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ABSTRACT
Discrete Fair division is the problem of allocating a set of indivisi-

ble items among agents in a fair manner. Envy-freeness up to any
good (EFX) has emerged as one of the strongest fairness guaran-

tees for this problem, however, its existence remains unknown.

Christodoulou, Fiat, Koutsoupias, and Sgouritsa (EC 2023) intro-

duced graphical valuations represented by a graph, where nodes

represent agents and edges are items valued only by its endpoints,

and under these showed that EFX allocation exist. They showed

that such an allocation need not be efficient–in the sense that every

edge is assigned (oriented) to one of its endpoints–and proved that

determining whether an EFX orientation exists is NP-hard. They

left the characterization of graphs admitting EFX orientation as an

important open question.

Towards this question, we introduce the notion of strongly EFX-

orientable graphs, defined as graphs that have an EFX orientation

for any valuation assignment. We establish a surprising connection

between this property and the chromatic number of the graph.

Specifically:

• Graphs with chromatic number 𝜒 (𝐺) ≤ 2 are strongly EFX-

orientable.

• Graphs with 𝜒 (𝐺) ≥ 4 are not strongly EFX-orientable.

• For graphs with 𝜒 (𝐺) = 3, we identify both strongly EFX-

orientable and non-strongly EFX-orientable examples, demon-

strating the sharpness of our characterization.

For binary valuations, we provide a complete characterization.
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1 INTRODUCTION
Fair division is a problem of allocating a set𝑀 of goods among 𝑛

agents in a fairmanner [29]. This is an age-old problemwith numer-

ous contemporary applications, e.g., division of family inheritance

[27], divorce settlements [7], spectrum allocation [17], air traffic
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national 4.0 License.
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management [31], course allocation [9] and many more
1
. In this

paper, we study the fair division of indivisible goods. In this case,

the preferences of each agent 𝑖 ∈ [𝑛] = {1, 2...𝑛} are represented
by a monotone increasing valuation function 𝑓𝑖 : 2

𝑀 → R≥0, spec-
ifying how much they value each subset of goods.

2
An allocation

of goods is a partition of𝑀 into 𝑛 subsets 𝑋 = (𝑋1, 𝑋2 ...𝑋𝑛), where
𝑋𝑖 is allocated to agent 𝑖 .

One of the most sought-after fairness notions is of envy freeness.
An allocation is said to be envy free (EF) if no agent 𝑖 envies another’s
allocation: 𝑓𝑖 (𝑋𝑖 ) ≥ 𝑓𝑖 (𝑋 𝑗 ),∀𝑖, 𝑗 ∈ [𝑛]. With indivisible items, an

envy-free allocation may not always exist, for example, allocating

one iPhone among two agents who both value it highly. Hence,

several relaxations of envy-freeness have been studied, arguably

the strongest of which is envy-freeness up to any good (EFX) [11].
An allocation is said to be EFX if for any two agents 𝑖, 𝑗 , 𝑖 does

not envy any proper subset of 𝑗 ’s bundle. That is, for any 𝑋 ⊂ 𝑋 𝑗 ,

𝑓𝑖 (𝑋𝑖 ) ≥ 𝑓𝑖 (𝑋 ). In other words, 𝑖 does not envy𝑋 𝑗 after the removal

of any good from 𝑋 𝑗 .

Determining whether an EFX allocation exists is arguably the

biggest open question within fair division [28]. For the case of addi-

tive valuations, the existence of EFX is known for three agents [13],

and for general monotone only for the case of two agents [26]. Given

the notoriety of this problem, there has been extensive work explor-

ing special cases and relaxations (see Section 1.2 for an overview

of related works). One such prominent special case is of graphi-
cal valuations considered by Christodoulou, Fiat, Koutsoupias, and

Sgouritsa [16]. Here, an instance is represented by an undirected

graph 𝐺 = (𝑉 , 𝐸), where the vertices correspond to agents and the

edges correspond to goods, such that each edge is valued positively

only by its incident agents. In other words, each vertex 𝑣 ∈ 𝑉 has

a valuation function 𝑓𝑣 : 2
𝐸 → R≥0, satisfying the property that

𝑓𝑣 (𝑋 ) = 𝑓𝑣 (𝑋 ∩ 𝐸 (𝑣)), where 𝐸 (𝑣) is the set of edges incident to 𝑣 ,
for all 𝑋 ⊆ 𝐸.

An orientation of edges in 𝐺 can be interpreted as an allocation

where each edge/good is given to its incident vertex/agent the edge

is oriented towards. It is called an EFX orientation if the correspond-
ing allocation is EFX. Christodoulou et al. [16] showed that an EFX

orientation may not always exist and, furthermore, proved that

determining whether a graph has an EFX orientation for a given

instance is NP-hard.

On the other hand, they showed that if we allow edges to be

allocated to non-incident vertices, then an EFX allocation exists.

However, they noted that EFX orientations are more desirable since

1
See www.spliddit.org and www.fairoutcomes.com for a detailed discussion on fair

division protocols used in day-to-day life.

2
Using 𝑣𝑖 to denote the valuation function is the convention in the literature, however,

we will use 𝑓𝑖 to avoid confusing notation, as 𝑣 is also used to denote a vertex in a

graph.
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they avoid lossy assignments (assigning an edge to a non-incident

vertex). EFX orientations become even more crucial when only

orientation-based allocations are feasibile, for example, allocating

resources in geographic settings [16]. Motivated by this, they asked

the following question [16]:

“[A] question of interest is understanding for what

classes of graphs an EFX orientation is guaranteed to

exist. E.g., an EFX orientation always exists in trees,

cycle graphs, and multistars.”

1.1 Our Contributions
In this paper, we make significant progress toward answering the

above question. To capture their question systematically, we study

strongly EFX orientable graphs, which are graphs that have an EFX

orientation regardless of valuation. We show that strong EFX ori-

entability of a graph has a surprising connection to its chromatic
number. The chromatic number of a graph 𝐺 , denoted 𝜒 (𝐺), is de-
fined as the minimum number of colors needed to color the vertices

of the graph such that no two adjacent vertices have the same color.

