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ABSTRACT
Green disclosure policies are designed to help firms communicate
their environmentally friendly practices to investors. While most
research has focused on the effects of these policies at the individual
firm level, their influence within a system of multiple firms remains
largely unexamined. To address this gap, we develop an agent-based
model to simulate market dynamics among firms with varying
levels of environmental performance and strategic responses. Using
Empirical Game-Theoretic Analysis, we investigate how the costs
associated with becoming greener and investors’ valuation of these
efforts shape equilibrium outcomes and the prevalence of green
firms in the market. Our findings reveal that changes in the cost of
green upgrades significantly influence firms’ strategic choices and
alter the equilibrium behavior of the other firms. Additionally, we
analyze the effects of different green disclosure policies and find
that under more relaxed policies, firms are more willing to incur
into higher upgrade costs. Furthermore, we propose a two-stage
disclosure policy that incentivizes all types of firms to improve their
green practices, leading to broader adoption of sustainable energy
solutions across the market.
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1 INTRODUCTION
In recent years, the global demand for environmental responsibility
has grown, driven by climate change and the Sustainable Devel-
opment Goals (SDGs). It has prompted companies to incorporate
environmental factors into their operations. As a result, more firms
and investors are adopting Environmental, Social, and Governance
(ESG) frameworks and disclosing green initiatives to enhance cred-
ibility and transparency in society and the market.

Meanwhile, investors increasingly prefer firms that adopt green
practices. The EU SEIP plans to mobilize €1 trillion for sustainability
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projects over the next decade. Similarly, the BlackRock Sustainable
European Companies Fund also targets ESG-compliant firms.These
ESG funds allocate investments based on firms’ green disclosure
states, further driving corporate transitions toward sustainability.

Green disclosure is the process by which companies share infor-
mation about their eco-friendly practices with investors. This trans-
parency facilitates efficient green capital allocation and encourages
companies to adopt sustainable practices. Therefore, governments
and regulators are increasingly mandating environmental disclo-
sures. For example, the EIB promotes sustainable development by
financing green disclosure projects as the EU’s policy bank [5].

In general, green disclosure regulation requires firms to balance
the costs of upgrading and transformation against the potential for
higher valuations from investors. Meanwhile, the limited size of
ESG funds intensifies market competition, requiring firms to attract
investment and maintain a competitive edge against other firms.

To better analyze these multi-agent dynamics, we develop a
green disclosure model for a large financial market following the
dynamic disclosure model of [9] and employing the agent-based
modelling (ABM) framework [13, 18]. Our approach innovates by
extending the disclosure framework to a large-scale market, en-
abling a detailed analysis of corporate transformation costs, investor
preferences, and market-wide interactions. This allows us to assess
how different disclosure policies influence firms’ green transitions.

Within this simulated financial market, limited ESG funds influ-
ence the strategic game among firms at various green levels. Using
ABM simulations, we generate the game’s payoff matrix and apply
empirical game theory analysis (EGTA) method [20, 22] to identify
equilibria, providing insights into agent strategies and system-wide
green transition rates.

2 RELATEDWORK
The primary function of green disclosure is to reduce the asymmetry
of market information by creating a unified quality label, directing
capital to green activities and encouraging corporate sustainabil-
ity [12, 19]. Since its introduction, many studies have examined
its impact on corporate operations, often focusing on specific dis-
closure policies [2, 14, 26]. For instance, Blanca et al. [4] found
that companies operating in unregulated industries often disclose
more green information to respond to stakeholder pressure. In con-
trast, highly internationalized firms face more complex trade-offs
regarding disclosure transparency. Wu et al. [25] emphasized the
critical role of ESG market transparency in enhancing market ef-
ficiency. They pointed out the phenomenon of "greenwashing" in
green disclosure, where profit-driven companies deceive investors
by mimicking the investment behaviours of companies genuinely
involved in green initiatives.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2355

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


At the same time, many scholars believe that only relying on
a single form of disclosure is insufficient to significantly enhance
the allocation efficiency of ESG investments [1]. Fairfax [6] intro-
duced the concept of "dynamic disclosure," arguing that the modern
disclosure system operates as an evolving feedback loop in which
voluntary and mandatory disclosures are inherently connected and
mutually reinforcing. Companies are not only required to comply
with compulsory disclosure obligations but also need to enhance
transparency through voluntary disclosures.

Additionally, many ESG experts have examined the impact of
green disclosure on companies and investors by constructing virtual
models [11]. Martin and Moser [15]simulated a market to analyze
how investors decide based on managers disclosing or withhold-
ing information about green investments. They found that while
disclosing affects costs, investors respond positively to the social
benefits, showing that financial gains and social impact influence
managerial decisions.

Lastly, the ongoing development of algorithmic game theory is
proving to be a valuable tool for economic analysis, especially in
the green economics field [7]. Cui et al. [3] proposed an evolution-
ary model using multi-agent games to explore agent sustainability
within the green finance framework. Their results show that agent
full participation reduces information asymmetry, ensures efficient
resource allocation, and promotes green production. Enhanced reg-
ulation and lower production costs further improve the efficiency
of the green financial market. Pástor et al. [17] developed an equi-
librium model to examine the influence of ESG standards on asset
pricing. The result shows that ESG preferences increase green firms’
market value and lower their capital costs. While green assets typi-
cally have lower expected returns, they outperform polluting assets
as ESG factors strengthen.

3 GREEN DISCLOSURE MODEL
Our model builds upon Gupta and Starmans’s dynamic green disclo-
sure framework for a single firmwhile taking a bottom-up approach
to design a virtual ESG fund market. In this market, agents make
decisions on energy upgrades based on localized information. We
begin by outlining the ESG market structure and the available strat-
egy set, followed by a detailed demonstration of the game dynamics.

