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ABSTRACT
As robots become increasingly integrated into human life, personal-
izing human-robot interactions (HRI) is crucial for improving user
acceptance, engagement, and interaction quality. However, person-
alizing HRI poses a unique challenge due to the diversity of human
personality traits. This paper proposes a method that leverages
large language models (LLMs) to dynamically tailor robot conver-
sations according to the Big Five (OCEAN) personality traits. Our
novelty lies in using user personality traits to shape robots’ verbal
responses and implementing contextual action generation for ges-
tures. This study addresses two primary research questions: (1) Does
adapting robots’ verbal responses based on user personality traits
improve communication satisfaction? (2) How does the addition
of context-appropriate gestures further enhance user satisfaction?
We used Goldberg’s personality trait measurement scale (1992)
to assess 26 participants who engaged in conversations with an
LLM-powered Pepper robot on various topics. The quality of these
interactions was self-reported using a revised version of Hecht’s
(1978) conversation satisfaction scale. Three experimental condi-
tions were conducted: (i) Baseline: Standard LLM conversation, (ii)
Personality-congruent: LLM-adjusted dialogue based on person-
ality of participants, and (iii) Enhanced interaction: Personality
adaptation plus dynamic gestures. For the third condition, we im-
plemented contextually appropriate pre-defined animations and
generated novel gestures by computing joint angle values in real
time. Statistical analysis using ANOVA revealed significant differ-
ences in communication satisfaction across the three conditions
(F=13.41, p<.001). Post-hoc analyses using Šidák’s multiple compar-
ison test showed significant pairwise differences: Condition 2 vs.
1: Δmean 4.42, 𝑝 = 0.02; Condition 3 vs. 1: Δmean 8.23, 𝑝 < 0.01;
Condition 3 vs. 2: Δmean 3.80, 𝑝 = 0.05. These results demonstrate
that both personality-congruent interactions and non-verbal ges-
tures significantly enhance communication satisfaction, with the
combined approach yielding the highest satisfaction. This approach
opens new possibilities for developing socially intelligent robots
with applications in healthcare, education, and customer service.
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1 INTRODUCTION
The dawn of socially intelligent robots is upon us, heralding a
future where machines not only understand our words but also
our personalities, gestures, and unspoken cues. Imagine interacting
with a robot that feels as natural and intuitive as conversing with
a close friend - this vision, once confined to the realm of science
fiction, is rapidly becoming a tangible reality as robotics continue
to advance at an unprecedented pace. Our research stands at the
forefront of this exciting frontier, exploring novel approaches to
enhance HRI by personalizing robot behavior based on human
personality traits and integrating context-appropriate non-verbal
communication.

The concept of personalization in HRI has gained significant
attention in recent years[14, 46, 55–57], with researchers explor-
ing various approaches to tailor robot behavior to individual users
[39, 62]. However, the diversity of human personality traits presents
a unique challenge in achieving truly personalized interactions. This
paper proposes a novel method that leverages large language mod-
els (LLMs) to dynamically adjust robot conversations according to
the Big Five (OCEAN) personality traits: Openness, Conscientious-
ness, Extraversion, Agreeableness, and Neuroticism [45].

Central to our approach is the implementation of personality-
congruent conversations in HRI. Personality congruence refers
to the alignment between an individual’s personality traits and
the communication style of their interaction partner. This con-
cept is grounded in well-established psychological theories such as
the similarity-attraction theory [12, 13] and the complementarity
theory [11, 38, 65]. Similarity-attraction theory posits that people
prefer interactions with others who share similar personality traits,
while complementarity theory suggests that certain differences,
when complementary, can foster effective interactions.

The importance of personality-congruent conversations in HRI
[38, 59] cannot be overstated. By adapting a robot’s communica-
tion style to match or complement the user’s personality, we can
potentially enhance user satisfaction, trust, and overall interaction
quality. This approach aims to create robots that are more relatable
and socially intelligent, contributing to smoother human-robot co-
existence. Studies in human-human interactions have demonstrated
the benefits of personality matching in various contexts, including
counseling [29] and education [31, 40, 41]. Despite these findings
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in human interaction, few studies have applied these principles to
HRI, leaving a gap in understanding how personality adaptation in
robots affects communication satisfaction.

