝑛−1
𝑛

)
𝜆𝑞−1 , otherwise

+(1 − 𝜆)2𝑛+1

0 , ⌊ 𝑘−1
2𝑛 ⌋ < 2∑𝑘−4𝑛

𝑞=1

(𝑞+2𝑛−1
2𝑛

)
𝜆𝑞−1 , ⌊ 𝑘−1

2𝑛 ⌋ = 2∑𝑘−4𝑛
𝑞=𝑘−6𝑛

(𝑞+2𝑛−1
2𝑛

)
𝜆𝑞−1 , otherwise

+
{

. . .

Since we are dealing with a single-cycle factor graph with a

consistent minimal route, the BCT exhibits a repeating pattern

across the cycle’s length. In other words, the expression referring

to the first 2𝑛 iterations will always be the same in 𝛼𝑚 . If𝑚 is large

enough, then the expression representing the iterations 2𝑛 + 1 to

4𝑛 will always be the same in 𝛼𝑚−1 and so forth. In other words,

for every component 𝛼1 to 𝛼𝑚 in every iteration the value added

to 𝛼𝑖 , 2 ≤ 𝑖 ≤ 𝑚 is reduced from 𝛼𝑖−1. in other words 𝛼𝑘
𝑖
= 𝛼𝑘−2𝑛

𝑖−1
for any 𝑘 > 2𝑛.

Figure 3:𝛼1, 𝛼2, 𝛼3,𝛼4 as a function of the number of iterations,
on a cycle with three function-nodes, with a damping factor
𝜆 = 0.9.

Figure 4: 𝛼, 𝛽,𝛾 as a function of the number of iterations, on
a cycle with three function-nodes, with a damping factor
𝜆 = 0.9.

Thus, for the coefficient 𝛼𝑘 =
∑𝑚
𝑖=1 𝛼

𝑘
𝑖
, 𝑚 = ⌊ 𝑘−1

2𝑛 ⌋ + 1, the

difference between its value in iteration 𝑘 and in iteration 𝑘 − 1, i.e.,

𝛼𝑘−𝛼𝑘−1 equals the last expression of 𝛼1, that represents the values
added to it in the 𝑘 modulo 2𝑛 iterations. Formally, this expression

is calculated as follows:

(1 − 𝜆) ⌊
𝑘−1
2𝑛 ⌋𝑛+1

𝑘−⌊ 𝑘−1
2𝑛 ⌋2𝑛∑︁

𝑞=1

(
𝑞 + ⌊ 𝑘−1

2𝑛
⌋𝑛 − 1

⌊ 𝑘−1
2𝑛

⌋𝑛

)
𝜆𝑞−1

Our empirical results, shown in Figure 3, suggest that 𝛼1 converges

to a constant value. Hence, the rest 𝛼𝑖 values eventually converge

to the same constant. As a result, we can deduce that the coefficient

exhibits linear behavior, as demonstrated in Figure 4, which presents

the three coefficients 𝛼, 𝛽 and 𝛾 as a function of the number of

iterations, when the algorithm solves a three function-node cycle

graph.

Our most important empirical result is presented in Figure 5. It

presents the results of a sample of many experiments we performed

on cycles with different sizes and different convergence properties,

all reporting similar results. Figure 5 shows the sum of beliefs for

each variable nodes, as a function of the number of iterations of the

algorithm, when solving a three function-node cycle graph. The

first, (a), is a graph on which the algorithm converges right away

to a consistent route, i.e. to the optimal solution. The second, (b), is

a cycle with a consistent route, which does, however, includes a tail

(that is, the algorithm does not converge right away). Similar results

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2285

(a) (b) (c)

Figure 5: Sum of beliefs as a function of the number of iterations for (a) three value assignments of a three function-node
cycle with a consistent minimal route and immediate convergence; (b) three value assignments of a three function-node graph
with a consistent minimal route, but with a tail (not immediate convergence); (c) Variable assignment of six values in a three
function-node cycle graph – an inconsistent minimal route – and with no tail.

were obtained for all single-cycle graphs that include a consistent

minimal route, regardless of their size. Intuitively, this happens

because for each variable node, all cost table entries summed to

calculate the beliefs are damped an equal number of times, which

is the size of the cycle. For example, consider the three cycle factor

graph on the top of Figure 6. It includes three variable nodes and

three function nodes. If you consider the distance of the function

nodes from𝑋1 you have 𝐹12 and 𝐹13, which adjacent to𝑋1, therefore

their distance from 𝑋1 on one side includes one damping operation,

but on the other side, five damping operations. 𝐹23 on the other

hand is on the other side of the cycle and every cost sent from 𝐹23
to 𝑋1 goes through three damping operations, regardless of the

direction. Thus, all costs are damped 6 times all together on both

directions. Moreover, this seems to indicate that we see assignment
equality, i.e., variables’ costs are the same, and the choice of variable

is decided based on tie-breaking.

