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ABSTRACT
Safety is a critical concern in multiagent reinforcement learning
(MARL), yet typical safety-aware methods constrain agent behav-
iors, limiting exploration—essential for discovering e�ective coop-
eration. Existing approaches mainly enforce individual constraints,
overlooking potential bene�ts of joint (team) constraints. We an-
alyze team constraints theoretically and practically, introducing
entropic exploration for constrained MARL (E2C). E2C maximizes ob-
servation entropy to encourage exploration while ensuring safety at
the individual and team levels. Experiments across diverse domains
demonstrate that E2C matches or outperforms common baselines
in task performance while reducing unsafe behaviors by up to 50%.
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1 INTRODUCTION
Training many agents for real-world applications demands co-
operative behaviors, balancing task performance and safety ob-
jectives. However, existing multi-agent reinforcement learning
(MARL) methods enforce individual agent constraints to ensure
safety but overlook its inherently team-based nature (e.g., inter-
agent collisions a�ecting overall success) [1, 6, 19, 23, 25]. Moreover,
constraints limit exploration—critical for discovering cooperative
behaviors—leading to suboptimal policies [7, 12–14]. This paper
analyzes the impact of team constraints theoretically and introduce
entropic exploration for constrained MARL (E2C) to enhance explo-
ration through observation entropy maximization (OEM) [2, 22]
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while maintaining constraints. Our results in standard benchmarks
show that E2C matches or outperforms existing baselines while
maintaining signi�cantly safer behaviors, particularly in complex
coordination tasks where prior constrained methods fail.

Preliminaries and RelatedWork. Our cooperative multiagent
tasks are commonly modeled as decentralized Markov decision pro-
cesses (Dec-MDPs) [17], and focus on the popular paradigm of cen-
tralized training with decentralized execution (CTDE) [10, 11, 18, 26].
In particular, policy gradient-based methods such as MAPPO [26]
have demonstrated strong performance in cooperative settings un-
der the CTDE paradigm. Given MAPPO’s robustness, we build E2C
on top of it to incorporate safety constraints. In MARL, constraints
introduce three competing objectives: individual agent objectives,
cooperative task performance, and safety compliance. Existing con-
strained MARL methods primarily extend single-agent approaches
by enforcing independent agent constraints while overlooking the
cooperative nature of multiagent safety. Some works re�ne cost
estimation and credit assignment [8, 9], but they fail to address
how constraints fundamentally impact exploration. We analyze
team-level safety constraints theoretically [24] and evaluate their
empirical bene�ts in constrained MAPPO, using OEM to address
the impact on exploration.

2 TEAM-BASED TRUST REGION BOUNDS
In this section, we extend the cost improvement bounds derived by
the works [6, 24] for trust region MARL with individual constraints
to the team settings. We follow the same assumptions of such
previous works and extend their stateful lower bound on the cost
improvement to team constraints. 1 When cooperative agents use
joint (team) constraints, we de�ne a set of cost functions C :=
{2 9 } 92< (the team has< cost functions). These functions take the
form 2 9 : S ⇥U ! {0, 1} with cost-limiting values l := {; 9 } 92< .
After performing the joint action in the environment, the agents
receive joint costs 2 9 (BC , uC ) 89 = 1, . . . ,< .On top of maximizing
the expected discounted return, the agents now also try to satisfy a
joint constrained objective for which optimal policies maximize the
return for feasible policies (i.e., the ones satisfying the constraints):

� 9 (c) := Ec

" 1’
C=0

WC2 9 (BC , uC )
#
 ; 9 , 89 = 1, . . . ,< , (1)

1When their state assumption does not hold, authors assume that agents using recur-
rent networks as decentralized policies can overcome partial observability.
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To derive the cost improvement bound for team constraints, we
de�ne the corresponding joint cost value functions. For the 9 th cost
function, we de�ne the 9 th (stateful) value functions as follows:

&c9 (B, u) := Ec

" 1’
C=0

WC2 9 (BC , uC ) |B0 = B, u0 = u

#
,

+ c9 (B) := Eu⇠c
⇥
& 9,c (B, u)

⇤
, �c9 (B, u) = & 9,c (B, u) �+9,c (B) .

(2)

In trust region-based methods, Equation 1 is di�cult to optimize
directly when considering a joint policy c and some other policy
c̄8 of agent 8 . Hence, we de�ne the surrogate objective for team
constraints following the individual constraint case of Gu et al. [6].