Equally crucial to our research is the role of non-verbal commu-
nication in HRI. Gestures, facial expressions, and body language
play a vital role in human communication, conveying emotions,
intentions, and attitudes that complement verbal messages. In the
context of HRI, nonverbal cues can significantly enhance a robot’s
social presence and the overall quality of interaction. Previous
studies have highlighted the importance of non-verbal behavior in
robotics [9, 30], but integrating context-appropriate gestures with
personality-congruent verbal communication remains an open chal-
lenge.

Although existing research hasmade strides in personalizing HRI
based on user characteristics [4, 62], there is a notable gap in the
literature regarding the combined use of personality-driven verbal
adaptations and context-appropriate nonverbal behaviors. In par-
ticular, the potential for LLMs to dynamically generate personality-
congruent dialogue in real-time HRI has not yet been thoroughly
examined. This study seeks to address this gap by exploring how
LLMs can shape more personalized and engaging interactions.

Our study addresses these gaps by proposing a method that not
only adapts a robot’s verbal responses based on user personality
traits but also implements contextual action generation for gestures.
This integrated approach aims to create a more holistic and natural
interaction experience. Specifically, we investigate two primary
research questions:

(1) Does adapting robots’ verbal responses based on user per-
sonality traits improve communication satisfaction?

(2) How does the addition of context-appropriate gestures fur-
ther enhance user satisfaction?

To answer these questions, we conduct an experimental study us-
ing Goldberg’s personality trait measurement scale [25] to assess
participants who engaged in conversations with an LLM-powered
Pepper robot. The quality of these interactions was evaluated using
a revised version of Hecht’s [28] conversation satisfaction scale.
Our experiment comprised three conditions: (i) a baseline condition
with standard LLM conversation, (ii) a personality-congruent condi-
tion with LLM-adjusted dialogue based on participant personality,
and (iii) an enhanced interaction condition combining personality
adaptation with dynamic gestures. Our key contributions are as
follows:

• Developing a method for personality congruent conversa-
tions in robots using LLMs.

• Developing LLM based real-time context-driven, non-verbal
actions to enhance the human-robot interactions.

• Conducting user study to validate our methods effectiveness
and showing it performs better than the baselines.

2 RELATEDWORKS
2.1 Verbal Communication
One of the most obvious and explicit form of communication is
of course through verbal expressions. However, in HRI, while it
is relatively straightforward to generate robotic speech, truly un-
derstanding human speech is anything but trivial. This creates an

imbalance where the human expects the robot to comprehend ev-
erything, but the robot often falls short, leading to sub-optimal
interaction experiences. One of the ways a robot may respond to a
human speech is through pattern matching [26, 49, 64] using Arti-
ficial Intelligence Markup Language (AIML) [2, 43, 63]. Although
this is quite promising, it requires handling of quite a lot of edge
cases and is not feasible for use under unforeseen and unexpected
scenarios. Recent developments in LLMs have shown promising
results in chatbot conversations and there have been attempts at
utilizing them for robot interactions. Billing et al. [6] used LLMs to
generate chat responses and implemented it on the Pepper robot.
The robot is able to discuss and communicate over a wide range of
topics, only limited by the capabilities of the LLM itself. It is one of
the first works on integrating LLMs in human robot interactions.

2.2 Non-Verbal Communication
Non-verbal communication, which includes facial expressions, body
language, gestures and eye movement plays a crucial role in human
interactions. Despite its importance, current HRI systems often
lack the capability to interpret and generate these cues effectively.
This limitation hinders the naturalness of interactions between
human and robots. Existing works have explored non-verbal com-
munication using robots like Flobi [42], Paro [66], Sophia [37, 51]
etc through gestures, gaze and other mediums. The rise of LLMs
have prompted research in various fields in robotics. However,
while LLMs have been integrated into manipulation and localiza-
tion tasks, their application in non-verbal communication remains
under-explored. Cherakara et al. [16] demonstrated that an embod-
ied conversational agent is able to conduct open and closed-domain
dialogue with facial expressions by using LLMs. They show that
their robot is capable of high expressiveness.