3.1 ESG Markets
We compared the 2024 reports from the MSCI Europe ESG Leaders
Index and the BlackRock ESG Strategic Growth Fund [8, 10] and
found that large-scale ESG funds typically invest in 150 to 300 firms.
Based on this, we selected 150 companies from various categories as
model agents. We believe that this selection is sufficient to evaluate
the impact of different disclosure models on the overall market.

We construct an ESG fund model consisting of a set 𝑁 of firms,
divided into three categories (or types) of agents, as follows: the 𝑑
category that represents so called “dirty” firms, who are still not
working on green activities; the 𝐿𝑔 category that refers to low-green
firms; and the 𝐻𝑔 category for high-green firms, with the degree of
green energy transformation increasing from 𝑑 to 𝐻𝑔. The set 𝑁
can then be written as 𝑁 = 𝑁𝑑 ∪ 𝑁𝐿𝑔 ∪ 𝑁𝐻𝑔 , where 𝑁𝑑 , 𝑁𝐿𝑔, 𝑁𝐻𝑔

are the respective subsets of agents corresponding to each type.
Throughout the paper, we shall slightly abuse the notation and use

𝑁 ( ·) to also indicate the size of (i.e., the number of agents in) the
respective set, and we initially set 𝑁𝑑 = 𝑁𝐿𝑔 = 𝑁𝐻𝑔 = 50, summing
up to 𝑁 = 150.

3.1.1 Firm Profits. In the simulation of the model, our focus is
on analyzing the interactions between agents at different stages
of green transformation within the ESG market. To simplify the
analysis, we assume that all agents’ operating profit 𝜋 is the same
for all stages, with a random noise disturbance added to account for
variability. For each agent 𝑖 , the profit 𝜋𝑖 𝑡 at stage 𝑡 , is expressed as
follows:

𝜋𝑖
𝑡 = 𝜋𝑡𝑖 + 𝜖,

where 𝜋𝑡 represents the initial profit of the agent in the model, and
𝜖 represents a random disturbance.

3.1.2 Upgrade Cost. In the ESG market, all dirty and low-green
firms can choose to upgrade to a higher green level. At each time
stage 𝑡 , if a firm 𝑖 ∈ 𝑁𝑑 ∪ 𝑁𝐿𝑔 decides to upgrade one step up, the
associated upgrade costs are 𝑐𝑡

𝑖,𝑑
and 𝑐𝑡

𝑖,𝐿𝑔
, respectively. We posit

that there is a correlation between the upgrade cost and a firm’s
profit, expressed as:

𝑐𝑡
𝑖,𝑑
, 𝑐𝑡𝑖,𝐿𝑔 = 𝛼 · 𝜋𝑖 𝑡 .

Here, 𝛼 represents the proportional coefficient between the upgrade
cost and the firm’s profit, which measures the degree to which the
upgrade cost changes with the enterprise profit.

3.1.3 Investor Green Valuation. The firm types influence the valua-
tion of these agents by ESG funds. We use 𝜆 to represent investors’
valuation of firms within green finance: 𝜆 = {𝜆𝑑 , 𝜆𝐿𝑔, 𝜆𝐻𝑔}. Since
the degree of green transformation follows a progression from low
to high, the valuation relationship between different types of firms
is expressed as follows:

𝜆𝐻𝑔 > 𝜆𝐿𝑔 > 𝜆𝑑 .

We can thus calculate the difference between 𝜆 of different company
types:

Δ𝜆I = 𝜆𝐿𝑔 − 𝜆𝑑 ,

Δ𝜆II = 𝜆𝐻𝑔 − 𝜆𝐿𝑔 .

In ESG funds, firms receive varying investment allocations based
on their green ratings, with higher-rated green firms capturing a
larger share. Specifically, each firm occupies a portion of the ESG
fund, but the proportion depends on its green rating. Given 𝑁𝐻𝑔

high-green, 𝑁𝐿𝑔 low-green, and 𝑁𝑑 dirty firms, their market shares
are distributed as follows:

𝑞𝑡𝑖 (x
𝑡 ) = 𝜆(𝜃𝑖 (x𝑡 ))

𝑁𝐻𝑔 (x𝑡 )𝜆𝐻𝑔 + 𝑁𝐿𝑔 (x𝑡 )𝜆𝐿𝑔 + 𝑁𝑑 (x𝑡 )𝜆𝑑

· 𝐼∑𝑁
𝑗=1 𝜆(𝜃 𝑗 (x𝑡 ))

.

(1)

𝑞𝑡
𝑖
(x𝑡 ) represents the market share of firm 𝑖 . Here, x𝑡 = (𝑥𝑡1, . . . , 𝑥

𝑡
𝑛)

is the strategy profile at time 𝑡 , where each 𝑥𝑡
𝑗
indicates the strategy

chosen by firm 𝑗 . A strategy 𝑥𝑡
𝑗
specifies whether a firm chooses

to maintain its current status or upgrade to a greener type. This
choice influences the firm’s type 𝜃 𝑗 .

𝑥𝑡𝑗 =

{
1, if 𝑗 chooses to upgrade
0, otherwise
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In the first part of the formula, the numerator 𝜆(𝜃𝑖 (x𝑡 )) de-
notes the green valuation of firm 𝑖 , where 𝜃𝑖 (x𝑡 ) represents the
type of firm (high-level green, low-level green, or dirty) as deter-
mined by the strategy profile x𝑡 . The denominator, 𝑁𝐻𝑔 (x𝑡 )𝜆𝐻𝑔 +
𝑁𝐿𝑔 (x𝑡 )𝜆𝐿𝑔+𝑁𝑑 (x𝑡 )𝜆𝑑 , is the weighted sum of the green valuations
of all firms in the market, reflecting the relative competitiveness
of different firm types based on the strategies chosen. The second
part of the formula, 𝐼∑𝑁

𝑗=1 𝜆 (𝜃 𝑗 (x𝑡 ) )
, determines how the total market

investment 𝐼 is allocated based on the green valuations 𝜆(𝜃 𝑗 (x𝑡 ))
of all firms 𝑗 .

