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ABSTRACT
The Influence Maximization problem is a classic and well-studied
problem in the area of Social Networks Analysis. In this problem
you have a social network, a given information diffusion model, and
a budget 𝐵, and you have to select a set of at most 𝐵 nodes (seeds)
to activate in order to start an information diffusion campaign
that is able to reach the (expected) largest number of nodes in
the network. Recently, to better model viral marketing scenarios
where advertisers conduct multiple rounds of viral marketing to
promote one product, attention has been given to the adaptive and
the multi-round versions of the problem. Here the campaign is
orchestrated on a horizon of𝑇 rounds and at the beginning of each
round a different set of seeds is activated that can be adaptively
selected given the results of the previous rounds. In this paper we
generalize this setting to the case where the diffusion probabilities
of the links in the network are not known in advance and they have
to be learned while the campaign is running.

We study the problem under the lens of online bandit algorithms,
and we propose an online learning algorithm that is able to achieve
a constant approximation of the optimal solutionwith only constant
regret with respect to 𝑇 . We also propose an alternative approach
and we give preliminary experimental evidence that this outper-
forms our online learning algorithm in terms of computational
complexity, keeping the regret sublinear.
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EXTENDED ABSTRACT
In the last decades online social networks are getting more and
more popular as a channel for sharing and searching information.
As a consequence, these networks are now the favorite channel
for marketing or political campaigns, with the aim of influencing
people’s opinions and choices toward certain goals. The crucial
problem that influencers, advertisers and social media managers
have to deal with in designing their social campaigns is how to
maximize their influence taking advantage of the information dif-
fusion properties of their social networks. A popular marketing
technique is to select a (limited) number of starting nodes (seeds)
from which to start an information diffusion campaign taking ad-
vantage of the word-of-mouth phenomenon. Thus, designers are
interested in algorithms that select their seeds in order to maxi-
mize the (expected) number of nodes that will be reached by the
campaign. The problem turns out to have several applications in
marketing [15, 21, 22], opinion formation [3–5, 18], voting [6, 9, 28],
and health prevention [29].

In the seminal paper by Kempe et al [22] the Influence Maximiza-
tion problem has been formalized as follows: a social network given
in input represents the social relationships among the agents to-
gether with the strength of their relations (expressed as probability
of success of the information diffusion among these nodes), and
a set of at most 𝐵 seeds has to be selected from which to start an
information diffusion campaign. In the following years a plethora
of follow-up models have been proposed to extend this basic model
along several different directions. In particular, in this work we
focus on three extensions that have received great attention: multi-
round campaigns, adaptivity, and partial knowledge of the network.

Adaptivity is a powerful technique in the optimization of sto-
chastic problems that recently has received large attention. In the
setting of information maximization problems, adaptive algorithms
can select seeds sequentially and the 𝑖–th seed is selected only after
having observed all the nodes reached by the previously chosen
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seeds. The analysis of optimization advantages of adaptive w.r.t.
non-adaptive algorithms has been initiated by Dean et al. [13, 14]
on classical packing problems. Only recently, this kind of analysis
has been applied to generalizations of the influence maximization
problem [7, 10, 11, 20, 24].

Research in influence maximization focused almost exclusively
on the single-round setting. However, it has been observed that in
several real-world examples the influence maximization process
works in several rounds even if the budget on the number of se-
lectable seeds is allocated for the entire campaign. This has been
observed in electoral campaigns [16, 23], in hiring campaigns [25],
or in (viral) advertising where advertisers provide a total budget to
brokers, that will allocate it over multiple rounds through suitable
budget pacing algorithms [17].

Auletta et al. [2] proposed the Multi-round Adaptive Information
Maximization problem in which the budget on the number of seeds
is defined over multiple rounds but there is no limit on the fraction
of budget used in each round, and in each round seeds are chosen
adaptively. The goal is then to allocate the seeds along the different
rounds in order to maximize the (expected) sum over all rounds
of nodes that are infected. Auletta et al. [2] follow the classical
approach of Kempe et al. [22], and it assumes that the campaign
designer knows the whole network and, in particular, they exactly
know the probability that an agent is successful in disseminating
information over her social relations. This is a quite unrealistic
assumption and in several real-world scenarios the designer has
to design the campaign by having a limited information about the
structure of the network.