3.2.2 DMSCoefficients of Inconsistent Routes for Single-Cycle Graphs.
As previously noted, in single-cycle graphs, Min-sum can encounter

an inconsistent minimal route, which oscillates between multiple

entries at each function node, and as a result, different values are

selected to be assigned to variables in different iterations. Cohen et

al. proved that two entries of the same cost table of a function-node,

which are both included in such an inconsistent minimal route,

cannot be in the same row or column of the cost table [5].

We proved above that when DMS is applied to graphs where Min-

sum converges, it converges such that the sum of beliefs received by

each variable node for the value assignment in the optimal solution

is equal to the sum of beliefs that the other variable-nodes receive

for their value assignments in the optimal solution (without DMS).

Next, we will prove the same phenomenon occurs when the

algorithm oscillates for all values that are included in the minimal

route, i.e., the algorithm converges to a state in which the sum

of beliefs is equal for all values that are included in the minimal

route, whether it is consistent or not. Thus, in cases where it is

not consistent, and more than one value is included in the minimal

route in each domain, damping apparently results in assignment

equality (since our empirical simulations indicate for every variable-

node there are multiple values in its domain that the agents receives

for them the same lowest sum of beliefs).

Lemma 3.1. For every single-cycle graph 𝐺 , on which the repeated
minimal route is inconsistent, there is a single-cycle graph 𝐺 ′ in
which the same minimal route is consistent. Moreover, the number
of function-nodes in graph 𝐺 ′ is the number of cost table entries in a
single interval of the minimal route in graph 𝐺 .

Proof. Consider a single-cycle graph 𝐺 with 𝑛 function-nodes

on which Min-sum converges to an inconsistent minimal route, os-

cillating among 𝑥 entries at each function node. We generate a new

single-cycle graph𝐺 ′
with𝑛 ·𝑥 function nodes. Let the original func-

tion nodes be 𝐹12, 𝐹23, ..., 𝐹𝑛1. Thus, the value assignments induced

by theminimal route include𝑉1𝑎 ,𝑉2𝑎 , ...,𝑉𝑛𝑎 ,𝑉1𝑏 ,𝑉2𝑏 , ...,𝑉𝑛𝑏 , ...,𝑉1𝑥 ,

𝑉2𝑥 , ...,𝑉𝑛𝑥 . We create 𝐺 ′
by generating a variable-node for each

of the value assignments induced by the minimal route. Then, in

each function-node connecting two consecutive variable-nodes, we

change the cost of every entry that is not included in the minimal

route to the maximal cost in the original cost table plus one. If the

minimal route included a tail, the entries of the tail are not changed

as well. Obviously, the minimal route in𝐺 is a minimal route in𝐺 ′
,

and moreover, no other route in 𝐺 ′
can have a smaller normalized

cost than the minimal route in 𝐺 . □

Figure 5 (c) demonstrates how the sum of beliefs for all value

assignments induced by the inconsistent minimal route converge

to the same cost.

Theorem 3.2. The beliefs generated by DMS on a single-cycle
graph 𝐺 with an inconsistent minimal route, corresponding to the
value assignments included in the minimal inconsistent route, are
identical to the beliefs corresponding to the minimal route, sent by
𝐷𝑀𝑆 on a single-cycle graph 𝐺 ′ in which the same minimal route is
consistent.