Therefore, each agent needs to consider the potential impact of
other agents when deciding to upgrade. As the number of green
enterprises increases, the overall green valuation of the market
rises. However, since the total investment 𝐼 remains constant, an
individual firm’s market share𝑞𝑡

𝑖
(x𝑡 ) may decrease due to increased

competition from other green firms.

3.1.4 Payoff. At the beginning of each stage 𝑡 , the agent can choose
a strategy, whether to maintain its current status or to upgrade to a
greener type. We use the expected payoff of that stage to represent
its payoff, denoted as 𝑢𝑡

𝑖
for each agent 𝑖:

𝑢𝑡𝑖 = 𝛽 ·
(
�̃�𝑡𝑖 + 𝑞

𝑡
𝑖 (x

𝑡 ) · 𝐼 −𝐶𝑡
𝑖 (𝑥𝑖 , 𝜃𝑖 (x

𝑡 ))
)

= 𝛽 ·
(
�̃�𝑡𝑖 + 𝑞

𝑡
𝑖 (x

𝑡 ) · 𝐼

− 𝑥𝑖 ·
[
⊮𝜃𝑖 (x𝑡 )=𝑑 · 𝑐𝑡

𝑖,𝑑
+ ⊮𝜃𝑖 (x𝑡 )=𝐿𝑔 · 𝑐

𝑡
𝑖,𝐿𝑔

] )
.

(2)

Here, 𝛽 represents the discount factor within the current stage, used
to adjust the expected payoff to reflect its present value. In the cost
function𝐶𝑡

𝑖
(𝑥𝑖 , 𝜃𝑖 (x𝑡 )), 𝜃𝑖 (x𝑡 ) represents the firm type, determined

by the strategy profile x𝑡 . The indicator functions ⊮𝜃𝑖 (x𝑡 )=𝑑 and
⊮𝜃𝑖 (x𝑡 )=𝐿𝑔 are equal to 1 when firm 𝑖 is a dirty firm or a low-level
green firm, respectively, and 0 otherwise.

3.2 Green Disclosure Policies
When developing green disclosure policies in the ESG market, both
strict and lax disclosure approaches are considered. The choice
of disclosure method can significantly influence a firm’s green
transformation process.

Strict disclosure requires firms to fully disclose their progress in
green transformation, enabling investors to differentiate accurately
between high-green, low-green, and dirty firms. Under strict disclo-
sure, 𝜆𝑑 , 𝜆𝐿𝑔 , and 𝜆𝐻𝑔 are clearly distinguished. The core advantage
of this method is that it enhances transparency, enabling investors
to allocate capital more effectively. As a result, it encourages all
firms that have not yet reached advanced green levels to pursue
greener transformations more actively.

On the other hand, lax disclosure takes a different approach by
grouping “low green” and “high green” firms into a single category
without distinguishing their specific levels of green performance.
As a result, investors cannot fully assess firms’ actual environmental
performance in the short term. A key feature of lax disclosure is that
it permits a degree of "greenwashing," where the green valuation
(𝜆𝑔) of all green-stage firms is averaged between 𝜆𝐿𝑔 and 𝜆𝐻𝑔 :

𝜆𝑔 =
𝜆𝐻𝑔 + 𝜆𝐿𝑔

2
.

The advantage of this approach is that it helps firms in the early
stages of transformation, which face high costs, overcome initial
bottlenecks. Artificially misvaluing these firms to "subsidize" them
encourages greater adoption of green technology.

4 EMPIRICAL GAMES
In this ESG fund game, the strategy set S is defined as S = {𝑆1, 𝑆2},
where 𝑆1 = 0 represents maintaining the current green level, and
𝑆2 = 1 represents upgrading by one level, i.e., from dirty to low-
green (𝑑 → Lg) or from low-green to high-green (Lg → Hg). This
strategy set includes two choices: maintaining or upgrading. It
applies across agent types under both disclosure forms. Under strict
disclosure, dirty and low-green agents can upgrade, while high-
green agents cannot due to reaching the highest level. Under lax
disclosure, only dirty agents participate, as low-green and high-
green agents are already at the highest level.

If each firm can independently decide whether to participate
in the upgrade by selecting a strategy from the strategy space,
there will be 2𝑁𝑑 and 2𝑁𝑑+𝑁𝐿𝑔 different strategy configurations
for the lax and strict disclosure versions of the game, respectively.
Analyzing games of this size can be extremely challenging compu-
tationally. This complexity arises because, in asymmetric games,
each player can independently choose their strategy, resulting in
an enormous strategy space. To address this issue, we adopt an
empirical game theory approach, which reduces the game’s size
by exploiting symmetries between firms. In the ESG fund game,
firms are differentiated by their green valuations and upgrade costs,
allowing us to construct distinct empirical games based on different
disclosure policies.

4.1 Lax Disclosure Empirical Games
We begin by analyzing the ESG model using the lax form of the
game at time step 𝑡 . In this lax form, only dirty firms participate.

In this scenario, we can simplify the original game into a Quasi-
symmetric game, where the payoffs for players are independent
of the specific arrangement of other players. This transformation
significantly reduces the game’s complexity and size [24]. In other
words, each player’s payoff depends only on the number of players
adopting each strategy. As a result, we can represent the payoff
profiles using a strategy combination vector that tracks the number
of players for each strategy. This approach reduces the number
of strategy profiles to

(50+|𝑆 |−1
|𝑆 |−1

)
= 51. Compared to the original

game’s vast number of possible strategy combinations (250), this
represents a significant reduction in the game strategy space.

