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ABSTRACT
Exploration remains a fundamental yet challenging problem in
Multi-Agent Reinforcement Learning (MARL). In this paper, we
address the issue from a novel perspective: the loss of plasticity,
a phenomenon characterized by the declining adaptability of neu-
ral networks to adapt to new trajectories as training progresses.
Through systematic empirical studies, we derive several key in-
sights: (1) Plasticity loss is widespread in MARL; (2) Without timely
interventions to restore plasticity, neural networks struggle to learn
effective exploration strategies, even when provided with novel and
informative data; (3) While restoring plasticity can enhance learn-
ing capabilities and exploration efficiency, the process is inherently
unstable, with its effectiveness largely depending on which modules
are restored and the timing of the intervention. Based on these find-
ings, we propose Plasticity-Aware Multi-Agent Exploration (PAME),
which introduces targeted and minimal interventions to enhance
plasticity in specific modules of MARL at optimal times. Our results
show that PAME consistently outperforms state-of-the-art methods
in terms of exploration efficiency.

KEYWORDS
Multi-Agent Reinforcement Learning; Multi-Agent Exploration;
Plasticity Loss; Sparse Reward
ACM Reference Format:
Zehua Zang, Chuxiong Sun, Lixiang Liu, Fuchun Sun, and Changwen Zheng.
2025. Loss of Plasticity: A New Perspective on Solving Multi-Agent Explo-
ration for Sparse Reward Tasks. In Proc. of the 24th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2025), Detroit, Michi-
gan, USA, May 19 – 23, 2025, IFAAMAS, 10 pages.

∗Corresponding author.

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

1 INTRODUCTION
Cooperative multi-agent reinforcement learning (MARL) holds sig-
nificant potential for addressing various real-world multi-agent
challenges, such as sensor networks [47], traffic control [37], coop-
erative robotic systems [11, 44], and Game AI [32]. These complex
applications present two primary challenges for cooperative MARL:
scalability, due to the exponential growth of the joint action space
as the number of agents increases, and partial observability, which
necessitates that agents make decentralized decisions based on
local action-observation histories. Centralized Training with De-
centralized Execution (CTDE) [23] provides an effective solution
by leveraging centralized access to global information during train-
ing while enabling decentralized decision-making based solely on
local observations. CTDE not only ensures scalability for large-
scale tasks through decentralized execution but also stabilizes the
learning process during centralized training, thereby effectively
mitigating the non-stationarity caused by partial observability.

Building upon the CTDE paradigm, value factorization methods
[33, 39–43, 45, 46], which employ neural networks to represent the
joint Q-value as a function of individual Q-value functions, have
achieved considerable success. However, exploration remains a fun-
damental challenge in MARL, particularly in sparse reward settings,
due to the exponential growth of the joint exploration space. Exist-
ing exploration strategies in MARL can be broadly categorized into
three main approaches, uncertainty-oriented exploration and in-
trinsic motivated exploration. These methods leverage key insights
from exploration techniques in single-agent domains.

Despite recent advances, we observe an intriguing phenomenon:
existing multi-agent exploration methods are generally effective at
exploring novel states, generating diverse trajectories, and discov-
ering data that can achieve cooperative goals, thereby navigating
the state space effectively. However, in complex tasks with sparse
rewards, these methods often struggle to translate meaningful ex-
ploration data into effective exploration strategies. To address this
issue, we revisit the current multi-agent exploration paradigm and
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argue that the core challenge behind the low exploration efficiency
in policy space is plasticity loss [8].

As the old proverb goes, ‘You cannot teach an old dog new tricks.’
While traditional wisdom is not always definitive, neuroscientists
have long recognized that biological agents gradually lose adapt-
ability with age [22]. This phenomenon, known as plasticity loss,
occurs for various reasons, including the natural degradation of
neurons and their connections [15, 27]. Recent studies suggest that
reinforcement learning (RL) agents utilizing neural networks may
similarly lose their ability to learn from new experiences over time
[8, 24]. However, understanding the precise mechanisms by which
plasticity loss affects exploration efficiency in MARL remains a
significant challenge.