2.3 Context Awareness
For a robot to behave appropriately in various interaction scenarios,
it must have contextual awareness. This involves understanding the
activities and behaviours of the humans around it. Rodriguez Lera
et al. [53] used Bayesian models to observe and recognize human ac-
tivity for inferring the primary context of the interaction and guide
robot action execution accordingly. On the other hand, De Mag-
istris et al. [20] proposed holistic scene understanding for complex
context, rather than basic human activities. They also showed how
integrating such capability into social robots can be conducive to
more realistic interaction. Zachary et al. [68] proposed an inter-
action system, CARIL (Context-Augmented Robotic Interaction
Layer), which leverages shared context to adapt robot behavior to
humans. A key feature, “action compliance," enables the robot to
ensure human safety and avoid interfering with their tasks. It is
designed to perform background tasks for astronauts whilst not
impeding their activities.

Kodur et al. [36] demonstrated remarkable capabilities in a ro-
bot’s ability to follow context in collaborative scenarios using LLMs.
The study explored structured and unstructured speech commands,
with the unstructured mode leveraging LLMs like GPT-Neo [7]
and BERT [22] to interpret conversational, context-rich commands.
This allowed the robot to adapt to varying user inputs without
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Figure 1: Overview of the methodology. 1)We begin by assessing the user’s personality traits using the OCEAN model [34]
before the interaction begins. 2) Next, the user’s speech is recorded and transcribed into text using OpenAI’s Whisper model
[50], where the continuous audio is divided into segments based on pauses. 3) The transcribed text, combined with the user’s
personality trait scores, is then used to guide the LLM in generating a tailored verbal response. 4) The robot follows with action
generation, either by selecting a predefined action from the Pepper robot’s library or, if no suitable action exists, generating
precise joint rotation values to dynamically control its movements. 5) Finally, the robot integrates both the verbal response and
actions, delivering a personalized and engaging response to the user.

predefined commands, showcasing the potential of LLMs to im-
prove human-robot collaboration by understanding context more
naturally, even in dynamic environments.

2.4 Personality Congruence
Aly and Tapus [3] used rule-based systems such as PERSONAGE
and beat to generate personality-driven verbal and non-verbal be-
haviors. Our work differs from theirs by utilizing LLMs to dynam-
ically generate personality-congruent verbal responses and ges-
tures in real-time, enabling scalability, adaptability to new contexts,
and expressiveness. Due to the extensive range of human behav-
ior encompassed in their training data [8, 10], LLMs are adept at
generating synthetic data that closely mirrors human-like behav-
ior. Empirical studies corroborate this, with LLMs demonstrating
human-like behavioral patterns [5, 17, 24, 32, 69]. Moreover, Jiang
et al. [33] computationally formalized the assessment of machine
personality, aligning it with established human personality theo-
ries. Additionally, we introduce dynamic gesture generation, where
predefined gestures are augmented by contextually appropriate,
LLM-driven movements, which Aly and Tapus [3] did not explore.

Kim et al. [35] attempted to understand the design requirements
for LLMs to use in robots and [48] demonstrated factors affect-
ing the immersiveness and believability of the agent behaviors.
Additionally, Ziems et al. [70] explored how LLMs affect social phe-
nomenons, focusing on persuasiveness and political ideology, while
Mohammadi et al. [46] explored social engagement. Tapus et al.
[62] investigated personality matching in assistive robots focus-
ing on the extrovertedness of the user. Andrist et al. [4] extended
this to express the robot’s personality through gaze. A common
theme in existing works is the empirical control of LLM behavior in
specific domain [48, 70] or trying to measure LLM behaviour and
personality [5, 32, 33, 35].
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Figure 2: Length of robot responses along with the length of
human speech.