To overcome this limit the Influence Maximization problem has
been studied in the framework of online learning algorithms, aka
bandit algorithms [8, 26, 27]. Here, the designers have to select the
seeds and run the influence maximization campaign while they are
learning the diffusion probabilities. As usual in the online learn-
ing setting, our algorithm is evaluated with respect to both the
approximation of the optimal solution that this algorithm is able to
guarantee, and on the speed with which this algorithm approaches
to this goal, as measured by the regret, that is the difference between
the objective solution as reached by an optimization algorithm and
the solution reached by the online learning algorithm.

We remark that all these three lines of research have been (sepa-
rately) explored in state-of.the-art literature. However, to the best
of our knowledge, they were never considered collectively. Here,
instead, we design online learning algorithms for the Multi-round
Adaptive Influence Maximization with Limited Information problem.

Our Contribution. In this work we provide a polynomial-time
algorithm that is able to achieve, for every 𝜀 > 0, a [ 12 (1 −

1
𝑒
) −

𝜀]-approximation of the total number of nodes influenced by the
optimal fully-informed adaptive algorithm with constant regret
with respect to the time horizon. Note that the approximation ratio
matches the one of the best known polynomial approximation fully-
informed algorithm for the problem [2]. As for the regret, a constant
dependence on the time horizon is the best that can be achieved.
Moreover, this largely improves upon the poly-logarithmic regret
achieved in previous works for restricted or similar settings [12, 19].
Thus, we are able to exploit the absence of per-round budget limits
to learn very quickly the underlying probability distributions.

Interestingly, this result is built on a technical result that may
be of independent interest. Indeed, Auletta et al. [2] presented
an algorithm that, applied to our setting with a budget 𝐵 and a
time horizon 𝑇 , adaptively and greedily chooses approximately
𝐵/𝑇 seeds at each round, with each selected seed being with high
probability a 𝛿-additive approximation of the seed maximizing
the expected increment on the objective function according to the
known real diffusion probabilities among nodes. This algorithm
has been proved to be a 1

2
(
1 − 1

𝑒
− 𝜀

)
-approximation of the optimal

algorithm in the fully-informed setting.We here observe that a good
approximation of the optimal seed can be computed even if we do
not know real probabilities, but we have only a close approximation
to them. This then allows to frame the above algorithm in a simple
online learning framework as follows: do exploration as long as we
have a close approximation of real diffusion probabilities, and then
exploits them as described above.Wewill prove that this framework
allows to essentially match the approximation guarantee of the
fully-information algorithm, with a regret that depends only on the
length of the exploration phase and the fraction of budget consumed
during this phase.

In order to validate the utility of our framework, we apply it to
evaluate two alternative policies. For both of them, we show that
we can learn diffusion probabilities in a number of steps and with a
consumption of budget that does not depend on the time horizon𝑇 ,
achieving in this way a constant regret. The two policies differ on
the effective value of the regret, and on the amount of seeds chosen
in the exploration phase: indeed, the first policy achieves a better
regret but it can require to choose many agents (even all of them)
as seeds in each round of the exploration phase; the second policy
requires a more moderate seeding in the exploration phase at the
cost of a slight increment in the value of the regret. We stress that
further applications of our framework can still be developed.

As suggested above, our policies need to compute a sufficiently
good estimation of the expected increment in the objective function
guaranteed by each possible seed choice. We observe that this can
be done through a polynomial number of Monte Carlo simulations,
and hence our policies have polynomial time complexity. However,
it is well known thatMonte Carlo simulations can be very expensive,
and this can reduce the practical adoption of our policies when we
need to run them over large networks.

To address this issue, we here present an alternative faster policy,
based on the UCB framework [1, 19], that keeps upper confidence
bounds on the value of 𝑛2 variables, namely the probabilities that
information starting from a seed 𝑢 will infect a node 𝑣 , (and thus
it does not need to estimate them). This policy guarantees a re-
gret that is sublinear with respect to the time horizon 𝑇 , namely
𝑂 (𝑇 2/3 3

√︁
log𝑇 ), when 𝐵 ≤ 𝑇 . Moreover, we provide preliminary

experimental evidence that this policy still provides similar guar-
antees even in the case that 𝐵 > 𝑇 .
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