In this work, we begin by demonstrating the existence of plas-
ticity loss in MARL. To assess the plasticity of neural networks,
we use the number of saturated rectified linear units [24, 38] in a
high-performing MARL algorithm, QMIX [33], applied to a vari-
ation of the SMAC environment. Our results show a significant
decline in the number of saturated rectified linear units over time.
We further investigate the degree of plasticity loss across various
components of MARL, including the mixer and local Q-value net-
works in value decomposition methods, as well as the actor and
critic networks in multi-agent policy gradient methods. The results
indicate that different modules experience varying degrees of plas-
ticity loss. We then analyze how plasticity loss affects exploration
efficiency in MARL and find that, when a neural network loses
its plasticity, it fails to convert high-quality exploration data into
effective exploration strategies, even when such data is available.
Finally, we explore how restoring neural network plasticity can en-
hance exploration efficiency in MARL by conducting motivational
experiments to evaluate the impact of restoring plasticity timing
on MARL performance.

Building on these insights, we propose a simple yet effective
method called Plasticity-Aware Multi-Agent Exploration (PMAE).
PMAE not only focuses on exploring novel states and trajectories
but also aims to effectively transfer the explored data into a stable
exploration policy. The key insight of PMAE is tomaintain plasticity
throughout the exploration process, ensuring that the knowledge
embedded in the exploration data can be successfully integrated
into the exploration strategy. Specifically, we leverage Random
Network Distillation (RND) on global states to model the intrinsic
reward. This intrinsic reward serves a dual purpose: encouraging
multi-agent exploration to discover novel states and assessing the
novelty of the explored data to determine when to maintain or
restore plasticity. To further facilitate this, we introduce a plasticity
restoration mechanism for multi-agent exploration that intervenes
to enhance the plasticity of the agents’ specific neural networks.
The conceptual approach is straightforward: at a point when agents
have explored novel data, we freeze the current network and create
a new one that learns changes to the predictions, while ensur-
ing that these changes initially have no impact. Importantly, the
plasticity restoration mechanism does not increase the number of
trainable parameters and does not affect the network’s predictions
when applied. This mechanism ensures that, when agents discover
valuable data, the neural network can effectively learn from the tra-
jectory data, thereby improving exploration efficiency inMARL.We
evaluate PMAE across a variety of MARL environments, including

Google Research Football (GRF) [18] and the StarCraft Multi-Agent
Challenge (SMAC) [35]. In both environments, we consider sparse-
reward settings, which are particularly challenging since agents
must coordinate their behavior over extended timesteps before re-
ceiving any non-zero reward. The results demonstrate that PMAE
consistently outperforms state-of-the-art baselines, such as ICES
[21], EMC [49], CDS [19], SMMAE [48], and COIN [20].

2 RELATEDWORKS
Multi-agent exploration can be categorized into two primary ap-
proaches based on distinct conceptual foundations. The first ap-
proach is uncertainty-oriented exploration, which is rooted in the
Optimism in the Face of Uncertainty (OFU) principle. The second
approach, intrinsic motivation-oriented exploration, is inspired by
the concept of intrinsic motivation in psychology [3], where explo-
ration is guided by intrinsic rewards designed to foster exploratory
behavior.

Uncertainty-oriented Exploration Uncertainty-driven explo-
ration faces two key challenges: the agent’s reliance on local ob-
servations for partial state estimates and the lack of access to
other agents’ policy, resulting in a non-stationary environment.
MSQA [50] models the posterior of the Q-function using a Gauss-
ian process. [28] measures both aleatoric and epistemic uncertainty
to guide exploration. [2, 14, 34] extend exploration strategies to
zero-sum stochastic games. Their findings indicate that Thomson
sampling and Bayes-UCB-based methods are the most effective
approaches.

Intrinsicmotivation-oriented Exploration Intrinsicmotivation-
oriented exploration is adding a exploration bonues to the reward
signal to encourage agents exploring unseen stats. [4, 12] assign
agents extra bonuses based on novelty to encourage exploration.
LIIR [10] is proposed which learns the individual intrinsic reward
and uses it to update an agent’s policy with the objective of maxi-
mizing the team reward. [13] define the intrinsic reward function
from another perspective called "social influence", which measures
the influence of one agent’s actions on others’ behavior. [6] tackle
the coordinated exploration problem from a different view by con-
sidering that the environment dynamics caused by joint actions are
different from that caused by individually sequential actions.