3 METHODOLOGY
In this section, we outline the methodology of our research. The
methodology is divided into two main parts: the technical aspects
and implementation of the Pepper robot, followed by the design
and setup of the user study. Codes available on: https://github.com/
TahsinTariq/Beyond-Words.

3.1 Robot Setup and Implementation
In this section, we describe the hardware setup of the robot, its
integration with the LLM, and the methods used to generate the
robot’s verbal and physical responses. An overview of the entire
method is shown in Figure 1.

3.1.1 LLM based Chatbot. We developed our chatbot using the
GPT LLM [1], used through API calls. The LLM is given an initial
prompt that guides it to behave like a robot and respond to queries.
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The generated response can be up to 128,000 tokens although
for general conversation it is within 1000 tokens. The size of the
response increases along with the size of the user speech input as
shown in Figure 2. The gpt-4o model was used with a stochastic
temperature of 0.9, which ensured the consistency of conversations
while still maintaining enough variability between responses.

The Pepper robot uses the NaoQI middleware to bridge connec-
tions between the robot and the code. Unfortunately, it supports
extensions (modules) written only in Python 2.7. Since Python 2 is
deprecated and OpenAI only provides bindings for Python 3, we
need a way to bridge communication between the Chatbot service
written in Python 3.10 and the NaoQi extension modules written in
Python 2.7. To achieve this, we use the python bindings for ZeroMQ
[21] similar to Billing et al. [6]. On average, the chatbot took 2.87
seconds to generate a response. The total latency between the end
of human speech and the start of the robot’s response was approxi-
mately 5 seconds, with a minimum of 4 seconds and a maximum of
8 seconds, which met our target latency range.

3.1.2 SpeechResponse. TheNaoQImodule ALAudioDevice con-
tinuously captures audio from the robot’s microphone. This audio
stream is processed in real time to filter out segments without hu-
man speech, based on the energy level of the incoming audio. When
human speech pauses for a specified duration, the audio segment
between the last detected pause and the current one is sent to the
Whisper model [50], which converts the spoken words into text.

The Dialogue module receives the chatbot’s response as a text
completion generated by the LLM. To produce speech output, the
ALTextToSpeechmodule converts the text into spoken words. Dur-
ing the robot’s speech, audio capture is temporarily paused to avoid
interference, allowing the robot to stop speaking and resume lis-
tening once it has finished its response.

3.1.3 Action Generation. To enhance the expressiveness of the
robot in HRI, we implement two distinct methods for generating
non-verbal actions, each aimed at producing gestures that align
with the context of the conversation. The first method uses a selec-
tion of pre-defined animations, while the second generates novel,
dynamic actions in real time. Together, these methods allow the ro-
bot to express itself flexibly in a variety of conversational contexts.
For each sentence in the robot’s response, an appropriate action
is generated and performed synchronously with speech. Once the
action is completed, the robot reverts to its default behavior for the
remainder of the utterance.

Pre-definedAction SelectionThe Pepper robot comes equipped
with a pool of pre-defined animations, which consist of various
hand gestures, postures, and facial expressions. While these actions
are useful, the challenge lies in selecting the most appropriate an-
imation based on the conversational context. To address this, we
leverage a LLM to provide action recommendations in real time
based on the context. During a conversation, the LLM is tasked
with not only generating verbal responses but also selecting an
action from the robot’s existing pool of animations. The LLM takes
into account the context of the conversation and outputs the most
relevant action, which the robot then executes in synchronization

Figure 3: Image of Pepper robot arm joints. Image courtesy
of SoftBank Robotics [52].

with its verbal output. This process ensures that the robot’s non-
verbal actions are contextually appropriate with the interaction.

Joint Angle Generation To extend the robot’s range of expres-
sion beyond pre-defined animations, we developed a method for
generating real-time joint movements for the robot’s hands. This ap-
proach enables the Pepper robot to perform novel, context-sensitive
gestures that have not been manually predefined by human devel-
opers. By generating joint angle values dynamically, the robot can
produce new gestures tailored to the specific conversation.