Like [16] considering simple graphs, i.e., graphs with no self-loops

or multi-edges, unless stated otherwise, we show that:

• All strongly EFX-orientable graphs have chromatic number

𝜒 (𝐺) ≤ 3. That is, if 𝜒 (𝐺) ≥ 4, then graph 𝐺 is not strongly
EFX orientable. On the other hand, if 𝜒 (𝐺) ≤ 2, then it is

strongly EFX orientable. Furthermore, there exist graphs of

𝜒 (𝐺) = 3, which are not strongly EFX-orientable, as well as

graphs with 𝜒 (𝐺) = 3, which are strongly EFX-orientable,

so this bound is sharp.

• For the case of binary (0-1) valuation functions, we give a

complete characterization. Given a graph 𝐺 , the following

two statements are equivalent:

– For any binary additive valuation assigned to 𝐺 , 𝐺 has an

EFX orientation.

– For every subgraph 𝐻 ⊆ 𝐺 such that 𝐻 is a forest con-

sisting of trees 𝑇1,𝑇2 ...𝑇𝑘 , for every 1 ≤ 𝑖 ≤ 𝑘 there exists

𝑥𝑖 ∈ 𝑇𝑖 such that

⋃𝑘
𝑖=1 𝑁𝐻 (𝑥𝑖 ) forms an independent set

on 𝐺 .

Significance. In addition to the almost complete characterization of

strong EFX orientability of a graph, the above results demonstrate

that such graphs which always guarantee an EFX orientation are

indeed constrained, with only a niche class of graphs (all of which

have chromatic number at most 3) possessing this property.

This demonstrates that when finding an EFX orientation on a

graph, the inherent structure of the graph is not particularly helpful,

which in turn significantly improves our understanding of the EFX

orientability, a notion that the community seems to greatly care

about [1, 16, 21].

1.2 Further Related Work
Fair division has been extensively studied, with substantial work

dedicated to understanding the existence of EFX allocations for,

including but not limited to, special cases, approximation, EFX with

charity, and efficiency. Below, we give a brief overview.

Special Cases. In addition to the cases of two [26] and three agents

[3, 13], several special cases have been studied: Berger et al. [6]

showed existence for four agents where one good may remain un-

allocated (goes to charity). For the case of binary valuations, i.e.,
every item is valued at 0 or 1, Bu et al. [8] showed EFX existence

with arbitrary many agents. Livanos et al. [23] extended this to

restricted-additive valuations where every agent values good 𝑗 at

0 or 𝑣 𝑗 > 0, i.e., 𝑓𝑖 ( 𝑗) ∈ {0, 𝑣 𝑗 }, ∀𝑖 ∈ 𝑁 . Extending the case of

the identical valuations, Mahara [25] showed that EFX allocations

exist if all the agents have one of two given valuation functions.

Ghosal et al. [19] considered the case where all but two agents have

identical valuation functions. Additionally, Mahara [24] showed

that EFX allocations exist for 𝑛 agents when there are at most 𝑛 + 3

items. Gorantla et al. [20] showed that EFX allocations exist when

there are 2 types of objects and all agents have the same value for

objects of the same type.

Relaxations of EFX: Approximation and Charity. EFX has

been studied under several relaxations as well. The most notable

of these are EFX with charity, and approximate EFX. Chan et al.,

Plaut and Roughgarden [12, 26] gave an algorithm to compute 0.5-

approximate EFX, which was improved to 0.68 by Amanatidis et al.

[4]. Caragiannis et al. [10] showed the existence of EFX allocations

where some items go to charity (remain unallocated) with 1/2-
approximate NashWelfare guarantee. Chaudhury et al. [15] showed

the existence of EFX allocations where at most (𝑛 − 1) items go

to charity and no agent envies the charity. This was improved

by Berger et al. [6] to (𝑛 − 2) items. Amanatidis et al., Plaut and

Roughgarden [4, 26] studied algorithms to find approximate EFX

allocations. A series of works [2, 14] combined both the relaxations

to get a (1 − 𝜖)-approximate EFX with �̃� (
√︁
|𝑁 |) charity. Another

popular relaxation of envy-freeness is envy-freeness up to one good
(EF1) where no agent envies another agent following the removal

of some good from the other agent’s bundle. The existence of EF1

allocations is well-known for any number of agents, even when

agents have general monotone valuation functions [22].

Efficiency with Fairness. Efficiency alongside fairness is another

requirement that is extensively studied. Two of the most popular

measures of efficiency are Pareto-optimality andNashwelfare. Cara-

giannis et al. [11] showed that any allocation that has the maximum

Nash welfare is guaranteed to be Pareto-optimal (efficient) and EF1

(fair). Barman et al. [5] gave a pseudo-polynomial algorithm to find

an allocation that is both EF1 and Pareto-Optimal. Other works

explore relaxations of EFX with high Nash welfare [10, 15, 18].

Organization. In Section 2 we formally define the fair division

problem and strong EFX-orientability. Section 3 discusses the neces-

sary conditions for strong EFX-orientability and obtains the upper

bound of 3 on the chromatic number. In the process it completely

characterizes 0-1 strong EFX-orientability. Section 4 discusses the

sufficiency conditions through bipartiteness or near-bipartiteness

of the graph. Section 5 discusses structures in certain 3-chromatic

graphs that prevent strong EFX-orientability, leaving 3-chromatic

graphs as an ambiguous case. Finally, we conclude with a brief

discussion in Section 6.