2.1 Loss of Plasticity
Recent studies have increasingly underscored a significant limi-
tation in neural networks, where their learning capabilities expe-
rience catastrophic degradation when trained on non-stationary
objectives [29, 38]. Unlike supervised learning, nonstationarity in
data streams and optimization objectives is intrinsic to the rein-
forcement learning (RL) paradigm, making it necessary to address
this issue. This challenge has been referred to by several terms,
including primacy bias [31], dormant neuron phenomenon [38],
implicit underparameterization [16], capacity loss [25], and more
broadly, plasticity loss [17, 26]. Agents suffering from plasticity loss
struggle to learn from new experiences, resulting in extreme sample
inefficiency or, in some cases, entirely ineffective training. The most
straightforward approach to mitigate this problem involves reini-
tializing a portion of the network to restore its plasticity [9, 31, 36].
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Figure 1: Training curves of FAU rates by training 2M time
steps on 3s_5z_vs_3s_6z.

However, periodic resetting [31] can lead to abrupt performance de-
clines, disrupting exploration and necessitating extensive gradient
updates for recovery. To address this limitation, methods such as
ReDo [38], which selectively resets dormant neurons, and Plasticity
Injection [29], which introduces a new initialized network for learn-
ing while freezing the existing network as residual blocks, have
been proposed. Another avenue of research emphasizes the use
of explicit regularization or modifications to network architecture
to counteract plasticity loss. For instance, L2-Init [17] regularizes
the network’s weights back to their initial parameters, while Con-
catenated ReLU [1] ensures a non-zero gradient. To the best of our
knowledge, we are the first to investigate the problem of plastic-
ity loss and its effects on exploration efficiency in the context of
multi-agent reinforcement learning (MARL).

3 DOES PLASTICITY LOSS EXIST IN MARL?
How to evaluate the plasticity inMARL.Although the complete
mechanisms behind plasticity loss are still not fully understood, one
of the primary contributing factors is a reduction in the number
of active neurons within the network. To evaluate plasticity loss
in MARL, we employ the Fraction of Active Units (FAU) [24, 38]
as a metric to quantify the level of plasticity. The FAU provides
insight into the proportion of neurons actively responding to input,
offering a direct measure of how effectively the network remains
capable of learning. Specifically, the FAU for neurons within MARL
networks is defined as follows:

ΦM =

∑
𝑛∈M 1(𝑎𝑛 (𝑥) > 0)

𝑁
, (1)

where 𝑎𝑛 (𝑥) represents the activation value of neuron𝑛 given input
𝑥 ,M refers to the neural network modules involved in MARL, and
𝑁 is the total number of neurons within module M. Essentially,
ΦM captures the ratio of neurons that are actively contributing to
the learning process, helping us identify how network plasticity
evolves over time.

To demonstrate the existence of plasticity loss in MARL, we
selected a representative MARL environment SMAC and chose a
challenging task 3s_5z_vs_3s_6z with high exploration and learning
difficulty. We then tracked the changes in FAU during the training
processes of two classical MARL algorithms, QMIX [33] and IPPO
[7]. As shown in Figure 1, we observe that, as training progresses,
the FAU significantly decreases in both Q-learning-based and policy
gradient-based MARL algorithms. Despite differences in network
architecture, the decline in FAU is evident, indicating that plasticity
loss is a widespread issue in the MARL domain.

Table 1: Statistical information by training 60000 time steps
on push box.Exploration success indicates whether the agent
have finished the task while exploration. Successful episodes
indicates how many episodes have the agent finished the
task while exploration. Win rate indicates the test won rate
after training.

Methods Exploration Success Successful Episodes Win Rate

QMIX N 0 0%
CDS Y 12 0
COIN N 0 0
EMC Y 153 5.2%
ICES Y 233 3.2%

SMMAE Y 72 0
RND Y 201 4.8%

In the following sections, we will discuss whether plasticity loss
affects learning and exploration performance in MARL, and if so,
how this issue can be addressed.

4 HOW DOES PLASTICITY LOSS AFFECT
EXPLORATION EFFICIENCY IN MARL?

Since both the ability of agents to explore new data and the ca-
pacity of neural networks to efficiently learn from this data are
crucial for the learning efficiency of MARL—both being indispens-
able—understanding the influence of plasticity on exploration effi-
ciency in MARL first requires an investigation into the respective
roles of these two aspects in MARL tasks where exploration fails.
Hence, we consider a Push-Box task, where two agents need to
jointly push a heavy box to a specific location before observing a
reward. In this task, the exploration of agents position is easy but
exploration of box’s position require agents’ cooperative efforts.
Furthermore, until pushing the box within the environment to find
the specific location, agents can not get reward signal, therefore
many existing state-of-the-art methods fail to explore in this task.
As shown in Table 1, we consider trajectories that complete the task
as successful explorations, and use these successful trajectories to
assess whether agents have discovered effective data. The results
indicate that not all learning failures are due to a lack of exploration.
On the contrary, most multi-agent exploration methods are able to
find effective data even in complex tasks with sparse rewards. How-
ever, despite discovering such data, the converged win rate remains
at zero, demonstrating an inability to learn a stable exploration
strategy from effective data.