To store the payoffs of agents in quasi-symmetric games, we
utilize a heuristic payoff table (HPT) [21], where the payoff for
each strategy is recorded based on the number of players and their
payoffs employing that strategy. While firms may have the same
expected profits (since they are drawn from the same noise dis-
tribution), the actual profits of individual agents can vary in each
simulation. This variability means that agents might receive differ-
ent payoffs depending on the specific strategy combination in the
game. As a result, we cannot directly rely on the HPT to compute
the equilibrium since the game retains asymmetries [20].
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To resolve this issue, we employ the Empirical Game-Theoretic
Analysis (EGTA) method [23], which calculates the average payoff
for players using each strategy within a given strategy profile and
considers this as the general payoff for that strategy.

Specifically, 𝑛𝑘 = {𝑛𝑘1 , 𝑛
𝑘
2 , . . . , 𝑛

𝑘
𝑣 } is a vector representing the

number of players, where 𝑛𝑘
𝑗
represents the number of players who

choose strategy 𝑆 𝑗 . Here, 𝑣 denotes the total number of strategies,
and 𝑁𝑑 represents the total number of players in the system. We
impose the constraint that the sum of the players choosing different
strategies 𝑆1, 𝑆2, . . . , 𝑆𝑣 must equal 𝑁𝑑 , i.e.,

∑𝑣
𝑗=1 𝑛

𝑘
𝑗
= 𝑁𝑑 . This

condition ensures that the total number of players is consistent.
The strategy profile 𝑠𝑘 = {𝑠𝑘1 , 𝑠

𝑘
2 , . . . , 𝑠

𝑘
𝑣 } describes the strategy

combination chosen by all players in the game, where each 𝑠𝑘
𝑗
⊆ 𝑁𝑑

represents the set of players choosing strategy 𝑆 𝑗 . The number of
players selecting strategy 𝑆 𝑗 must satisfy |𝑠𝑘

𝑗
| = 𝑛𝑘

𝑗
, ensuring con-

sistency with the previously defined 𝑛𝑘
𝑗
. Additionally, the strategy

profile satisfies two conditions: all players should select one strat-
egy, and each can choose only one strategy. Thus, the set of all
players 𝑁𝑑 is decomposed into disjoint sets of strategies 𝑠𝑘

𝑗
that

satisfy
⋃𝑣

𝑗=1 𝑠
𝑘
𝑗
= 𝑁𝑑 and 𝑠𝑘

𝑖
∩ 𝑠𝑘

𝑗
= ∅ for 𝑖 ≠ 𝑗 .

While the vector 𝑛𝑘 of players is fixed for each simulation, the
specific players assigned to each strategy are chosen randomly. Ac-
cordingly, we performed𝑀 = 10, 000 simulations, each time com-
puting the payoff 𝑝

(𝑚)
𝑖

(𝑠𝑘 ) for strategy 𝑆𝑖 , where𝑚 ∈ {1, 2, . . . , 𝑀}.
The payoff 𝑝

(𝑚)
𝑖

(𝑠𝑘 ) for strategy 𝑆𝑖 is the average of the individual
payoffs of all agents choosing that strategy, calculated as follows:

𝑝
(𝑚)
𝑖

(𝑠𝑘 ) = 1
𝑛𝑘
𝑖

𝑛𝑘
𝑖∑︁

𝑎=1
𝑢
(𝑚)
𝑎 ,

where, as from above, 𝑛𝑘
𝑖
represents the number of agents who

choose strategy 𝑆𝑖 , and 𝑢
(𝑚)
𝑎 is the individual payoff of agent 𝑎

who chooses strategy 𝑆𝑖 in the𝑚𝑡ℎ simulation. Through multiple
simulations, we can compute the expected payoff of strategy 𝑆𝑖 as:

𝑝𝑖 (𝑠𝑘 ) =
1
𝑀

𝑀∑︁
𝑚=1

©«
1
𝑛𝑘
𝑖

𝑛𝑘
𝑖∑︁

𝑎=1
𝑢
(𝑚)
𝑎

ª®®¬ .
Using this method, we average the individual payoffs of each agent
choosing the strategy across multiple simulations, thus obtaining
the overall payoff of strategy 𝑆𝑖 under different strategy profiles 𝑠𝑘 .

Therefore, we denote the heuristic payoff table (HPT) as M =

(N ,U), where N is the strategy distribution matrix of dimension(10+|𝑆 |−1
|𝑆 |−1

)
×|𝑆 |, andU is the corresponding payoffmatrix. The entry

𝑛𝑘
𝑖
in N represents the number of players who choose strategy 𝑆𝑖

in strategy profile 𝑠𝑘 , where 𝑖 ∈ {1, 2}. Meanwhile, the entry U𝑖,𝑘

in U represents the average payoff for a player choosing strategy
𝑆𝑖 in profile 𝑠𝑘 . The payoff U𝑖,𝑘 can be expressed as:

U𝑖,𝑘 =

{
𝑝𝑖 (𝑠𝑘 ) if 𝑛𝑘

𝑖
> 0,

0 otherwise.

4.2 Strict Disclosure Empirical Games
In contrast, the strict disclosure game involves two types of agents:
dirty and low-green. Thus, we consider two distinct types of players,
both subject to the same profit noise distribution but with differ-
ent upgrade costs and green valuations. Specifically, this strictly
disclosed game includes 50 dirty and 50 low-green agents.

To address the complexity of the original asymmetric game,
we apply the role symmetric game analysis (RSA) method, which
reduces the strategy space by partially transforming the game into
a symmetric structure [24]. In this simplified role symmetric game,
players are divided into two distinct roles based on their types:
{𝑑, 𝐿𝑔}. Here, 𝑁𝑑 represents the 50 dirty-type players, and 𝑁𝐿𝑔

represents the 50 low-green players. Within each role, the payoff
for each strategy is determined by averaging the payoffs of all
players who adopt that strategy in the same role.