2 PRELIMINARIES
A discrete fair division instance is given by ( [𝑛], 𝑀, F ), where [𝑛]
is the set of agents, 𝑀 is the set of goods, and F = {𝑓1, 𝑓2 ...𝑓𝑛} is
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the set of valuation functions, one for each agent. For each 𝑖 ∈ [𝑛],
𝑓𝑖 : 2

𝑀 → R≥0 represents agent 𝑖’s value over the bundles (sets)
of goods. Thus, 𝑓𝑖 is non-negative and monotone, i.e., for 𝐴, 𝐵 ⊆ 𝑀 ,

𝐴 ⊆ 𝐵 implies 0 ≤ 𝑓𝑖 (𝐴) ≤ 𝑓𝑖 (𝐵). A valuation function 𝑓𝑖 is said

to be additive if for every subset 𝑋 = {𝑚1,𝑚2, ...𝑚𝑘 } ⊆ 𝑀 , 𝑓𝑖 (𝑋 ) =
𝑓𝑖 ({𝑚1}) + 𝑓𝑖 ({𝑚2}) + ... + 𝑓𝑖 ({𝑚𝑘 }), and a valuation is 0-1 additive
if it is additive and 𝑓𝑖 ({𝑚}) ∈ {0, 1} for all𝑚 ∈ 𝑀 .

An allocation 𝑋 = (𝑋1, 𝑋2 ...𝑋𝑛) is a partition of𝑀 where agent 𝑖

is assigned the bundle 𝑋𝑖 . An allocation is said to be envy-free (EF),
if 𝑓𝑖 (𝑋𝑖 ) ≥ 𝑓𝑖 (𝑋 𝑗 ) for all 𝑖, 𝑗 ∈ [𝑛]. Since such an allocation may

not exist when goods are indivisible, we consider the following

relaxation:

Definition 2.1. An allocation is envy-free up to any good (EFX) if
for all 𝑖, 𝑗 ∈ [𝑛], 𝑓𝑖 (𝑋𝑖 ) ≥ 𝑓𝑖 (𝑋 𝑗 − {𝑔}) for all 𝑔 ∈ 𝑋 𝑗 .

Graphical Valuations. The graphical version of a discrete fair

division setting is represented by (𝐺, F ), where 𝐺 = (𝑉 , 𝐸) is an
undirected graph with vertices being the agents [𝑛] (𝑉 = [𝑛]), and
edges being the goods (𝐸 = 𝑀). Every agent vertex values only her

incident edges, i.e., her valuation functions 𝑓𝑖 = 2
𝐸 → R≥0 has the

property that 𝑓𝑖 (𝑋 ) = 𝑓𝑖 (𝑋 ∩ 𝐸 (𝑖)) for all 𝑋 ⊆ 𝐸, where 𝐸 (𝑖) is the
set of edges incident to 𝑖 .

An orientation of a graph 𝐺 assigns each edge 𝑒 ∈ 𝐺 an incident

vertex as the head and the other incident vertex as a tail. We say

that an orientation gives an allocation 𝑋1, 𝑋2 ...𝑋𝑛 , where 𝑋𝑖 is the

set of all edges that have vertex 𝑖 as their head. In this paper, we

will be mainly dealing with two types of strong EFX-orientability,

the general case and the binary case.

Definition 2.2. A graph is strongly EFX-orientable if, for any as-

signed monotone valuation, there exists an EFX orientation.

Definition 2.3. A graph𝐺 is 0-1 strongly EFX-orientable if for any
additive 0-1 valuation on the edges, 𝐺 has an EFX-orientation.

3 STRONG EFX ORIENTABILITY: NECESSARY
CONDITION VIA TRIPARTITENESS

In this section, we prove the chromatic number upper bound of 3 on

strongly EFX-orientable graphs.Wewill do this by analyzing graphs

of chromatic number greater than 3, and finding a bad valuation on

the edges that makes an EFX orientation impossible. It turns out

that it is enough to only look at situations where the valuations on

the edges are either 0 or 1. Therefore, we will start by obtaining a

complete characterization of 0-1 strongly EFX-orientable graphs.

3.1 Characterization of 0-1 Strongly
EFX-Orientable Graphs

We first provide a complete characterization of 0-1 strongly EFX-

Orientable graphs, and then provide a simpler necessary condition.

These together will let us prove the upper bound of 3 on the chro-

matic number of 0-1 strongly EFX-orientable graphs, and thereby

on the strongly EFX-orientable graphs as well.

The condition that completely characterizes 0-1 strongly EFX-

orientable graph depends on certain tree structures and indepen-

dent set conditions described in the following lemma. The condition

is a bit of a mouthful, so we demonstrate it for 𝐾2,4 graph in Figure

1.

Lemma 3.1. A graph 𝐺 is 0-1 strongly EFX-orientable if and only
if, for every subgraph 𝐻 ⊆ 𝐺 such that 𝐻 is a forest consisting of
trees 𝑇1,𝑇2 ...𝑇𝑘 , for every 1 ≤ 𝑖 ≤ 𝑘 there exists 𝑥𝑖 ∈ 𝑉 (𝑇𝑖 ) such that⋃𝑘

𝑖=1 𝑁𝐻 (𝑥𝑖 ) forms an independent set on 𝐺 , where 𝑁𝐻 (𝑥) denotes
the neighbors of 𝑥 in 𝐻 (Figure 1 demonstrates this condition for a
𝐾2,4 graph).

T1

T2

x1 x2

Figure 1: This figure provides a 𝐾2,4 graph as an example to
demonstrate the characterization of Lemma 3.1. If an adver-
sary chooses 𝑇1 and 𝑇2 as the forest 𝐻 , we can respond by
choosing 𝑥1 ∈ 𝑇1 and 𝑥2 ∈ 𝑇2, and

⋃𝑘
𝑖=1 𝑁𝐻 (𝑥𝑖 ) would be the

red vertices, which is indeed an independent set on 𝐺 . In
general, for any forest an adversary chooses on a 𝐾2,4 (or any
bipartite graph), if a tree is just a single vertex its neighbors
in the forest form the empty set, so we can choose the vertex
and ignore it. Otherwise, we can choose all 𝑥𝑖 to be in the
same partite set, and its neighbors in the forest will all be
from of the same partite set and hence are an independent
set on 𝐺 , so this is an example of a graph that fulfills this
condition.