To further illustrate this phenomenon, we collected an offline
dataset containing of numerous successful exploration trajectories.
Using this dataset, we construct two policy networks exhibiting
different levels of plasticity: one is a randomly initialized network,
representing a high degree of plasticity, while the other is a network
that had undergone extensive training, leading to a significant
reduction in the number of saturated rectified linear units, thereby
representing low plasticity. As shown in Figure 3, the highly plastic
network is able to quickly fit an effective exploration strategy from
the high-quality offline dataset, rapidly discovering a solution that
could reliably solve the task. In contrast, the low-plasticity network
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Figure 2: Training curves of losses by training 60000 time
steps on push box. The blue curve is trained with low-
plasticity network. The red curve is trained with highly plas-
tic network.
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Figure 3: Training curves of rewards by training 60000 time
steps on push box. The blue curve is trained with low-
plasticity network. The red curve is trained with highly plas-
tic network.

struggled to learn an effective strategy, with its win rate remaining
close to zero throughout the training process. At the same time, the
training losses of the highly plastic network decreases faster than
that of low-plasticity network, as shown in Figure 2. These results
further highlight the impact of plasticity loss on MARL learning
efficiency. When studying the multi-agent exploration problem, it
is crucial not only to consider whether novel data can be explored
but also whether the current policy network can effectively learn
from that novel data.

5 HOW TO RECOVER PLASTICITY AND
IMPROVE EXPLORATION EFFICIENCY IN
MARL?

In previous sections, we have demonstrated that plasticity loss is
prevalent in MARL and significantly affects exploration efficiency.
In this section, we aim to address the following questions:

How can plasticity be recovered? A straightforward approach
to recover plasticity is to reinitialize parts of the network, thereby
rejuvenating its ability to learn. However, this strategy can disrupt
the exploration process and requires numerous gradient updates to
regain the lost performance, making it costly and inefficient.

0.0 0.5 1.0 1.5 2.0
1e6

0.0

0.1

0.2

0.3

Figure 4: Training curves of test battle wonmean by 2M steps
on 3s_5z_vs_3s_6z. Yellow curves indicates that only recover
the plasticity of mixer network. Dark cyan curves indicates
that only recover the plasticity of local agent network. Red
curves indicates that recover the plasticity of all the net-
works.
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Figure 5: Training curves of FAU rates by 2M steps on
3s_5z_vs_3s_6z.

Which components should be targeted for recovery? Our
motivation experiment, presented in Figure 4, confirms this draw-
back: the performance of a complete plasticity reset across the
entire MARL network is significantly lower compared to selectively
restoring plasticity in specific, critical modules. Therefore, it is es-
sential to determine which modules within the MARL network are
most severely impacted by plasticity loss and selectively restore
their plasticity. By doing so, we can maintain training stability
while effectively recovering the network’s plasticity, minimizing
disruption and optimizing the learning process. To further inves-
tigate this, we evaluated the FAU during the learning process of
both QMIX and IPPO. Specifically, we assessed the local Q-value
network and the mixer network in QMIX, as well as the actor and
critic networks in IPPO. As shown in Figure 5, our findings indicate
the following: (1) In QMIX, the mixer network is significantly more
affected by plasticity loss compared to the local Q-value network;
(2) In IPPO, the critic network experiences more severe plasticity
loss than the actor network.
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Figure 6: Training curves of by 2M steps on 3s_5z_vs_3s_6z.
Different curves indicate reset at a different training stages.
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Figure 7: Training curves of by 2M steps on 3s_5z_vs_3s_6z.
Different curves indicate reset with a specific frequency.