We define the role 𝑟𝑖 of player 𝑖 as belonging to {𝑟𝑑 , 𝑟𝐿𝑔}, indicat-
ing whether player 𝑖 is of the dirty type (𝑟𝑑 ) or low-green (𝑟𝐿𝑔). We
extend the heuristic payoff table (HPT) as M = (N𝑑 × N𝐿𝑔,U𝑑 ×
U𝐿𝑔). Here, N𝑑 × N𝐿𝑔 represents the strategy profile matrix with
dimensions

(50+|𝑆 |−1
|𝑆 |−1

)2
×2|𝑆 |, whereN𝑑 is the strategy distribution

matrix for dirty agents and N𝐿𝑔 is the strategy distribution matrix
for low-green agents. Correspondingly, U𝑑 × U𝐿𝑔 is the payoff
matrix of the same dimensions.

Similarly, for a strategy combination 𝑛𝑘𝑟 = (𝑛𝑘
𝑟,1, 𝑛

𝑘
𝑟,2, . . . , 𝑛

𝑘
𝑟,𝑘

),
where 𝑛𝑘

𝑟,𝑗
represents the number of players of type 𝑟 who choose

strategy 𝑆 𝑗 in 𝑛𝑘𝑟 , we estimate the payoffs of each strategy through
𝑀 random simulations. Finally, after multiple simulations, we ob-
tain the average payoff of agents of type 𝑟 who choose strategy 𝑆 𝑗
in the strategy profile 𝑠𝑘𝑟 :

𝑝𝑟𝑗 (𝑠
𝑘
𝑟 ) =

1
𝑀

𝑀∑︁
𝑚=1

©«
1

𝑛𝑘
𝑟,𝑗

𝑛𝑘
𝑟,𝑗∑︁

𝑎=1
𝑢
𝑟,(𝑚)
𝑎

ª®®¬ .
The entry 𝑛𝑘

𝑟,𝑗
in N𝑟 , where 𝑟 ∈ {𝑑, 𝐿𝑔}, describes the number of

players in role 𝑟 who choose strategy 𝑆 𝑗 , 𝑗 ∈ {1, 2}, in strategy
profile 𝑠𝑘𝑟 . Meanwhile, the entry U𝑟

𝑗,𝑘
in U𝑟 , where 𝑟 ∈ {𝑑, 𝐿𝑔},

represents the average payoff of a player in role 𝑟 who adopts
strategy 𝑆 𝑗 in profile 𝑠𝑘𝑟 . The value U𝑟

𝑘,𝑗
is calculated as:

U𝑟
𝑗,𝑘

=

{
𝑝𝑟
𝑗
(𝑠𝑘𝑟 ) if 𝑛𝑘

𝑟,𝑗
> 0,

0 otherwise.

5 EXPERIMENTAL SETTING
In the ESG fund model, since defining precise standards for cor-
porate green ratings and upgrade costs is challenging, we opt to
use a series of randomly generated model parameters for sim-
ulation. The upgrade cost coefficient 𝛼 is selected from the set
{0, 0.05, · · · , 0.45, 0.5}, and the green valuation gap Δ (where Δ =

Δ𝜆I = Δ𝜆II) is chosen from {10, 30, 50, 70, 90}. At the start of the
simulation, we generate an initial state of the ESG fund market with
𝑁 = 150 firms, following the model introduced in [9] (with fixed
parameters: 𝑁𝑑 = 𝑁𝐿𝑔 = 𝑁𝐻𝑔 = 50, 𝜋 = 10, 𝜖 ∼ N(0, 0.12), 𝜆𝑑 =

10, 𝐼 = 1500, 𝛽 = 0.9).
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Specifically, we generate random profits 𝜋0, as well as the corre-
sponding upgrade costs 𝑐 , green valuations 𝜆 and market share 𝑞 for
all agents based on the selected parameters 𝛼 and Δ. This process
ultimately yields the initial state v0 of the ESG fund market.

We divide the game into two stages. In the first stage, for each
generated initial ESG fund market state, we construct a heuristic
payoff table based on the initial state, where the set of players is lim-
ited to the number of firms participating under different disclosure
policies. For each strategy space 𝑠𝑘 , we update the agents’ market
share in this strategy space and calculate the average payoffU𝑖,𝑘

for the players who select strategy 𝑆𝑖 . Then, we apply the 𝛼-Rank
algorithm [16] to compute the equilibrium of the green upgrade
game under the chosen disclosure method and obtain the stationary
distribution 𝜋𝑡 of the game.

In the second stage, based on the equilibrium results from the first
stage, we update the market parameters (such as the number of firm
types 𝑁𝑑 , 𝑁𝐿𝑔 , 𝑁𝐻𝑔) and recalculate the market share and average
payoffU𝑖,𝑘 . Using the new heuristic payoff table, we again apply
the 𝛼-Rank algorithm to calculate the game’s stationary distribution
𝜋𝑡+1 and output the final distribution of agent types. For each
combination of parameters, we repeated the above experimental
process 10,000 times using different initial market states to further
reduce the impact of randomness.

To compare the impact of different disclosure methods on cor-
porate strategies within the model, we designed three distinct dis-
closure approaches:

• Strict disclosure model: In both time steps, all firm types
are clearly distinguished, offering the highest level of market
transparency.

• Lax disclosure model: In both time steps, all green firms
(low green and high green) are treated as homogeneous,
reducing the model to two types of agents.

• Mix disclosure model: The lax disclosure form is used in
the first stage, transitioning to the strict disclosure form in
the second stage.

The entire process of the game is shown in the pseudo-code (see
Algorithm 1).

5.1 𝛼-Rank Algorithm
We consider 𝑁 agents, each denoted by 𝑖 , having access to a set
of strategies of size 𝑘𝑖 . We refer to the strategy set for agent 𝑖 by
S𝑖 =

{
𝑠𝑖,1, . . . , 𝑠𝑖,𝑘𝑖

}
, 𝑘𝑖 = |S𝑖 |, receives a payoff𝑀𝑖 :

∏𝑁
𝑖=1 𝑆𝑖 → R.