Proof. By construction (as described in the proof of Lemma 3.1)

the algorithm follows the same minimal route, the same entries in

the function-node cost-tables are accumulated and the beliefs are

multiplied by the same damping factors. □

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2286

X1 ′

X2 ′

X3 ′

X1 ′′

X2 ′′

X3 ′′

F
2
3 ′F

2
3
′′

F13′ a b c

a ∗ ∗ ∗

b ∗ 𝐶6 ∗

c ∗ ∗ ∗

F12′ a b c

a ∗ 𝐶1 ∗

b ∗ ∗ ∗

c ∗ ∗ ∗

F12′′ a b c

a ∗ ∗ ∗

b 𝐶2 ∗ ∗

c ∗ ∗ ∗

F13′′ a b c

a 𝐶5 ∗ ∗

b ∗ ∗ ∗

c ∗ ∗ ∗

F23′′ a b c

a 𝐶3 ∗ ∗

b ∗ ∗ ∗

c ∗ ∗ ∗

F23′ a b c

a ∗ ∗ ∗

b ∗ 𝐶4 ∗

c ∗ ∗ ∗

X3 F23 X2

X1

F13 a b c

a 𝐶5 ∗ ∗

b ∗ 𝐶6 ∗

c ∗ ∗ ∗

F23 a b c

a 𝐶3 ∗ ∗

b ∗ 𝐶4 ∗

c ∗ ∗ ∗

F12 a b c

a ∗ 𝐶1 ∗

b 𝐶2 ∗ ∗

c ∗ ∗ ∗

Figure 6: Inconsistent route in a single-cycle graph example
As an example, examine Figure 6, which includes a single-cycle

graph, composed of 3 function-nodes and three variable nodes. In

this case, the algorithm converges to an inconsistent route, denoted

as, 𝑐1 → 𝑐4 → 𝑐6 → 𝑐2 → 𝑐3 → 𝑐5 → 𝑐1 We construct a single-

cycle graph with 6 function-nodes as described in Lemma 3.1. This

single-cycle factor graph cycle includes a consistent route that is

identical to the minimal inconsistent route in the original factor

graph. Consequently, the algorithm converges when solving the

six variable-node factor graph to a consistent route that accurately

reflects the dynamics of the initial inconsistent route.

3.3 Formalizing the Coefficients of a DMS BCT
for Multiple-Cycles Graphs

As noted above, empirical evidence in previous studies revealed that

damping mitigates the duplicated information phenomenon when

belief propagation is applied to graphs with multiple cycles [26].

Thus, DMS outperforms Min-sum when solving problems that their

underlying representing factor graph includes multiple cycles [4],

but it is not clear how this is achieved. To extend our understand-

ing of this phenomenon, we examine a simple case: a symmetric

lemniscate factor graph (∞-shaped graph).

As with single-cycle graphs, examine the case in which the al-

gorithm converges instantly to the optimal solution (i.e., no tail).

Consider a leminscate factor graph with three variable-nodes in

each cycle (Figure 1). We again investigate the coefficients of the

costs added in the BCT. Let us examine the generation of the coeffi-

cient of the entry 𝐶13 [0, 0] in the message 𝑅𝑘
13→3

[𝑟]. Our analysis

leads to the following general coefficient Ψ1 formula at iteration 𝑘 :

Ψ1 = (1 − 𝜆)𝑐 [0,0] (
𝑘∑︁
𝑖=1

𝜆𝑖−1

+ (1 − 𝜆)𝑛
𝑘−2𝑛∑︁
𝑖=1

(
𝑖 + 𝑛 − 1

𝑛

)
𝜆𝑖−1

+ 5 · (1 − 𝜆)2𝑛
𝑘−4𝑛∑︁
𝑖=1

(
𝑖 + 2𝑛 − 1

2𝑛

)
𝜆𝑖−1

+ 13 · (1 − 𝜆)3𝑛
𝑘−6𝑛∑︁
𝑖=1

(
𝑖 + 3𝑛 − 1

3𝑛

)
𝜆𝑖−1

+ 41 · (1 − 𝜆)4𝑛
𝑘−8𝑛∑︁
𝑖=1

(
𝑖 + 4𝑛 − 1

4𝑛

)
𝜆𝑖−1 ...)

The only difference between the coefficients in a lemniscate and

those shown above for single-cycle graphs are the constants that

multiply each part of the formula (in this example: 1, 1, 5, 13, 41,. . .).

To gain deeper insights into the series of constants, a detailed ex-

ploration of the BCT is essential (Figure 7). For each iteration of the

BCT, we identify and enumerate the relevant nodes that contribute

to our coefficients, which are marked in red. These nodes define

each constant in the series. Through a systematic approach utiliz-

ing iterative bounded Depth-First Search (DFS), we can accurately

compute this series of constants.