The Pepper robot’s hands contain two joints, each capable of
rotating along three axes: pitch, yaw, and roll. The LLM is con-
figured with a system prompt that provides both the context of
the conversation and the robot’s physical constraints, such as the
range of motion for each joint. When the system requires a gesture
not found in the pre-defined set, the LLM generates a high-level
action description (e.g., pointing, waving). A separate prompt to the
LLM computes the corresponding joint angle values for each hand,
ensuring the gesture aligns with both the conversational context
and the robot’s mechanical limitations.

For improved precision, an additional image showing the robot’s
joint structure, as illustrated in Figure 3, is included in the prompt
provided to the LLM. This image helps guide the LLM in generating
appropriate joint angles for the action.

However, this method is slower than executing pre-defined ac-
tions due to the complexity of real-time joint angle calculation. To
balance responsiveness and flexibility, the system first checks if a
relevant action is available in the pre-defined set. If so, it selects
that action to ensure quicker execution. If no suitable pre-defined
action exists, the system proceeds to generate a novel gesture using
the joint angle generation method.

3.1.4 TTS speed and pitch. One of the challenges we faced was
achieving an optimal balance between speech speed and pitch. Pre-
vious studies [15, 67] have reported that fast-paced and low-pitched
robotic voices can be difficult to understand and annoying for some
users. Even in our initial experiments, users often found rapid
speech frustrating and hard to understand, while a low-pitched
voice reduced the perceived clarity of the speech and lead to user
dissatisfaction.
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In response to these findings, we carefully adjusted the pitch
and speed of our robot’s speech to ensure it was both understand-
able and minimally annoying to users. The speech synthesis was
fine-tuned to maintain a moderate pace, avoiding excessively fast
delivery, and the pitch was set to a level comfortable for most lis-
teners. These adjustments were based on pilot testing feedback and
aimed to enhance the overall user experience by striking a balance
between clarity and pleasantness.

3.1.5 Personality Congruence. We shape the personality of the
robot’s dialogue system by directly inputing the personality trait
scores within the system prompt. In the baseline case, no additional
information regarding the participant’s personality was provided
to the LLM. The robot was simply instructed to respond naturally
based on the conversation context. This led to neutral, context-
driven responses without any personalization. The goal in this
condition was to provide a standard, non-adaptive conversational
experience to serve as a control for comparison. In the personality-
adapted condition, we used the participants’ pre-assessed personal-
ity score to shape the robot’s responses.

3.2 User Study Design
To assess the impact of contextually associated action generation
alongside verbal responses, we conducted an exploratory study
with 26 participants recruited from the university community.

As the study involved performing actions, participants were
placed approximately 1.2-1.5 meters from the robot to ensure safety
and optimal interaction. This is also the distance for social interac-
tion zones which the interaction falls under. The robot remained
stationary, and participants interacted with it while under the su-
pervision of the research team.

3.2.1 Demographic Profile . The study comprised a total of 26
participants (n = 26), with a gender distribution of 9 females (34.6%)
and 17 males (65.4%). The participants ranged from 18 to 27 years,
with a mean age of 22.34 years (SD = 2.15).

3.2.2 Personality Assessment. Participants completed the Big Five
Personality Trait questionnaire [25], which evaluates their Open-
ness, Conscientiousness, Extraversion, Agreeableness, and Neuroti-
cism on a scale ranging from 5 to 25. The descriptive statistics for the
traits are as follows: Openness (M=17.77, SD=3.56), Conscientious-
ness (M=18.42, SD=4.60), Extraversion (M=15.27, SD=4.40), Agree-
ableness (M=19.65, SD=4.72) and Neuroticism (M=17.54, SD=4.74).