When is the optimal time to perform recovery? Upon con-
firming that plasticity loss in specific MARL modules is a key factor
hampering training, we further investigate the impact of restoring
plasticity at different stages of training and with different frequency.
As shown in Figure 6 and Figure 7, we find that restoring plasticity
at different stages results in substantial variations in the perfor-
mance of the learned policies. Therefore, determining an appropri-
ate timing for stable plasticity restoration is an important challenge
that needs to be addressed. In this work, we study the relationship
between plasticity and exploration, concluding that the two are mu-
tually reinforcing and indispensable for effective learning. Based on
this insight, we hypothesize that when agents discover high-quality
novel data through exploration, the neural network must retain
sufficient plasticity to effectively learn from this data. Hence, we
propose a plasticity-aware multi-agent exploration method. The
detailed methods will be introduced in the following section.

6 METHODS: PLASTICITY-AWARE
MULTI-AGENT EXPLORATION

In this section, we mainly focus on answering the core question
discussed above: How to learn effective policy based on successful
exploration from the perspective of plasticity. Thus, we divide this
section into four subsections: the first subsection is the prelimi-
naries for introducing the background of our method, the second
subsection is how to conduct successful exploration, the third sub-
section is how to restore the plasticity of agents, and the fourth
subsection is when to recover the plasticity of agents.

6.1 Preliminaries
We focuses on fully cooperative multi-agent reinforcement learning
tasks, characterized by partial observability. These tasks build upon
the framework of Decentralized Partially Observable Markov Deci-
sion Processes (Dec-POMDPs), formalized through the tuple 𝐺 =

(𝑁, 𝑆,𝑂,𝐴.𝑅,𝛾, 𝑃). In this formulation, 𝑁 = (𝑎𝑔𝑒𝑛𝑡1, . . . , 𝑎𝑔𝑒𝑛𝑡𝑛)
represents the set of agents. 𝑆 refers to the global states, which
provide a complete representation of the environment. 𝑂 denotes
the local observations accessible to the agents, while 𝐴 defines the
available actions. The reward function 𝑅 is based on the global
states and joint actions, and 𝛾 represents the discount factor. The
transition function 𝑃 governs the environmental dynamics.

6.2 Explore Novel Experiences by Prediction
Error

The core premise of our method centers on the acquisition of novel
experiences. If novel experiences cannot be obtained, the failure to
solve tasks can be attributed to inadequate exploration, rather than
the inability to learn from novel data as discussed in this paper. A
widely adopted strategy to enhance exploration is to incentivize
agents to engage in more diverse interactions through the use of
intrinsic rewards. Drawing inspiration from the prediction error
in RND [5], a well-established exploration method in single-agent
reinforcement learning, we utilize prediction error as novelty-based
intrinsic rewards to promote exploration. The fundamental idea is
to assign higher intrinsic rewards to states the agent has rarely en-
countered, thereby encouraging exploration of less familiar regions
of the environment. At the beginning of training, a target network,
𝜙★, with fixed parameters is randomly initialized to serve as an
anchor, while a predictor network, 𝜙 , is trained to approximate the
output of the target network.

Given a state 𝑠𝑡 at time step 𝑡 , both the target network and
the predictor network take 𝑠𝑡 as input and produce corresponding
embeddings. The output of the target network, 𝑓𝜙★ (𝑠𝑡 ), remains
fixed as the target network is not trained, while the output of
the predictor network, 𝑓𝜙 (𝑠𝑡 ), is optimized to approximate that
of the target network. The intrinsic reward is determined by the
prediction error between the outputs of the two networks. Formally,
the intrinsic reward at time step 𝑡 , denoted as 𝑟 𝑖𝑛𝑡𝑡 , is computed as
the squared error:

𝑟 int𝑡 = ∥ 𝑓𝜙★ (𝑠𝑡 ) − 𝑓𝜙 (𝑠𝑡 )∥2 (2)

A high prediction error signifies that the current state, 𝑠𝑡 , is
novel or less familiar, as the predictor network has not yet learned
to replicate the target network’s output for that state. The agent
receives this intrinsic reward in addition to any extrinsic reward
provided by the environment. Since novel states result in larger
prediction errors, the agent is encouraged to explore less-visited
regions of the state space where the predictor network exhibits
higher errors. Over time, as the predictor network is trained on
a broader range of states, its performance improves, leading to a
reduction in intrinsic rewards for states that were previously novel.
This dynamic incentivizes the agent to continually explore new
areas in order to maintain high intrinsic rewards. Ultimately, the
total reward used for training is the sum of the extrinsic reward,
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Figure 8: Overall framework of PAME., At each timestep 𝑡 , agent 𝑖 receive an observation 𝑜𝑖 , and generate an action 𝑎𝑖 . The
intrinsic reward 𝑟 𝑖𝑛𝑡 is calculated by the intrinsic reward module and used to optimize mixed Q value with extra reward 𝑟𝑒𝑥𝑡 . At
the same time, when both trigger are triggered, the plasticity of specific network module is recovered by 𝑓𝜃 = 𝑓𝜃 − 𝑓𝜃 ′1 + 𝑓𝜃 ′2 .