Proof. (if direction) Suppose an adversary gives us a 0-1 additive

valuation assignment a graph which satisfies these conditions. For

all the edges with asymmetric valuation (where the two endpoints

do not value the edge equally), orient them towards the vertex that

values the edge. Call the vertices that receive the asymmetrically

valued edges special vertices. Let 𝐻 ′
be the subgraph consisting

of edges valued at 1 for both endpoints. For each component of

𝐻 ′
that contains a special vertex, create a spanning tree with the

special vertex as the root, and give each vertex the edge from its

parent. For a component 𝐶 ⊆ 𝐻 ′
that contains a cycle but has no

special vertex, we remove one edge 𝑢𝑣 ∈ 𝐶 where 𝑢𝑣 is in a cycle,

and construct a spanning tree through 𝐶 − 𝑢𝑣 with 𝑣 as the root.
Assign each vertex in𝐶 the edge from its parent, and assign 𝑢𝑣 to 𝑣 .

Orient the rest of the edges in these components arbitrarily. Since

all vertices in such components receive an edge they value, they do

not envy anyone else, and are hence not envied by any vertex.

Let𝐻 = 𝑇1,𝑇2, ...𝑇𝑘 be the components of𝐻 ′
that are trees which do

not have a special vertex. For 𝐻 = 𝑇1,𝑇2, ...𝑇𝑘 , retrieve the vertices

𝑥1, 𝑥2 ...𝑥𝑘 such that

⋃𝑘
𝑖=1 𝑁𝐻 (𝑥𝑖 ) forms an independent set in 𝐺 .

For each𝑇𝑖 , set 𝑥𝑖 to be the root, and give each vertex in𝑇𝑖 the edge

from its parent. Since all vertices except 𝑥1, 𝑥2, ...𝑥𝑘 in𝐻 received at

least one edge of value 1, the only vertices envied are

⋃𝑘
𝑖=1 𝑁𝐻 (𝑥𝑖 ).

We now need to orient the edges of weight 0. Every edge of weight 0

has a non-envied endpoint, as

⋃𝑘
𝑖=1 𝑁𝐻 (𝑥𝑖 ) is an independent set on

𝐺 , so no edges can exist between two envied vertices, hence we can

orient the remaining edges towards a non-envied endpoint. Since

the only envied vertices have exactly one item, this orientation is

EFX.
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(only if direction) Suppose there exists a forest𝐻 such that for its

trees 𝑇1,𝑇2 ...𝑇𝑘 , for every collection of 𝑥1, 𝑥2 ...𝑥𝑘 such that 𝑥𝑖 ∈ 𝑇𝑖 ,
their neighborhoods in 𝐻 do not form an independent set on𝐺 . Set

all the edges in 𝐻 to have weight 1 for both vertices, and set the

rest of the edges to have weight 0 for both vertices. Note that any

orientation on a tree must have a source, so for any orientation in

𝐺 , we can choose a collection of sources in 𝑠1, 𝑠2 ...𝑠𝑘 in 𝐻 such that

𝑠𝑖 ∈ 𝑇𝑖 for 1 ≤ 𝑖 ≤ 𝑘 . Since each 𝑠𝑖 receives nothing of value and

has all its valued edges go to its neighbors, all vertices in 𝑁𝐻 (𝑠𝑖 )
are envied by 𝑠𝑖 , so all vertices in

⋃𝑘
𝑖=1 𝑁𝐻 (𝑠𝑖 ) must be envied.

However, since

⋃𝑘
𝑖=1 𝑁𝐻 (𝑠𝑖 ) does not form an independent set on

𝐺 , then an edge of weight 0 must be between two vertices in that

set. Assigning that edge will break EFX since both its endpoints are

envied due to the orientation on 𝐻 , hence such a graph is not 0-1

strongly EFX-orientable. □

We now proceed with a simpler condition that is necessary (but

not sufficient) for 0-1 strong EFX-orientability, and come up with a

method to generate many graphs that violate this condition.

Corollary 3.2. Let𝐺 be a 0-1 strongly EFX orientable graph. For
any matching𝑀 on𝐺 , the subgraph induced by the vertices of𝑀 has
an independent set of size |𝑀 |.

Proof. Let 𝑀 consist of edges 𝑒1, 𝑒2, ....𝑒𝑘 . Each edge in the

matching can be considered a tree, and the edges form a forest.

Hence, by Lemma 3.1, for each edge 𝑒𝑖 in𝑀 , we can select 𝑣𝑖 ∈ 𝑒𝑖
such that

⋃𝑘
𝑖=1 𝑁𝑀 (𝑣𝑖 ) is an independent set. Since each vertex

in𝑀 has exactly one other neighbor also in𝑀 , then

⋃𝑘
𝑖=1 𝑁𝑀 (𝑣𝑖 )

consists of |𝑀 | vertices, and hence is an independent set of size

|𝑀 |. □

Our next lemma gives us a method to generate more graphs that

violate the conditions of the previous corollary by using subdivisons.

The subdivision of an edge𝑢𝑣 ∈ 𝐸 (𝐺) is defined as deleting the edge
𝑢𝑣 , adding a new vertex𝑤 , and adding the edges 𝑢𝑤 and𝑤𝑣 in 𝐺 ,

effectively placing a vertex in the middle of an edge and dividing

into two edges. A graph 𝐺 ′
is said to be a subdivision of 𝐺 if 𝐺 ′

can be obtained through an iteration of edge subdivisions starting

from 𝐺 .

Lemma 3.3. Let𝐺 be a graph that violates the matching condition
in Corollary 3.2. Let 𝐺 ′ be the graph obtained by subdividing any
edge of𝐺 twice. Then𝐺 ′ violates the matching condition of Corollary
3.2 as well.