This method allows us to compute the parameters of general

graph structures, offering a versatile approach without limiting

ourselves to a specific graph structure. This provides a solid founda-

tion for analyzing complex structures and contributes to a broader

understanding of the underlying patterns in the BCT in the future.

4 DMS CONVERGENCE
Beyond examining the convergence of DMS using simulations, we

are able to present a more general statement.

Theorem 4.1. Min-sum algorithm will converge to the optimal
solution when there is no tail (i.e., when convergence to the final route
is immediate). This result holds irrespective of the damping factor
used or the structure of the graph.

Proof. Using induction on 𝑘 , the number of iterations of the

BCT (that is, its depth):

Base Case: Consider a BCT after 1 iteration, meaning a single

function node. In this trivial case, the algorithm will calculate the

message by the minimal entries. And as there is no tail, the minimal

belief assignment is a part of the optimal solution. This holds true

regardless of the damping factor, as all messages are multiplied by

the same constant (1 − 𝜆).
Induction assumption: Assume that for a BCT after 𝑘 iterations,

Min-sum created beliefs, and the minimal belief assignment of the

root is a part of the optimal solution, regardless of the damping

factor or the structure of the graph.

Induction Step: Consider a BCT after 𝑘 + 1 iteration. We need to

show that Min-sum algorithm created the minimal belief assign-

ment of the root that is a part of the optimal solution, regardless

of the damping factor or the structure of the graph. By adding one

iteration to the BCT, the leaves are function nodes. The message

each function node creates contains a belief that is part of the mini-

mal belief assignment. Because there is no tail, we have only one

minimal route that creates the minimal belief assignment of the

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2287

X!

F!"

X#

F!#

X!$

F#$

X%

F$%

X#

F#%

X"

F#"

X!

F!"

X#

F!#

X$

F#$

F$%

X%

F#%

F$%

X"

F#"

F!"

X$

F#$

X%

F$%

X#

F#%

X"

F#"

F!"

X$

F#$

F$%

X!

F!#

F!"

X!

F!#

X"

F!"

X#

F#"

X$

F#$

F$%

X%

F#%

F$%

X!

F!#

F!"

X%

F#%

X$

F$%

X#

F#$

X"

F#"

X!

F!"

X#

F!#

X$

F#$

F$%

X%

F#%

F$%

X"

F#"

F!"

X%

F#%

X$

F$%

X#

F#$

X"

F#"

F!"

X%

F#%

F$%

X!

F!#

F!"

X!

F!#

X"

F!"

X#

F#"

X$

F#$

F$%

X%

F#%

F$%

X!

F!#

F!"

X"

F#"

X!

F!"

X#

F!#

X$

F#$

X%

F$%

X#

F#%

X"

F#"

F!"

X$

F#$

F$%

X!

F!#

F!"

X%

F#%

X$

F$%

X#

F#$

X"

F#"

F!"

X%

F#%

F$%

X!

F!#

F!"

X"

F"#

X!

F!"

X#

F!#

X$

F#$

F$%

X%

F#%

F$%

X"

F#"

F!"

Figure 7: BCT of a leminscate factor graph with three function nodes in each cycle

root. Therefore, the beliefs that the leaves send are in the same

route of the minimal route (if they were not, the algorithm would

have a tail). Additionally, damping only multiplies the leaf function

node messages by the same constant, meaning that we still main-

tain the minimal belief assignment as part of the optimal solution.

Following the leave layer, in the rest of the BCT the minimal route

is the optimal solution according to the induction’s assumption. We

note that there isn’t any assumption on the graph structure. □

5 CONCLUSION
Belief propagation is a well-known and widely used algorithm

for solving combinatorial optimization problems that can be rep-

resented by graphical models. While the theoretical knowledge

regarding this algorithm is limited, empirical evidence indicate that

the use of damping much improves its outcome.