𝑟𝑒𝑥𝑡𝑡 , from the environment and the intrinsic reward, 𝑟 𝑖𝑛𝑡𝑡 :

𝑟𝑡𝑜𝑡𝑎𝑙𝑡 = 𝑟𝑒𝑥𝑡𝑡 + 𝛼𝑟 𝑖𝑛𝑡𝑡 (3)

where 𝛼 is a hyper-parameter used to balance external reward and
intrinsic reward.

6.3 Recover Plasticity of Modules
In addition to effective exploration, an agent’s ability to learn from
novel experiences is a critical factor for solving tasks. When an
agent is unable to derive effective policies from novel experiences
due to a loss of plasticity, mechanisms to restore plasticity become
more essential than simply continuing to explore new experiences.
By leveraging Plasticity Injection [30], a method that enhances
plasticity without affecting predictions or increasing the trainable
parameter count, we introduce new trainable networks to restore
the plasticity of the agent. At a certain point during training, when
the plasticity of a module 𝜃 has already degraded, the parameters
of 𝜃 are frozen, and two randomly initialized networks, 𝜃 ′1 and 𝜃

′
2,

are introduced. The network 𝜃 ′1 contains trainable parameters used
to learn a residual to the outputs of the original network, while 𝜃 ′2
remains frozen throughout. Given an input 𝑥 , the predictions of
the recovered agent are computed as follows:

𝑓 (𝑥) = 𝑓𝜃 (𝑥) + 𝑓𝜃 ′1 (𝑥) − 𝑓𝜃 ′2 (𝑥) (4)

Since 𝜃 ′1 = 𝜃 ′2 at initialization, the agent’s previously learned
knowledge remains unaffected during the plasticity recovering pro-
cess. As learning progresses, 𝜃 ′1 diverges from 𝜃 ′2, and the difference
𝑓𝜃 (𝑥)− 𝑓𝜃 ′2 (𝑥) functions as a bias term in the predictions. In practice,
it is not necessary to recover all modules. As discussed in Section
5, applying recovering to all the modules of agents forces the agent
to relearn its entire representation from scratch which is inefficient

to training, so we only target modules where plasticity has signifi-
cantly diminished, such as the mixer network in QMIX [33]-based
methods or the critic network in Actor-Critic methods.

6.4 Adaptive Triggers for Recovering
Recovering plasticity is an effective strategy for enhancing an
agent’s ability to learn policies from novel experiences. However,
when to recover the plasticity is equally critical. For instance, recov-
ering at initialization stage or at the final stage of training would
yield the same outcome as not recovering at all. To address this,
we propose two adaptive triggers for deciding a suitable time to
recover plasticity. Before outlining the experimental design, we
first highlight the key motivating criteria:

(1) Novel experiences: The experiences in the replay buffer
must be sufficiently novel. This ensures that recovering oc-
curs in the context of effective exploration.

(2) Plasticity loss: Recovering is applied only when the agent’s
plasticity has significantly diminished.

We now introduce the proposed adaptive triggers to recover the
agent’s plasticity. On one hand, it is essential to ensure that when
the recovering trigger is activated, the experiences in the buffer are
novel enough. Therefore, the novelty of experiences in the replay
buffer D must be measured. Fortunately, during the exploration
phase, we have already established indicators of experience novelty.
Thus, we continue to use these previously defined evaluation met-
rics and compute the sum of predicted losses across all experiences
in the buffer to assess the overall novelty 𝑟 𝑖𝑛𝑡𝑡 at time step 𝑡 :

𝑟 𝑖𝑛𝑡𝑡 =
∑︁
𝑠∼D

∥ 𝑓𝜙★ (𝑠) − 𝑓𝜙 (𝑠)∥2 (5)
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Specifically, we record the novelty of an anchor buffer at time
step𝐾 , where𝐾 is a small integer greater than zero. The first trigger,
denoted as adaptive novelty trigger, is set as 𝜂𝑡 > 𝜅𝜂𝐾 with 𝜅 > 1,
meaning that recovering the module’s plasticity when the novelty
at time step 𝑡 exceeds a scaled version of the novelty at step 𝐾 . The
rationale for selecting 𝐾 as a small integer greater than zero is that
the buffer requires time to populate. And as the predictor network
is trained, the overall novelty of the buffer, which includes repeated
experiences, decreases. A lower value of 𝜂𝐾 makes the trigger easier
to activate. The parameter 𝜅 introduces a trade-off: if 𝜅 is too small,
recovering may occur prematurely, akin to a random initialization
reset. Conversely, if 𝜅 is too large, the agent may find it difficult to
explore sufficiently novel experiences to trigger recovering.