Proof. Let the subdivided edge on𝐺 ′
consist of𝑢, 𝑥1, 𝑥2, 𝑣 , where

𝑢𝑣 is the original edge in 𝐺 and 𝑥1, 𝑥2 are the added vertices. Sup-

pose that for any matching in𝐺 ′
, there exists an independent set of

the same size on the graph induced by the vertices of that matching.

Take a matching𝑀 on 𝐺 . We split this problem into two cases:

Case 1: 𝑢𝑣 is not in𝑀 . Consider the matching𝑀′
on 𝐺 ′

, which we

construct by taking all the edges in𝑀 and the edge 𝑥1𝑥2. We can

find an independent set 𝐼 ′ of size |𝑀 | + 1 in the subgraph induced

by the vertices of𝑀′
. We claim that 𝐼 ′ − {𝑥1, 𝑥2} is an independent

set on 𝐺 ′
. Indeed, since all vertices other than 𝑢 and 𝑣 have the

same neighborhoods, we only need to check 𝑢 and 𝑣 to ensure that

both weren’t selected. Since exactly one of 𝑥1, 𝑥2 must be in𝑀′
in

order for 𝐼 ′ to have a size of |𝑀 | + 1, if both 𝑢 and 𝑣 were in 𝐼 ′, then

𝐼 ′ cannot be an independent set. Hence, 𝑀 has a corresponding

independent set of size |𝑀 | on the subgraph induced by its vertices

on 𝐺 .

Case 2: 𝑢𝑣 is 𝑀 . Consider the matching 𝑀′
on 𝐺 ′

, which we con-

struct by taking𝑀 −𝑢𝑣 and the edges 𝑢𝑥1 and 𝑥2𝑣 . There exists an

independent set 𝐼 ′ of size |𝑀 | + 1 on the subgraph induced by𝑀′
.

We claim that at least one of 𝑢, 𝑣 must be in 𝐼 ′. Indeed, if neither 𝑢
nor 𝑣 is in 𝐼 ′, then both 𝑥1 and 𝑥2 must be in 𝐼 ′, which is impossi-

ble since they share an edge. Without loss of generality, suppose

that 𝑣 ∈ 𝐼 ′. We claim that 𝐼 ′ − {𝑢, 𝑥1} is an independent set on 𝐺 .

This is true since all vertices in 𝐼 ′ − {𝑢, 𝑥1} other than 𝑣 have the
same neighborhood, and 𝑢 cannot be in 𝐼 ′ − {𝑢, 𝑥1}, meaning that

𝐼 ′ − {𝑢, 𝑥1} is an independent set of size |𝑀 |, as desired. □

Finally, we prove that the chromatic number of a 0-1 strongly

EFX-orientable graph, and hence a strongly EFX-orientable graph,

is upper bounded by 3. To do this, we will need to use the following

result from Zang [32] and Thomassen [30].

Lemma 3.4 ([30, 32]). A graph 𝐺 of 𝜒 (𝐺) ≥ 4 contains a subdivi-
sion of a 𝐾4 where each edge of the 𝐾4 corresponds to a path of odd
length (also known as a totally odd subdivision).

Lemma 3.5. If a graph 𝐺 is 0-1 strongly EFX-orientable, then
𝜒 (𝐺) ≤ 3.

Proof. We claim that 𝐾4 violates the matching condition in

Corollary 3.2. Indeed, there is no independent set of size 2 on a 𝐾4,

while it’s possible to have a matching of size 2 in a 𝐾4. By Lemma

3.3, a totally odd subdivision of a graph that violates the matching

condition will violate the matching condition itself as well. Hence,

0-1 strongly EFX-orientable graphs cannot contain a totally odd 𝐾4
subdivision, so 𝜒 (𝐺) ≤ 3 by Lemma 3.4. □

The next theorem follows as a corollary of Lemma 3.5.

Theorem 3.6. If a graph is strongly EFX-orientable, then 𝜒 (𝐺) ≤
3.

Proof. Any strongly EFX-orientable is 0-1 strongly EFX-orientable,

so 𝜒 (𝐺) ≤ 3 follows from Lemma 3.5. □

4 STRONG EFX-ORIENTABILITY: SUFFICIENT
CONDITION VIA BIPARTITENESS

In this section, we show that if the graph is almost bipartite, then

it is strongly EFX-orientable. This in turn implies that graphs with

chromatic number at most two are strongly EFX orientable.

Lemma 4.1. Any bipartite graph is strongly EFX-orientable.

Proof. Given a bipartite graph𝐺 , partition the vertices into two

color classes 𝐴 and 𝐵. Let every vertex in 𝐴 pick their favorite edge,

and orient the chosen edges towards 𝐴. Note that no two vertices

in 𝐴 pick the same edge, since 𝐴 is an independent set. Orient all

remaining edges towards 𝐵. No envy exists within an independent

set, since any two vertices in an independent set value no common

edges. For any vertex 𝑎 ∈ 𝐴, every vertex in 𝐵 receives at most one

edge adjacent to 𝑎, and since 𝑎 was allocated its favorite edge, 𝑎 does

not envy any vertex in 𝐵. Note that while there might be envy from

𝐵 to 𝐴, since every vertex in 𝐴 has only edge, the envy disappears

after removal of this edge. Hence, this allocation is EFX. □
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It is possible to relax the bipartite condition slightly to obtain

a slightly weaker sufficient condition for strong EFX-orientability.

This relaxation gives us examples of graphs with chromatic number

3 that are also strongly EFX-orientable.

Lemma 4.2. If𝐺 is a graph with some 𝑣 ∈ 𝐺 such that for any edge
𝑒 incident to 𝑣 , 𝐺 − 𝑒 is bipartite, then 𝐺 is strongly EFX-orientable.

Proof. Let such a vertex 𝑣 pick its favorite edge, which we will

call𝑢𝑣 . Delete𝑢𝑣 from𝐺 . Note that the remaining graph is bipartite.