3.2.3 Topic Interest Survey. To address concerns about topic bias,
we conducted a pre-interaction topic interest survey using a val-
idated three-item scale [54], measuring interest, relevance, and
knowledge for each discussion topic. Correlation analysis between
topic interest and communication satisfaction scores revealed a
moderate relationship for condition 1 (r = 0.43) but negligible re-
lationships for conditions 2 and 3 (r = -0.011, 0.057 respectively),
indicating topic preference did not influence satisfaction ratings in
the personality-adapted conditions. In addition, the heterogeneous
distribution of personality among participants makes topic bias sta-
tistically improbable - participants with diverse personality profiles
would naturally have different topic preferences.

Table 1: Topics that the participants engaged in for each
condition

Condition Topic

1 What does the user feel about robots being employed in jobs?
2 What does the user think of robots teaching in the classroom?
3 What does the user think about the impact of social media?

3.2.4 Topic Selection: The selection of topics was guided by key
considerations tomaximizemeaningful interactions and personality-
driven responses. The chosen topics, the impact of robots on em-
ployment, the use of robots in education, and the societal effects
of social media, offer a nuanced landscape of perspectives, allow-
ing participants to express views that may correlate with their
personality profiles. For instance,

• Openness: Individuals high in this trait might demonstrate
greater receptivity to technological changes in the workforce
or novel educational approaches.

• Conscientiousness: Those scoring high may focus on the
need for structured adaptation to technological changes in
both employment and education.

• Extraversion: Participants might emphasize the social im-
plications of job displacement or the importance of human
interaction in learning environments.

• Agreeableness: These individuals could express more con-
cern for equitable solutions or the emotional aspects of edu-
cation that robots might struggle to provide.

• Neuroticism: Those scoring high may express heightened
concerns about job security, potential negative impacts on
child development, or the psychological effects of social me-
dia use.

These topics enable us to observe how Pepper adapts its con-
versational style across different personality types and scenarios,
providing valuable insights into the effectiveness of personality-
congruent interactions in HRI. The participants were instructed
to engage in a natural conversation with Pepper. The topic of the
conversation was not disclosed beforehand; instead, Pepper intro-
duced the topic at the beginning of the interaction and asked for
the participants’ insights on it. Each experimental condition was
performed with a different topic so that the participants do not find
it monotonous. The topics are shown in Table 1.

3.2.5 Interaction Scenarios. To assess the effects of personality-
driven dialogue and contextually associated gestures, participants
interacted with the robot across three distinct scenarios. Each sce-
nario was designed to test a different level of interaction, progres-
sively incorporating personality adaptation and non-verbal ges-
tures. The conversational topics remained consistent across all
scenarios, but the robot’s behavior varied based on the condition:

(1) Scenario 1: Baseline (No Personality or Gestures)
In this scenario, participants discussed the role of robots
in employment. The robot engaged in a basic conversation
without any personality adaptation or hand movements. It
provided standard, neutral responses generated by the LLM,
with no attempt to tailor the dialogue to the participant’s
personality traits.
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Table 2: Questions used for measuring Communication satis-
faction.

No. Questions

Q1 How would you rate your overall experience with the robot?
Q2 How easy was it to understand the robot’s responses?
Q3 How engaging did you find the conversation with the robot?
Q4 How would you rate the robot’s intelligence based on its performance?
Q5 How natural did the interaction with the robot feel?
Q6 How satisfied were you with the interaction process?
Q7 Do you feel like the robot conveyed emotion throughout the conversation?
Q8 Did you feel like the robot was committed or engaged in the conversation?
Q9 Would you be interested in interacting with this robot again in the future?

(2) Scenario 2: Personality-Congruent (No Gestures)
In this scenario, the topic was "Robots as Teachers", exploring
participants’ thoughts on the potential for robots to take on
teaching roles. Here, the robot adjusted its conversational
style to match the participant’s personality traits (e.g., more
engaging for extraverted participants or more structured for
conscientious individuals), while remaining stationary with
no hand or body movements.