In this paper, we presented theoretical and empirical results that

extend the knowledge regarding the reasons for the success of

damping to improve belief propagation. First were able to detail

formulas that calculate the coefficients of the costs which are ac-

cumulated by the algorithm, and their multiplication as a result of

damping. Then, we demonstrate that when damping is used and

the algorithm solves a single-cycle graph, the beliefs for all values

that are included in the minimal repeated route converge to the

same value. Thus, when the minimal route is inconsistent, these

empirical results indicate that it converges to assignment equality

(agents cannot tell which of the values that belong to the minimal

route to assign to their variables). Finally, we prove – for all graph

topologies – that when the graph does not include a tail, i.e., the

algorithm converges right away to the optimal solution, damping

is not required. Thus, we conclude that the key role of damping

in improving belief propagation is in eliminating the effect of the

initial inconsistent part of the route, i.e., the tail. By understanding

which in which cases damping is not crucial to an optimal outcome,

we hope to help future research to particular issues which we now

understand to be key to its success.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2288

REFERENCES
[1] Kyle E. C. Booth and J. Christopher Beck. 2019. A Constraint Programming

Approach to Electric Vehicle Routing with Time Windows. In Proceedings of
the 16th International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research (CPAIOR). 129–145.

[2] I. Brito and P. Meseguer. 2010. Improving DPOP with function filtering. In 9th
International Conference on Autonomous Agents andMulti-agent Systems (AAMAS).
141–148.

[3] Jesús Cerquides, Rémi Emonet, Gauthier Picard, and Juan A. Rodríguez-Aguilar.

2018. DECIMAXSUM: Using Decimation to Improve Max-Sum on Cyclic DCOPs.

In Artificial Intelligence Research and Development - Current Challenges, New
Trends and Applications, in Proceedings of the 21st International Conference of the
Catalan Association for Artificial Intelligence, CCIA 2018. 27–36.

[4] Ziyu Chen, Yanchen Deng, Tengfei Wu, and Zhongshi He. 2018. A class of

iterative refined Max-sum algorithms via non-consecutive value propagation

strategies. Autonomous Agents and Multi-Agent Systems 32, 6 (2018), 822–860.
[5] Erel Cohen, Omer Lev, and Roie Zivan. 2023. Separate but Equal: Equality in

Belief Propagation for Single Cycle Graphs. In Thirty-Seventh AAAI Conference
on Artificial Intelligence, AAAI 2023. 3924–3931.

[6] Liel Cohen, Rotem Galiki, and Roie Zivan. 2020. Governing convergence of

Max-sum on DCOPs through damping and splitting. Artificial Intelligence 279
(2020).

[7] Rina Dechter. 1999. Bucket Elimination: A Unifying Framework for Reasoning.

Artificial Intelligence 113, 1-2 (1999), 41–85.
[8] Yanchen Deng and Bo An. 2020. Speeding Up Incomplete GDL-based Algorithms

for Multi-agent Optimization with Dense Local Utilities. In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, (IJCAI).
31–38.

[9] Yanchen Deng, Shufeng Kong, Caihua Liu, and Bo An. 2022. Deep Attentive

Belief Propagation: Integrating Reasoning and Learning for Solving Constraint

Optimization Problems. In Proceedings of the Thirty-Sixth Conference on Neural
Information Processing Systems (NeurIPS).

[10] Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R. Jennings. 2008.

Decentralised Coordination of Low-Power Embedded Devices Using the Max-

Sum Algorithm. In Proceeding of the 7th International Conference on Autonomous
Agents and Multi-agent Systems (AAMAS). 639–646.

[11] G David Forney, Frank R Kschischang, Brian Marcus, and Selim Tuncel. 2001.

Iterative decoding of tail-biting trellises and connections with symbolic dynamics.

In Codes, Systems, and Graphical Models. 239–264.
[12] NoamGaon, Yuval Gabai Schlosberg, and Roie Zivan. 2023. Scheduling operations

in a large hospital by multiple agents. Engineering Applications of Artificial
Intelligence (EAAI) 126(D) (2023).

[13] I.P. Gent and T. Walsh. 1999. CSPLib: a benchmark library for con-
straints. Technical Report. Technical report APES-09-1999. Available from

http://csplib.cs.strath.ac.uk/.

[14] Amir Gershman, Amnon Meisels, and Roie Zivan. 2009. Asynchronous Forward

Bounding. Journal of Artificial Intelligence Research (JAIR) 34 (2009), 25–46.
[15] Supriyo Ghosh, Akshat Kumar, and Pradeep Varakantham. 2015. Probabilistic

Inference Based Message-Passing for Resource Constrained DCOPs. In Proceed-
ings of the 24th International Joint Conference on Artificial Intelligence, (IJCAI).
411–417.