In addition, recovering plasticity must be applied to modules that
exhibit plasticity loss. To measure plasticity, we propose using FAU
as a metric. Following Equation 1, we record the FAU, denoted Φ𝑈M ,
for an anchor module at time step 𝑈 , where 𝑈 is a small integer
greater than zero. The second trigger, which is called adaptive
plasticity trigger, is set as Φ𝑡M < 𝜇Φ𝑈M , with 0 < 𝜇 < 1. The reason
for selecting𝑈 as a small integer greater than zero is that FAU is
highly unstable at the beginning of training and tends to decrease
as the module is trained. The parameter 𝜇 introduces a trade-off: if
𝜇 is too small, the trigger is never activated, while if 𝜇 is too large,
recovering occurs prematurely.

7 EXPERIMENTS
7.1 Experimental Settings
In this work, we evaluate PAME and baselines on widely used
benchmarks of GRF and SMAC in sparse reward settings. We
consider three tasks in GRF: 3_vs_1_with_keeper, corner and coun-
terattack_hard, and five tasks in SMAC: 2c_vs_64zg, 5m_vs_6m,
8m_vs_9m, MMM and MMM2. We implement our proposed PAME
on top of QMIX [33]. We compare PAME with CDS [19], COIN
[20], EMC [49], ICES [21] and SMMAE [48]. Wherever possible, we
utilize the official implementations of these baselines from their
respective papers; in cases where the implementation is not avail-
able, we closely follow the descriptions provided in the papers and
implement them on top of QMIX.

7.2 Benchmark Results on GRF and SMAC
Figure 9 compares the performance of PAME and several base-
line methods across GRF and SMAC tasks under sparse reward
settings. PAME consistently outperforms the baselines, especially
those based on QMIX, demonstrating its ability to learn effectively
in challenging, sparse-reward environments. PAME shows a sharp
performance increase after a certain number of time steps, indicat-
ing efficient exploration and policy learning, while baselinemethods
either struggle to improve or exhibit slower progress. This suggests
that PAME enhances the agents’ ability to learn from novel experi-
ences when the recovery triggers, as discussed in Section 6.4, are
met.

In the GRF tasks, which are known for their environmental
stochasticity and high demand for agent collaboration, PAMEdemon-
strates its robustness. For instance, in the 3_vs_1_with_keeper en-
vironment, PAME performs on par with the baselines up until

approximately 1.2 million steps. However, after this point, a sig-
nificant performance improvement occurs, signaling the potential
influence of plasticity recovering around this time. Similar trends
are observed in the corner and counterattack_hard environments.

Turning to the SMAC tasks, PAME similarly exhibits superior
performance compared to the baselines. In tasks such as 5m_vs_6m,
8m_vs_9m, and MMM2, PAME achieves marked performance im-
provements at specific time steps, while the baselines show only
marginal gains or even fail to solve the tasks. This supports our
earlier conclusion that successful exploration not only requires
encountering novel experiences but also the capacity to learn from
them. In the remaining tasks, 2c_vs_64zg andMMM, both PAME and
the baselines successfully solve the tasks, but PAME demonstrates
faster convergence. This suggests that while the baseline meth-
ods suffer from some degree of plasticity loss, they do not entirely
lose the ability to learn. In contrast, PAME accelerates learning by
restoring the agent’s plasticity, enabling quicker adaptation to the
problem-solving requirements.

7.3 Ablation Studies
In this subsection, we further investigate the effectiveness of our
two proposed triggers and the exploration mechanism based on
prediction error as intrinsic rewards. We evaluated the following
settings, recover nothing which is only exploration with intrinsic
rewards (Recover Nothing), recover mixer network (Recover Mixer),
recover local agents’ Q network (Recover Agent) and recover all
the networks (Recover All), as shown in Figure 10. It should be
noticed that the time of plasticity recovery in all the evaluations is
at 0.75 million time steps. These evaluations are based on 2M steps
training on 5m_vs_6m.