A joint strategy profile is a set of policies for all participating agents
in the joint strategy set, S𝐽 𝑜𝑖𝑛𝑡 =

∏𝑁
𝑖=1 𝑆𝑖 =

{
𝑠1, 𝑗1 , . . . , 𝑠𝑁,𝑗𝑁

}
, with

𝑠𝑖, 𝑗𝑖 ∈ S𝑖 and 𝑗𝑖 ∈ {1, . . . , 𝑘𝑖 }. Similarly, the joint payoff in the game
is𝑀𝐽 𝑜𝑖𝑛𝑡 =

∏𝑁
𝑖=1 𝑀𝑖 .

Each element in the transition probability matrix of a Markov
chain represents the probability of an agent switching from one
strategy to another, and this switching tendency is related to the
reward obtained [16]. Consider any two joint strategy profiles 𝑎 ={
𝑠𝑖,𝑎, 𝑠−𝑖

}
and 𝑏 =

{
𝑠𝑖,𝑏 , 𝑠−𝑖

}
that differ in only one individual

strategy for the 𝑖𝑡ℎ agent, where 𝑠𝑖,𝑎 ≠ 𝑠𝑖,𝑏 . For 𝑀𝑖

(
𝑠𝑖,𝑎, 𝒔−𝑖

)
≠

𝑀𝑖

(
𝑠𝑖,𝑏 , 𝒔−𝑖

)
, we can calculate the probability, 𝜌𝑠𝑖,𝑎,𝑠𝑖,𝑏 (𝒔−𝑖 ), that

one copy of agent 𝑖 with strategy 𝑠𝑖,𝑎 invades the population with

all other agents (in that population𝑚) playing 𝑠𝑖,𝑏 :

𝜌𝑠𝑖,𝑎,𝑠𝑖,𝑏 (𝒔−𝑖 ) =
1 − 𝑒−𝛼 (𝑀𝑖 (𝑠𝑖,𝑎,𝒔−𝑖 )−𝑀𝑖 (𝑠𝑖,𝑏 ,𝒔−𝑖 ))

1 − 𝑒−𝑚𝛼 (𝑀𝑖 (𝑠𝑖,𝑎,𝒔−𝑖 )−𝑀𝑖 (𝑠𝑖,𝑏 ,𝒔−𝑖 ))

and 1/𝑚 if 𝑀𝑖

(
𝑠𝑖,𝑎, 𝒔−𝑖

)
= 𝑀𝑖

(
𝑠𝑖,𝑏 , 𝒔−𝑖

)
. 𝛼 is the ranking strength,

and 𝛼 ≥ 0.
Further we can calculate the Markov probability transition ma-

trix 𝑃𝑎,𝑏 :

𝑃𝑎,𝑏 =


1∑𝑁

𝑙=1 ( |𝑆𝑙 |−1) 𝜌𝑠𝑖,𝑎,𝑠𝑖,𝑏 (𝒔−𝑖 ) if 𝑎 ≠ 𝑏

1 −∑
𝑏≠𝑎 𝑃𝑎,𝑏 if 𝑎 = 𝑏

0 otherwise .

The goal in 𝛼-Rank is to establish an ordering in policy profiles
dependent on the evolutionary stability of each joint strategy. In
other words, higher-ranked strategies are prevalent in populations
with higher average survival time. Formally, such a notion can
be easily derived as the limiting vector 𝜋 = lim𝑡→∞

[
𝑃𝑇

]𝑡
𝝅0 of

Markov chain when evolving from an initial distribution 𝝅0.
Finally, we calculate the agent ranking corresponding to the

smoothly distributed ordered quality. The quality of each agent’s
stationary distribution constitutes its "score."

Algorithm 1 Empirical Game procedure
Input: ESG fund market initial state v0, Disclosure form
Parameter: Strategy space S
Output: 𝑁𝜋

1: for Step in {1,2} do
2: for each entry 𝑛𝑘 of N do
3: for𝑚 ∈ {1, 2, · · · , 𝑀} do
4: Randomly select a strategy profile 𝑠𝑘 , such that |𝑠𝑘

𝑖
| =

𝑛𝑘
𝑖
for all 𝑖 ∈ {1, 2}, where 𝑛𝑘

𝑖
is the number of agents

choosing strategy 𝑆𝑖
5: Update the set of different types of agents 𝑁𝑘 in the

model according to 𝑠𝑘
6: Update the market share of each agent using (1)
7: Calculate the payoff of each agent in the set of agents

𝑠𝑘
𝑖
that selects strategy 𝑆𝑖 using (2)

8: Calculate the average payoff under different strategies
to get 𝑝 (𝑚)

𝑖
(𝑠𝑘 )

9: end for
10: SetU𝑖,𝑘 =

∑𝑀
𝑚=1 𝑝

(𝑚)
𝑖

(𝑠𝑘 )/𝑀,∀𝑖 ∈ {1, 2}
11: end for
12: Compute equilibrium 𝜋 of the game induced by U using

𝛼-Rank
13: Update agent type set 𝑁𝜋 according to 𝑛𝜋 for next step
14: end for
15: return 𝑁𝜋

6 RESULTS
In this section, we present the experimental results for various
scenarios and evaluate the changes in the number of different agent
types in the two-step disclosure model by analyzing the game
equilibrium outcomes.
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(a) Δ = 10 (b) Δ = 30 (c) Δ = 50 (d) Δ = 70 (e) Δ = 90

Figure 1: Dirty agents’ equilibrium upgrade choices under different 𝑐𝑑 , 𝑐𝐿𝑔 and Δ.