L����1. Let c be a joint policy, and c̄8 be some other policy of
agent 8 . Then, for any of the joint costs of index 9 = 1, . . . ,<, we de�ne
the surrogate cost objective as follows:

!c9 (c̄8 ) = Eu�8⇠c�8 ,D8⇠c̄8
h
�c9 (B, u)

i
,

where c�8 indicates the policy of all the agents except 8 .
Finally, we extend Lemma 4.3 of Gu et al. [6] to the case of team

constraints, deriving a lower bound on how the expected joint costs
change when the agents update their policies.

L����2. Let c and c̄ be joint policies. Let 8 2 N be an agent,
and 9 = 1, . . . ,< be one of the joint cost indexes. The following holds:

� 9 (c̄)  � 9 (c) + !c9 (c̄8 ) + a 9
|N |’
⌘=1

⇡<0G ! (c⌘, c̄⌘),

where a 9 =
4W maxB,u |�c9 (B, u) |

(1 � W)2 .

In practice, trust region algorithms ensuring Lemma 3 (or its
equivalent version for the individual constraints proposed by Gu
et al. [6]) are replaced by approximations relying on neural net-
works and tractable clipping operators that can scale to large state
and action spaces [6, 20, 21], on top of which we build E2C. Proofs
of the lemmas are discussed in the supplementary [4].

3 E2C
In the safe RL literature, the Lagrangian method [16] is commonly
used to transform the constrained problem into an equivalent un-
constrained one 88 2 N , using a dual variable as follows:

Lc (,) = �cA � LcC (,),

LcC (,) =
(
_89

�
� 89 (c) � ;89

�
89 = 1, . . . ,<8 individual

_ 9
�
� 9 (c) � ; 9 ) 89 = 1, . . . ,< team

,
(3)

where, are the so-called Lagrangianmultipliers and act as a penalty
in the optimization objective of each agent. The goal is thus to solve
the resulting max min problem: maxc min,�0 Lc (,). A typical
solution to that is to iteratively take gradient ascent steps in c and
descent in ,. We build E2C on top of the Lagrangian MAPPO—a
strong baseline across a variety of scenarios [6, 26]. The resultant
E2C-MAPPO algorithms address the challenges of using constraints
in multiagent systems by using entropy enhanced agents as in [5].
Following the MAPPO baseline, we learn a centralized advantage
estimator �q (B, u) parametrized by q , while each agent 8 2 N

learns a policy c\8 parametrized by \8 . Policies’ parameters are
updated using the following clipped objective:

max
\8

min
,

Ec\8

h
min

⇣
@(\8 , \ 08 )�q (B, u), clip

�
@(\8 , \ 08 ), 1 � n, 1 + n

�

�q (B, u)
⌘
+ @(\8 , \ 08 )L

c\8
C (,)

i
,

(4)

where the centralized advantage measures the overall e�ect of
selecting a joint action, Lc\8C depends on the nature of constraints

(i.e., individual or team as in Equation 3), and @(\8 , \ 08 ) =
c\8 (D8 |⌘8 )
c\ 08

(D8 |⌘8 ) .

Experiments. We test how well does E2C-MAPPO solve standard
cooperative tasks (with individual and team-based constraints) com-
pared to a constrained (safe) baseline in two safe particle environ-
ment tasks [15], where the safety requirement is collision avoidance.
Hence, when agents collide, they receive a positive cost value and
they try to limit its accumulation under de�ned thresholds. Con-
sidering the twofold nature of E2C, we call E2C-MAPPO (T) the
entropy maximizing algorithm using team constraints, and E2C-
MAPPO the one with individual constraints. For a fair comparison,
the threshold for each agent in the individual constraint case equals
the team threshold divided by the number of agents (detailed in the
following section). The results show in Fig. 1 show the the average
return versus cost of 10 runs per method at convergence. Overall,
E2C-based methods achieve higher performance than the baseline
constrained algorithm, with the team version outperforming the
others in one of the tasks.

Figure 1: Average reward versus cost for the constrained C-
MAPPO and (our) E2C-MAPPO (T) and E2C-MAPPO (team
and individual constraints).

4 CONCLUSION
We address the challenges of team-based constrained MARL, where
cooperation and safety are critical. E2C leverages observation en-
tropy maximization [3] to enhance exploration while maintaining
constraint satisfaction. By prioritizing team constraints and obser-
vation diversity, our approach mitigates excessive conservatism
and fosters e�ective coordination. Experiments across diverse envi-
ronments demonstrate E2C’s ability to improve task performance
while satisfying both individual and team constraints, outperform-
ing conventional baselines. Future work can extend E2C to larger
agent teams and real-world applications.
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