Partition 𝐺 − 𝑢𝑣 into color classes 𝐴 and 𝐵, and without loss of

generality let 𝑣 be in𝐴. Have all vertices in𝐴− 𝑣 pick their favorite
edge, and orient the chosen edges towards 𝐴. Orient the remaining

edges towards 𝐵.

Note that 𝐵 must be an independent set in 𝐺 , since 𝑢𝑣 has one

end in 𝐴, and all other edges go from 𝐴 to 𝐵, so no envy exists

between vertices in 𝐵. No vertex in 𝐴 envies a vertex in 𝐵, since

they got to take an edge before 𝐵, and the remaining edges incident

to a vertex in 𝐴 were assigned to different neighbors of that vertex.

While there might be envy towards vertices in 𝐴, every vertex in 𝐴

was assigned only one edge, making this orientation EFX. □

Corollary 4.3. Odd cycles with an additional edge are strongly
EFX-orientable.

Proof. Adding an additional edge to an odd cycle splits the

graph into a smaller even cycle and a smaller odd cycle joined by

an edge. We can take a vertex 𝑣 in the smaller odd cycle but not in

the smaller even cycle. Deleting any edge incident to 𝑣 removes the

graph of all its odd cycles, hence by Lemma 4.2, an odd cycle with

a chord is strongly EFX-orientable. □

We conclude this subsection with a remark that when dealing

with strongly EFX-orientable graphs, if needed, we can always

assume that a graph has minimum degree 𝛿 (𝐺) ≥ 2, as vertices

with only one incident edge do not affect strong EFX-orientability.

Proposition 4.4. Let𝐺 be a graph with a vertex 𝑣 that has degree
1. 𝐺 − 𝑣 is strongly EFX-orientable if and only if 𝐺 is strongly EFX
orientable.

Proof. 𝐺 being strongly EFX orientable implies that 𝐺 − 𝑣 is
strongly EFX orientable, so we prove the other direction. Given any

valuation assignment on 𝐺 , orient the edge 𝑒 incident to 𝑣 towards

𝑣 , and orient 𝐺 − 𝑣 such that the orientation is EFX on 𝐺 − 𝑣 . Note
that while the neighbor of 𝑣 could envy 𝑣 , the orientation is still

EFX, as 𝑣 only has one item. □

5 GENERAL VALUATIONS: FORBIDDEN
STRUCTURES

To prove that our upper bound of 𝜒 (𝐺) ≤ 3 is sharp, we give

various examples of graphs with chromatic number 3 which are not

strongly EFX-orientable. We also show that the bipartite condition

for sufficiency can be quite brittle, as adding an edge between two

vertices of the same partite set for many bipartite graphs may cause

the graph to no longer be strongly EFX-orientable.

Proposition 5.1. Two triangles glued together at a vertex, or
connected by a path of length 1 or 2 are not strongly EFX-orientable.

v1

v2

v3

v4

v5

Figure 2

v1

v2

v3 v4

v5

v6

Figure 3

v1

v2

v3 v4 v5

v6

v7

Figure 4

That is, graphs depicted in Figures 2, 3 and 4 are not strongly EFX-
orientable.

Proof. All three of these examples are not 0-1 strongly EFX

orientable and hence not strongly EFX orientable. The figures above

give an example of which edges to assign a value of 1 (solid lines)

and which edges to assign a value of 0 to (dashed lines) for a graph

that is not strongly EFX-orientable. Note that in the case of two

triangles joined by an edge, a matching of size 3 exists, but the

maximum independent set is atmost 2, since if 3 vertices are selected

two of them will be from the same triangle. Hence, by Corollary

3.2, this graph is not 0-1 strongly EFX orientable.

Consider the forest marked by the solid lines on the graph of

two triangles glued by a vertex. It consists of two trees,𝑇1 = 𝑣1𝑣3𝑣2
and 𝑇2 = 𝑣4𝑣5. We claim that it is impossible to select an 𝑥1 ∈ 𝑇1
and 𝑥2 ∈ 𝑇2 such that their neighbors form an independent set on

the entire graph. Indeed, if this would be possible, 𝑣3 could not be

selected as 𝑥1, since 𝑣1 and 𝑣2 are adjacent. Hence, either 𝑣1 or 𝑣2
needs to be selected, so 𝑣3 will always be a neighbor of 𝑥1. However,

this makes selecting 𝑥2 impossible, since 𝑣3 is adjacent to both 𝑣4
and 𝑣5, hence this graph is not 0-1 strongly EFX orientable.

Finally, the graph of two triangles connected by a path of length

2 has a forest selected that consists of three trees, 𝑇1 = 𝑣1𝑣3𝑣2, 𝑇2 =

𝑣4𝑣5, and 𝑇3 = 𝑣6𝑣7. Similar to the previous case, to select 𝑥1, 𝑥2, 𝑥3
such that their neighborhoods in the forest form an independent

set, 𝑥1 cannot equal 𝑣3 and must be either 𝑣1 or 𝑣2. This means that

𝑥2 cannot equal 𝑣4, since 𝑣3 and 𝑣4 are adjacent, so 𝑥2 = 𝑣5. But both

𝑣6 and 𝑣7 are adjacent to 𝑣5, so selecting 𝑥3 is impossible, meaning

that this graph is not 0-1 strongly EFX orientable as well. □
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To separate the notions of 0-1 strong EFX orientability and strong

EFX orientability in general, we provide an example of a graph that

is 0-1 strongly EFX-orientable but not strongly EFX-orientable.