(a) Δ = 10 (b) Δ = 30 (c) Δ = 50 (d) Δ = 70 (e) Δ = 90

Figure 2: Low-green agents’ equilibrium upgrade choices under different 𝑐𝑑 , 𝑐𝐿𝑔 and Δ.

6.1 Equilibrium
6.1.1 Strict Disclosure Game. We analyze the number of agents
that upgrade under different scenarios in Algorithm 1. Specifically,
Figure 1 illustrates the number of dirty firms that opt for an upgrade
in the strict disclosure game, considering different upgrade cost
parameters 𝑐𝑑 , 𝑐𝐿𝑔 and green valuation parameters Δ.

From Figure 1, we observe that dirty firms’ strategy choices
are significantly influenced by the cost parameter 𝑐𝑑 but almost
unaffected by changes in 𝑐𝐿𝑔 . As 𝑐𝑑 increases, dirty agents shift
from universally choosing the upgrade strategy to completely aban-
doning it. Moreover, as the green valuation difference Δ increases,
dirty agents are less likely to upgrade, possibly because a sizeable
green valuation gap reduces the market share of low-green agents,
leading dirty firms to avoid upgrading in the final equilibrium.

On the other hand, Figure 2 shows the number of low-green
firms that choose to upgrade under different scenarios. Similar to
dirty firms, low-green agents are also susceptible to changes in 𝑐𝑑 .
However, as 𝑐𝐿𝑔 increases, there is a slight decrease in the number
of upgrades. The change in Δ shows the equilibrium trend between
the two different types of agents. We found that low-green agents
are more sensitive to changes in Δ than dirty agents. Specifically, as
Δ increases, the strategy choices of low-green agents change more
drastically than those of dirty agents. When Δ = 10, low-green
agents opt to upgrade in most scenarios, but when Δ = 90, there is
almost no situation where all low-green agents choose to upgrade.

In order to compare the impact of changes in Δ on the two types
of agents in more detail, we selected the scenarios where 𝑐𝑑 = 0.3
and 𝑐𝐿𝑔 = 0.3 for further analysis. The specific results are shown in

the following figures:

(a) Low-green agents. (b) Dirty agents.

Figure 3: Equilibrium upgrade strategy changes for different
agents when 𝑐𝐿𝑔 = 0.3.

From Figure 3, we can observe that when 𝑐𝐿𝑔 = 0.3, as 𝑐𝑑 in-
creases, the equilibrium strategy trends for dirty and low-green
agents differ significantly. First, we notice that the strategy of low-
green agents experiences awider range of changes, possibly because
their payoff is not directly impacted by 𝑐𝑑 , leading to a smoother
adjustment in strategy. Additionally, it is evident that as Δ increases,
for each level of upgrade cost 𝑐𝑑 , low-green agents become progres-
sively less inclined to upgrade. When Δ = 10, even as 𝑐𝑑 increases,
some agents continue to opt for upgrading. However, when Δ in-
creases to 90, the number of agents choosing to upgrade declines
rapidly as 𝑐𝑑 increases, eventually dropping to zero.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2360



For dirty agents, Figure 3b shows that the number choosing
the upgrade strategy drops to zero within a narrow cost range.
Suppose we divide Δ into specific intervals. In that case, agents in
the same interval begin to forgo upgrading at the same 𝑐𝑑 , with
the proportion of those upgrading gradually decreasing to zero at
another constant 𝑐′

𝑑
. This indicates that the same Δ range primarily

affects the rate of decline in the upgrade proportion of dirty agents,
while 𝑐𝑑 and 𝑐′

𝑑
remain fixed. A broader range of upgrade costs

gives agents more flexibility in adapting to green transformations.

(a) Low-green agents. (b) Dirty agents.

Figure 4: Equilibrium upgrade strategy changes for different
agents when 𝑐𝑑 = 0.3.

Figures 4a and 4b illustrate the effect of 𝑐𝐿𝑔 on the agent equi-
librium strategy when 𝑐𝑑 = 0.3. We observe that 𝑐𝐿𝑔 has minimal
impact on both dirty and low-green agents. As 𝑐𝐿𝑔 increases, the pro-
portion of low-green agents upgrading decreases slightly, whereas
the proportion of dirty agents upgrading increases marginally. Ad-
ditionally, across different values of Δ, the number of low-green
agents upgrading remains higher than that of dirty agents, confirm-
ing the conclusion drawn from Figure 2.

6.1.2 Lax Disclosure Game. Next, we analyze the equilibrium un-
der the lax disclosure game. Experiments show that dirty agents
tolerate higher upgrade costs in this case. When 𝑐𝑑 = 0.5, all dirty
agents upgraded across all Δ scenarios, suggesting that conflating
low-green and high-green valuations incentivizes dirty firm up-
grades. To capture dynamic changes, we increased the upgrade
costs, with results shown in the figure:

Figure 5: Equilibrium upgrade strategy changes for dirty
agents under lax disclosure form.

In Figure 5, we can observe that when the range of 𝑐𝑑 is between
[1, 1.5], the strategy distribution of dirty agents changes signifi-
cantly. As Δ increases, the number of agents choosing to upgrade
decreases rapidly. When Δ = 90, only a tiny part of agents opt to
upgrade their green level. Overall, under the lax disclosure form,
dirty agents are more willing to incur into higher upgrade costs,
and their strategy distribution is more sensitive to changes in Δ.

6.2 Comparative Analysis of Disclosure Policies
To better understand the impact of different disclosure forms on
various agent types in the ESG market, we conducted experiments
using a two-stage ESG market model with different disclosure pa-
rameters. This allowed us to analyze how disclosure forms at each
stage influence agent strategy selection. To compare the effects,
we used parameter sets with varying strategy distributions across
different disclosure forms for a more intuitive analysis.