Ablation Study on Adaptive Novelty Trigger. The adaptive
novelty trigger plays a critical role in determining whether the
condition for plasticity recovery based on experience novelty is
met. To assess the impact of recovery timing on final performance,
we compare the performance curves of PAME and Recover Mixer.
The key difference between these two approaches is that PAME
employs the proposed adaptive novelty trigger, while RecoverMixer
utilizes a fixed recovery time of 0.75 million time steps, which is
later than the adaptive trigger.

The results demonstrate that PAME achieves faster performance
improvements compared to Recover Mixer, although both methods
exhibit similar overall performance trends. The plasticity of the
mixer network declines rapidly during training, and restoring plas-
ticity leads to substantial improvements in the network’s ability
to learn from novel experiences. However, the learning capacity
of the mixer network after plasticity recovery appears consistent,
regardless of when the recovery occurs. Therefore, within an appro-
priate range, earlier plasticity recovery enables the agent to achieve
optimal performance more rapidly. This finding underscores the im-
portance of timely plasticity recovering in accelerating the agent’s
learning process.

Ablation Study on Adaptive Plasticity Trigger. The adap-
tive plasticity trigger determines if recovery is needed based on
plasticity loss, preventing unnecessary recovery for unaffected
modules. To validate this, we compare the performance of four
approaches—Recover Nothing, Recover Mixer, Recover Agent, and
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Figure 9: Performance comparison with baselines on GRF and SMAC benchmarks in sparse reward settings.

Recover Nothing

Recover Mixer

Recover Agent

Recover All

PAME

Figure 10: Training curves of by 2M steps on 5m_vs_6m.

Recover All—which all start recovery at 0.75 million time steps but
with different recovery targets.

The results show that the optimal strategy is to recover only the
mixer network’s plasticity, with Recover Mixer outperforming the
others. Recover Nothing, which applies no recovery, is the second-
best, followed by Recover Agent, which recovers the Q network
of local agents. Recover All, where all modules undergo recovery,
performs the worst. As discussed in Section 5, selectively recover-
ing plasticity from modules with significant loss is beneficial, while
unnecessary recovery harms performance. After 0.75 million steps,
performance stagnates for about 0.5 million steps before improving,
suggesting that recovering plasticity in unaffected modules forces
the network to relearn acquired knowledge. This issue is worse in
Recover All, where the agent must relearn its entire representation,
severely hindering progress. These results support our claim that
only modules with substantial plasticity loss should undergo recov-
ery, with the adaptive plasticity trigger ensuring efficient, selective
recovery.

Ablation Studies on Hyperparameters To determine the op-
timal values for the introduced hyperparameters, we conducted
three ablation experiments on 5m_vs_6m, focusing on the intrinsic
reward (𝛼), adaptive novelty trigger (𝜅), and adaptive plasticity trig-
ger (𝜇). The results, presented in Table 2, show that we set 𝛼 = 0.1,
𝜅 = 1.2, and 𝜇 = 0.9 for our experiments.

Table 2: Test battle won rate on 5m_vs_6m.

𝛼 Won Rate 𝜅 Won Rate 𝜇 Won Rate

0 0.19±0.042 1.0 ±0.27±0.091 1.0 ±0.30±0.107
0.05 0.27±0.078 1.2 ±0.56±0.102 0.9 ±0.56±0.102
0.1 0.41±0.098 1.4 ±0.30±0.020 0.8 ±0.28±0.060
0.2 0.32±0.050 1.6 ±0.28±0.025 - -

Effective Exploration Finally, we were curious to see if our
work on plasticity recovery had been successful rather than success-
ful in other ways, and when we compared the baselines in Figure 9
and Recover Nothing in Figure 10, we found that our exploration of
predicting loss as an intrinsic reward was successful in exploring
novel experiences.

8 CONCLUSIONS
In conclusion, our findings highlight the significant impact of plas-
ticity loss on exploration efficiency in MARL. By identifying this
degradation as a critical barrier to learning, we emphasize the need
for timely plasticity restoration. The proposed Plasticity-Aware
Multi-Agent Exploration (PAME) method offers a lightweight yet
effective intervention to address this challenge, achieving consistent
improvements in exploration without increasing model complex-
ity. These results suggest that maintaining plasticity throughout
training is essential for advancing exploration strategies in MARL.
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