Proposition 5.2. Let𝐺 consist of two triangles sharing one edge,
as shown in Figure 5. Then𝐺 is not strongly EFX-orientable. However,
𝐺 is 0-1 strongly EFX orientable.

v1

v2

v3

v4

Figure 5

Proof. Let the first triangle be 𝑣1𝑣2𝑣3, and the second triangle

be 𝑣2𝑣3𝑣4. Let 𝑣2𝑣3 have weight 0.5 for both endpoints, 𝑣1𝑣2 and

𝑣3𝑣4 have weight 1 for both endpoints, and the rest of the edges

have weight 0 for both endpoints. All valuations are additive. Due

to the symmetry of the graph, without loss of generality, we can

assume that 𝑣2𝑣3 is directed towards 𝑣2. For the orientation to be

EFX, 𝑣2 cannot receive 𝑣1𝑣2, as 𝑣1 will envy 𝑣2 even though 𝑣2 has

already received 𝑣2𝑣3. Hence 𝑣1 must receive 𝑣1𝑣2, but 𝑣1 will be

envied by 𝑣2, so 𝑣1𝑣3 must be directed towards 𝑣3. Since 𝑣3 already

has an edge, for similar reasons, 𝑣3 cannot receive 𝑣3𝑣4, so 𝑣3𝑣4 is

directed towards 𝑣4. Note that 𝑣2 and 𝑣4 are both envied by 𝑣3, but

there is another edge between 𝑣2 and 𝑣4 that needs to be assigned,

making an EFX-orientation impossible.

We now prove that this graph is 0-1 strongly EFX-orientable. We

wish to prove that for any forest 𝐻 = 𝑇1,𝑇2 ...𝑇𝑘 on this graph, we

can find a collection of vertices 𝑥1 ∈ 𝑇1, 𝑥2 ∈ 𝑇2 ...𝑥𝑘 ∈ 𝑇𝑘 such that⋃𝑘
𝑖=1 𝑁𝐻 (𝑥𝑖 ) is an independent set on 𝐺 . We can assume, without

loss of generality, that all trees in 𝐻 have at least one edge, because

if a tree𝑇𝑖 is a single vertex, its neighborhood in 𝐻 is the empty set,

and selecting it as 𝑥𝑖 contributes nothing to

⋃𝑘
𝑖=1 𝑁𝐻 (𝑥𝑖 ). Observe

that the only way to select two trees which both have at least one

edge on this graph is a perfect matching, which we can select an

independent set of size 2 from. Any other forest where all the trees

have edges will have at most one tree, and we can select a leaf from

the tree as 𝑥1 - its single neighbor in the forest will trivially form

an independent set on 𝐺 . Hence this graph satisfies the condition

in Lemma 3.1 and is 0-1 strongly EFX orientable. □

In order to generate more forbidden subgraphs, we need a lemma

similar to Lemma 3.3 that allows us to subdivide certain edges of

graphs that are not strongly EFX-orientable to create a new graph

that is not strongly EFX-orientable. To help us do this, we introduce

the idea of an item having zero value to an agent. Formally, if𝑀 is

the set of a goods, an item𝑚 ∈ 𝑀 has zero value to agent 𝑖 if for all

𝑋 ⊆ 𝑀 , 𝑓𝑖 (𝑋 − {𝑚}) = 𝑓𝑖 (𝑋 ).

Lemma 5.3. Let𝐺 be a graph, and suppose there exists a valuation
on 𝐺 that is not EFX-orientable, and there exists an edge 𝑒 in the

valuation that has zero value for both endpoints. Construct 𝐺 ′ by
replacing 𝑒 with any path of odd length. Then 𝐺 ′ is not strongly
EFX-orientable.

Proof. Let the endpoints of 𝑒 be 𝑢 and 𝑣 . We first consider the

case where we subdivide 𝑒 twice with vertices 𝑥1 and 𝑥2 to form

𝐺 ′
. 𝑢𝑥1 and 𝑣𝑥2 will have zero weight for both endpoints, while

𝑥1𝑥2 will have a weight of 1 both endpoints. We claim that𝐺 ′
does

not have an EFX orientation with this valuation, so suppose, for

contradiction, that 𝐺 ′
actually does have such an orientation.

Note that if 𝑢𝑥1 and 𝑣𝑥2 are oriented towards 𝑥1 and 𝑥2 respec-

tively, then this orientation cannot be EFX, as whichever vertex

that receives 𝑥1𝑥2 will be envied by the other vertex, so they can’t

receive any additional edges for the orientation to be EFX. Hence, at

least one of 𝑢 and 𝑣 need to receive an edge created by subdividing

𝑒 . Without loss of generality, suppose that in the EFX orientation,

𝑣 receives 𝑣𝑥2.

Returning to𝐺 , we can copy the EFX orientation on𝐺 ′
, directing

𝑒 towards 𝑣 . Note that all vertices in 𝐺 − 𝑢 have the same bundle

as they had on 𝐺 ′
, meaning that the allocation within 𝐺 − 𝑢 is

EFX. While it’s possible that 𝑢 could’ve received 𝑢𝑥1, since 𝑢𝑥1 had

zero value, removing it does not change the value of the bundle

𝑢 receives, hence 𝑢 values the bundles it receives on 𝐺 and 𝐺 ′

equally. Furthermore, since 𝑢𝑣 has zero value, then 𝑢 will not value

the bundle given to 𝑣 , hence for any vertex on 𝐺 − 𝑢, 𝑢 will not

envy any strict subset of that vertex’s bundle. Since the bundle 𝑢

receives at 𝐺 is a subset of what it received on 𝐺 ′
, no vertex from

𝐺 − 𝑢 envies a strict subset of the bundle 𝑢 receives either. Hence

there exists an EFX orientation on𝐺 with such a valuation function,

which is a contradiction.

Note while subdividing 𝑒 , we created edges 𝑢𝑥1 and 𝑣𝑥2 which

also have zero value, meaning that we can repeat this process again

by subdividing any one of those edges twice, hence replacing 𝑒 with

an odd path of edges alternating between zero and one values. The

new graph will not have an EFX orientation with this valuation,

and hence is not strongly EFX-orientable, as desired. □

Corollary 5.4. Odd cycles that share exactly one edge, odd cycles
that share exactly one vertex, and disjoint odd cycles connected by a
path are not strongly EFX-orientable.