For a more detailed analysis, we selected specific parameter sets
for comparison across three scenarios: 1) {Δ = 50, 𝑐𝑑 = 0.3, 𝑐𝐿𝑔 =

0.3}, 2) {Δ = 90, 𝑐𝑑 = 0.3, 𝑐𝐿𝑔 = 0.3}, 3) {Δ = 50, 𝑐𝑑 = 0.4, 𝑐𝐿𝑔 = 0.4}.
Through these three experiments, we can comprehensively ana-
lyze the impact of changes in 𝑐𝑑 , 𝑐𝐿𝑔 and Δ on the distribution of
agent upgrade strategies in a two-stage model. The equilibrium
results of these experiments can assist regulators in selecting ap-
propriate disclosure policies to more effectively promote the green
transformation of enterprises.

Figure 6: Equilibrium agent distribution in Scenario 1.

Figure 6 shows the experimental results of parameter set 1. In
the continuous lax disclosure model, we found that although all
dirty agents upgraded to low-green agents, since the disclosure
model does not differentiate between low-green and high-green
agents, the number of different agent types in the second stage
remained unchanged, and no further green level upgrades were
achieved. On the other hand, in the continuous strict disclosure
model, we observed that as the process progresses, all dirty agents
eventually complete the upgrade, and the number of low-green and
high-green agents steadily increases over the two stages, eventually
reaching 70 and 80, respectively.

Meanwhile, in the mixed disclosure model, we found that not
only all dirty agents completed the upgrade in the first stage, but
also some low-green agents who were still willing to upgrade to
high-green agents in the second stage. In this model, the number
of high-green agents reaches its highest point. These experimental
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results indicate that under this parameter set, all disclosure mod-
els can facilitate the upgrade of all dirty agents, but the mixed
disclosure model yields the best final outcome.

Figure 7: Equilibrium agent distribution in Scenario 2.

Increasing Δ to the value in parameter set 2 yields the results in
Figure 7. We find that adjusting Δ does not affect the continuous
lax disclosure model, as all dirty agents still upgrade first, with
no changes in the second stage. In the strict disclosure model, the
upgrade ratio for all agents significantly drops in the first stage. In
the second stage, most dirty agents upgrade to low-green, but few
low-green agents upgrade to high-green. This shows that increasing
Δ lowers the initial upgrade ratio and reduces the likelihood of low-
green agents upgrading.

On the other hand, in the mixed disclosure model, all dirty agents
upgrade in the first stage, and low-green agents are strongly willing
to upgrade in the second stage. However, compared to parameter
set 1, the number of high-green agents decreases.

Figure 8: Equilibrium agent distribution in Scenario 3.

Finally, we increased the agents’ upgrade costs for the exper-
iment, and the results are shown in Figure 8. In the continuous
strict disclosure model, we found that all dirty agents chose not to
upgrade in the first stage, and only a small number of low-green
agents opted to upgrade. In the second stage, some dirty agents
upgraded to low-green agents, but almost no low-green agents
advanced to high-green in this stage.

These experimental results suggest that when upgrade costs
increase, only a tiny proportion of dirty agents choose to upgrade

in the first stage, and only a part of the high-green agents are willing
to upgrade in the second stage. Although the number of high-green
agents decreased slightly in the mixed disclosure model compared
to the previous experiments, this model still demonstrated the best
overall outcome.

By comparing the above three sets of experiments, we found that
the lax disclosure form encourages all dirty agents to upgrade. How-
ever, increases in green valuation gaps and upgrade costs lead to a
reduction in upgrade efficiency in the ESG market. Dirty agents are
more sensitive to upgrade costs, while low-green agents are more
affected by changes in Δ. Finally, by comparing the three different
disclosure models, we conclude that the mixed disclosure format
helps market agents transition to higher green levels, enhances the
sustainability of the ESG market, and provides a viable approach
for governments and regulators when designing policies.

7 CONCLUSIONS
This paper presents an agent-based model in the ESG fund market
to analyze agents’ dynamics under different forms of green disclo-
sure. Using the EGTA method, we simplify the payoff matrix of
an asymmetric game and examine how different parameters and
disclosure forms influence agents’ strategies and upgrade efficiency
at equilibrium.

Our findings show that under strict disclosure, dirty and low-
green agents are more sensitive to the dirty firm’s upgrade cost 𝑐𝑑 ,
while changes in the low-green firm’s cost 𝑐𝐿𝑔 have little effect on
equilibrium. The distribution of low-green firms’ strategy varies
across 𝑐𝑑 , while dirty firms experience sharp shifts in strategy
within a narrower 𝑐𝑑 range. A larger green valuation gap leads
both types of agents to adopt more conservative upgrade strategies.

We found that agents tolerate higher upgrade costs under the
lax disclosure form than under the strict one. Simulations show
that all agents upgrade within the original 𝑐𝑑 range, but strategy
distributions vary with different green valuations as costs rise.
These findings help regulators determine the best disclosure form
to improve allocation efficiency in the ESG market.

Finally, our experiments reveal differences in the number of
agents across different disclosure scenarios. Most dirty agents suc-
cessfully upgraded their green levels, indicating that green disclo-
sure policies can effectively incentivize dirty firms to undertake
their initial green upgrades. The lax and strict disclosure forms only
performed well in the first and second stages, respectively. On the
other hand, the mixed disclosure form demonstrated consistently
strong performance across both stages.

Overall, our findings offer valuable insights for policymakers,
especially ESG regulators, in setting future standards for green
disclosure policies. Additionally, future research could explore how
disclosure standards impact firms’ financial performance and sus-
tainability, industry-specific differences in green disclosure, and
ways to balance transparency and authenticity to regulate "Green-
washing" and support corporate green transformation. Meanwhile,
we will collaborate with academic and industry experts in green fi-
nance to validate and enhance our model’s applicability. In dynamic
policy scenarios, we plan to work with practitioners to collect and
analyze data on green disclosure implementation and its long-term
evolution, strengthening the model’s real-world relevance.
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