[16] Arnoosh Golestanian, Giovanni Lo Bianco, Chengyu Tao, and J. Christopher

Beck. 2023. Optimization Models for Pickup-And-Delivery Problems with Re-

configurable Capacities. In Proceedings of the 29th International Conference on
Principles and Practice of Constraint Programming (CP). 17:1–17:17.

[17] Md. Mosaddek Khan, Long Tran-Thanh, William Yeoh, and Nicholas R. Jennings.

2018. A Near-Optimal Node-to-Agent Mapping Heuristic for GDL-Based DCOP

Algorithms in Multi-Agent Systems. In Proceedings of the 16th International
Conference on Autonomous Agents and Multi-agent Systems (AAMAS). 1604–1612.

[18] Frank R. Kschischang, Brendan J. Frey, and Hans A. Loeliger. 2001. Factor Graphs

and the Sum-Product Algorithm. IEEE Transactions on Information Theory 47:2

(2001), 181–208.

[19] Maya Lavie, Tehila Caspi, Omer Lev, and Roie Zivan. 2023. Ask and You Shall be

Served: Representing & Solving Multi-agentOptimization Problems with Service

Requesters and Providers. In Proceedings of the 22’nd International Conference on
Autonomous Agents and Multiagent Systems, (AAMAS). 77–85.

[20] Nevena Lazic, Brendan J. Frey, and Parham Aarabi. 2010. Solving the uncapaci-

tated facility location problem usingmessage passing algorithms. In Proceedings of
the 13th International Conference on Artificial Intelligence and Statistics (AISTATS).
429–436.

[21] Jimmy Ho-Man Lee, Pedro Meseguer, and Wen Su. 2015. Adding laziness in

BnB-ADOPT+. Constraints 20, 2 (2015), 274–282.
[22] Radu Marinescu and Rina Dechter. 2009. AND/OR Branch-and-Bound search for

combinatorial optimization in graphical models. Artificial Intelligence 173, 16-17
(2009), 1457–1491.

[23] Pangresh J. Modi,Wei-Min Shen,Milind Tambe, andMakoto Yokoo. 2005. ADOPT:

asynchronous distributed constraints optimizationwith quality guarantees. Arti-
ficial Intelligence 161:1-2 (2005), 149–180.

[24] Sofia Amador Nelke, Steven Okamoto, and Roie Zivan. 2020. Market Clearing-

based Dynamic Multi-agent Task Allocation. ACM Transactions of Intelligent
Systems Technology. 11, 1 (2020), 4:1–4:25.

[25] Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann.

[26] Judea Pearl. 1989. Probabilistic reasoning in intelligent systems - networks of
plausible inference. Morgan Kaufmann. I–XIX, 1–552 pages.

[27] Adrian Petcu and Boi Faltings. 2005. Approximations in Distributed Optimization.

In Proceedings of the 11th International Conference, Principles and Practice of
Constraint Programming (CP). 802–806.

[28] Adrian Petcu and Boi Faltings. 2005. A Scalable Method for Multi-agent Con-

straint Optimization. In Proceedings of the 19th International Joint Conferenceon
Artificial Intelligence (IJCAI). 266–271.

[29] Marco Pretti. 2005. A message-passing algorithm with damping. Journal of
Statistical Mechanics: Theory and Experiment 11 (2005), P11008.

[30] Sarvapali D. Ramchurn, Alessandro Farinelli, Kathryn S. Macarthur, and

Nicholas R. Jennings. 2010. Decentralized Coordination in RoboCup Rescue.

Computer 53, 9 (2010), 1447–1461.
[31] Alex Rogers, Alessandro Farinelli, Ruben Stranders, and Nicholas R. Jennings.

2011. Bounded approximate decentralised coordination via the max-sum algo-

rithm. Artificial Intelligence 175, 2 (2011), 730–759.
[32] Pierre Rust, Gauthier Picard, and Fano Ramparany. 2016. Using Message-Passing

DCOP Algorithms to Solve Energy-Efficient Smart Environment Configuration

Problems. In Proceedings of the 25th International Joint Conferenceon Artificial
Intelligence (IJCAI). 468–474.

[33] Pritam Som and Ananthanarayanan Chockalingam. 2010. Damped belief propa-

gation based near-optimal equalization of severely delay-spread UWB MIMO-ISI

channels. In Proceedings of IEEE International Conference on Communications
(ICC). 1–5.