Proof. We first handle the case of odd cycles joined by a path of

odd length. By Proposition 5.1, two triangles connected by a path

of length 1 violated the matching condition in Corollary 3.2, and

hence by Lemma 3.3, we can replace any edge with an odd path of

arbitrary length by repeated subdivisions, allowing us to generate

odd cycles of any size connected by a path of any odd length, all of

which are not strongly EFX orientable.

For the case of odd cycles joined by a path of even length, or

glued by one edge or vertex, note that by Proposition 5.1 and 5.2,

triangles joined by a path of length 2, and triangles glued by one

edge or vertex are not strongly EFX orientable. Furthermore, the

examples of bad valuation assignments in all cases had at least one

edge in the odd cycle have zero value, meaning that we can replace

the triangle with an odd cycle of any length and still have a non

strongly EFX orientable graph by Lemma 5.3. Similarly, in the case

of two triangles being joined by a path of length 2, one of the edges

in the path had zero value, allowing us to replace that edge with
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a path of odd length and giving us an even path of any length, as

desired. □

The fact that strongly EFX-orientable graphs do not contain the

structure of two odd cycles glued together at a vertex, along with

the next lemma, gives a short and self-contained proof that the

chromatic number of a strongly EFX-orientable graph is bounded.

We note that this gives us an upper bound of 4, slightly worse than

the tight upper bound of 3.

Lemma 5.5. If 𝐺 is a graph that does not contain two odd cycles
which share exactly one vertex, then 𝜒 (𝐺) ≤ 4.

Proof. Take a graph𝐺 which satisfies the condition above. Take

a spanning tree 𝑇 rooted at 𝑣 ∈ 𝐺 such that

∑
𝑢∈𝐺 𝑑𝑇 (𝑢, 𝑣) is maxi-

mized, where𝑑𝑇 (𝑢, 𝑣) is the distance from𝑢 to 𝑣 on𝑇 . We claim that

any edge in𝐺 connects an ancestor to a descendant on 𝑇 . Suppose

for contradiction, that there exists an edge 𝑢1𝑢2 where 𝑢1 and 𝑢2
are not ancestors or descendants of each other. Without loss of

generality, let 𝑑𝑇 (𝑢1, 𝑣) ≤ 𝑑𝑇 (𝑢2, 𝑣). Note that the path from 𝑣 to

𝑢1 and the path from 𝑣 to 𝑢2 on𝑇 only intersects with 𝑣 . Hence, we

can disconnect 𝑢1 from its parent and set 𝑢2 as the new parent of

𝑢1, constructing a spanning tree with a larger sum

∑
𝑢∈𝐺 𝑑𝑇 (𝑢, 𝑣),

giving us a contradiction.

Label a vertex 𝑢 ∈ 𝐺 as 1 if 𝑑𝑇 (𝑢, 𝑣) is odd and as 0 if 𝑑𝑇 (𝑢, 𝑣) is
even. Call an edge in 𝐺 problematic if it connects two vertices with

the same label. Suppose a vertex 𝑢 is adjacent to two problematic

edges, one of which connects𝑢 to an ancestor and the other of which

connects𝑢 to a descendant. This creates two odd cycles which share

exactly one vertex, which cannot happen as we assumed 𝐺 did not

have this structure. Hence, for any vertex in𝐺 , all problematic edges

either connect a vertex to its descendants only, or to its ancestors

only. If a vertex 𝑢 has problematic edges going to its descendants,

label it D, otherwise label it A. Note that all problematic edges

connect vertices with labels A to D, and all other edges connect

vertices with labels 0 to 1. We can hence color the graph with the

set {0, 1} × {𝐴, 𝐷}, giving us a proper 4-coloring, as desired. □

Finally, the next lemma shows that the bipartite condition cannot

be relaxed much, as adding a single edge to many bipartite graphs

can break strong EFX-orientability.

Lemma 5.6. Let 𝐺 be a bipartite graph with |𝑉 (𝐺) | ≥ 4 that
remains connected after the deletion of any vertex. Suppose that an
edge 𝑒 is added, which connects two vertices of the same partite set.
Then 𝐺 + 𝑒 is not strongly EFX-orientable.

Proof. Let 𝑢 and 𝑣 be the vertices incident to 𝑒 . By Menger’s

Theorem, since 𝐺 has no cut vertices, there exists a cycle on 𝐺

through 𝑢 and 𝑣 . Since 𝐺 is bipartite, such a cycle must have an

even number of vertices, and since 𝑢 and 𝑣 are part of the same

partite set, then their distance on the cycle must be even. Adding

𝑒 onto the cycle breaks it into two odd cycles which share 𝑒 as an

edge, which is not strongly EFX-orientable, hence𝐺 is not strongly

EFX-orientable. □

6 DISCUSSION
In this paper, we studied strong EFX-orientability for graphical val-

uations [16]. We showed a deep connection of this property to

the chromatic number of the graph: every strongly EFX-orientable

graph has a chromatic number of at most three, and a graph with a

chromatic number of two or less is strongly EFX-orientable. This

result is tight in the following sense where we demonstrate a 3-

chromatic graph with and without this property. The upper bound

of 3 on the chromatic number demonstrates that apart from a niche

class of graphs with nice structure, most graphs are not strongly

EFX orientable. Therefore, it is reasonable to expect that when

forming an EFX allocation in this graphical setting, not all edges

are allocated to an incident vertex that values them.

We also demonstrated that 0-1 strong EFX orientability and gen-

eral strong EFX orientability were separate notions, and it remains

open as to whether there is a graph that is EFX orientable for all

additive valuations but not EFX orientable for a monotone function,

or if additive strong EFX-orientability and strong EFX-orientability

are equivalent. When given a graph with the valuation functions,

determining whether an EFX-orientation exists is NP-hard [16],

but it is currently unknown if determining whether a graph is

strongly EFX-orientable or not is NP-hard. It would be interesting

to characterize graphs which admit an EFX orientation that is also

Pareto optimal (PO). Finally, we hope that our results will help with

obtaining a complete characterization of strongly EFX-orientable

graphs.
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