[34] David Sontag and Tommi Jaakkola. 2009. Tree Block Coordinate Descent for

MAP in Graphical Models. In Proceedings of the 12th International Conference on
Artificial Intelligence and Statistics (AISTATS). 544–551.

[35] David Sontag, Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss.

2008. Tightening LP Relaxations for MAP using Message Passing. In Proceedings
of the 24th Conference on Uncertainty in Artificial Intelligence (UAI). 503–510.

[36] Ruben Stranders, Alessandro Farinelli, Alex Rogers, and Nicholas R. Jennings.

2009. Decentralised coordination of continuously valued control parameters

using the max-sum algorithm. In Proceedings of the 8th International Conference
on Autonomous Agents and Multi-agent Systems (AAMAS). 601–608.

[37] Daniel Tarlow, Inmar Givoni, Richard S. Zemel, and Brendan J. Frey. 2011. Graph

Cuts is a Max-Product Algorithm. In Proceedings of the 27th Conference on Uncer-
tainty in Artificial Intelligence (UAI).

[38] W. T. Luke Teacy, Alessandro Farinelli, Neil J. Grabham, Paritosh Padhy, Alex

Rogers, and Nicholas R. Jennings. 2008. Max-sum decentralised coordination for

sensor systems. In Proceedings of the 7th International Conference on Autonomous
Agents and Multi-agent Systems (AAMAS). 1697–1698.

[39] Yair Weiss. 2000. Correctness of Local Probability Propagation in Graphical

Models with Loops. Neural Computation 12, 1 (2000), 1–41.

[40] Yair Weiss and William T. Freeman. 2001. On the optimality of solutions of the

max-product belief-propagation algorithm in arbitrary graphs. IEEE Transactions
on Information Theory 47, 2 (2001), 736–744.

[41] Chen Yanover, Talya Meltzer, and Yair Weiss. 2006. Linear Programming Relax-

ations and Belief Propagation - An Empirical Study. Journal of Machine Learning
Research 7 (2006), 1887–1907.

[42] Harel Yedidsion, Roie Zivan, and Alessandro Farinelli. 2018. Applyingmax-sum to

teams of mobile sensing agents. Engineering Applications of Artificial Intelligence
71 (2018), 87–99.

[43] William Yeoh, Ariel Felner, and Sven Koenig. 2010. BnB-ADOPT: An Asyn-

chronous Branch-and-Bound DCOP Algorithm. Journal of Artificial Intelligence
Research (JAIR) 38 (2010), 85–133.

[44] Zhepeng Yu, Ziyu Chen, Jingyuan He, and Yancheng Deng. 2017. A Partial Deci-

sion Scheme for Local Search Algorithms for Distributed Constraint Optimiza-

tion Problems. In Proceedings of the 16th International Conference on Autonomous
Agents and Multi-agent Systems (AAMAS). 187–194.

[45] Roie Zivan. 2008. Anytime Local Search for Distributed Constraint Optimiza-

tion. In Proceedings of the 23rd International Conference of the Association for the
Advancement of Artificial Intelligence (AAAI). Chicago, IL, USA, 393–398.

[46] Roie Zivan, Omer Lev, and Rotem Galiki. 2020. Beyond Trees: Analysis and

Convergence of Belief Propagation in Graphs with Multiple Cycles. In Proceedings
of the 34th International Conference of the Association for the Advancement of
Artificial Intelligence (AAAI). 7333–7340.

[47] Roie Zivan, Tomer Parash, Liel Cohen, Hilla Peled, and Steven Okamoto. 2017.

Balancing exploration and exploitation in incomplete Min/Max-sum inference

for distributed constraint optimization. Autonomous Agents and Multi-Agent
Systems 31, 5 (2017), 1165–1207.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2289

	Abstract
	1 Introduction
	2 Background
	2.1 Min-sum Belief Propagation
	2.2 Single-cycle factor graphs
	2.3 Damped Min-sum (DMS)
	2.4 Backtrack Cost Trees

	3 Formalizing the Coefficients of a DMS BCT
	3.1 DMS Coefficients for Chain-Structured Graphs
	3.2 DMS Coefficients for Single-Cycle Graphs
	3.3 Formalizing the Coefficients of a DMS BCT for Multiple-Cycles Graphs

	4 DMS Convergence
	5 Conclusion
	References