(3) Scenario 3: Personality-Congruent with Gestures
In the final scenario, participants discussed the impact of
social media on our lives. The robot not only adapted its
dialogue to match the participant’s personality traits but also
incorporated contextually appropriate hand gestures. These
gestures were either pre-defined or dynamically generated
based on the conversational context. For instance, the robot
might use hand movements to emphasize points or adopt
more relaxed postures during casual discussions.

Each scenario lasted approximately 5-10 minutes. Incrementally
introducing the robot’s features, from baseline to personality adap-
tation and finally to gestures, was intended to reduce cognitive load
and provide participants with a clear learning curve throughout the
study. This design minimized the risk of overwhelming participants
with multiple new interaction variables simultaneously, allowing
us to isolate the specific contributions of each adaptation.

3.2.6 Post-Interaction Evaluation: After completing the three
interaction scenarios, participants filled out a post-interaction eval-
uation form. The form consisted of nine 5-point Likert-scale ques-
tions to assess various aspects of the interaction, where 1 indicated
"Strong Disagreement" and 5 indicated "Strong Agreement". The
participants also selected which of the three interactions they liked
the most and were asked an open-ended question to capture their
qualitative feedback. The evaluation process took about 5 minutes.
The questions covered areas such as the overall experience, ease
of understanding, engagement, perceived intelligence, naturalness
of interaction, and emotional connection with the robot, capturing
both positive and negative sentiments. The questions used in the
survey are presented in Table 2.

4 RESULTS AND ANALYSIS
4.1 Measurement of Communication

Satisfaction and Personality Traits
To assess participants’ personality traits, we employed Goldberg’s
[25] widely recognized Big Five personality trait measurement scale.

Table 3: Factor Loading of the initial nine and subsequent
eight items of the scale.

Questions Factor Loading Factor Loading

Q1 0.78 0.77
Q2 0.45 -
Q3 0.81 0.81
Q4 0.79 0.79
Q5 0.75 0.75
Q6 0.84 0.82
Q7 0.71 0.70
Q8 0.74 0.73
Q9 0.72 0.73

Variation Explained by the factor 95.22% 97.14%
Cronbach’s 𝛼 0.91 0.92

We utilized the original 25-item scale without modifications, given
its established validity and reliability in psychological research
[34]. For measuring communication satisfaction in the context of
Human-Robot Interaction (HRI), we adapted Hecht’s interpersonal
communication satisfaction scale [28] adapted from Kim et al. [35].
This adaptation was necessary due to the absence of a specific
scale for HRI contexts. To ensure the modified scale’s reliability
and validity for our study, we conducted psychometric tests.

4.2 Convergent Validity
To establish the convergent validity of the scale, we performed
a factor analysis with the initial nine question items. However,
question number two showed a lower loading than the acceptable
threshold of 0.70, and therefore we decided to drop that question.
This decision aligns with the recommendation by Hair et al. [27] to
remove items with factor loadings below 0.70 to improve the scale’s
overall validity. The results also showed only one factor with an
eigenvalue (𝜆) of 4.71 for factor 1 and 0.40 for factor 2, indicating
a single convergence of all the items. The variation explained by
the questions was 95.22% for the first factor and the remainder for
other factors. All these findings indicate convergent validity of the
modified scale.

We then performed the factor analysis again with eight items. As
shown in Table 3, all items now show high factor loadings ranging
from 0.70 to 0.82, and the variation explained by the factor increases
to 97.14%. The results demonstrate strong convergent validity, as all
items exhibit satisfactorily high loadings on the underlying factor.
This uni-dimensional structure provides strong evidence for the
scale’s convergent validity [23].

4.3 Reliability
We assessed the internal consistency and reliability of our modi-
fied eight-item communication satisfaction scale using Cronbach’s
alpha. The analysis yielded a Cronbach’s alpha of 0.92, indicating
high reliability. This value exceeds the generally accepted threshold
of 0.70 for good reliability [47].

4.4 Quantitative Analysis
Our analysis of variance (ANOVA) revealed significant differences
in LLM communication satisfaction among the three experimental
conditions (𝐹 (2, 75) = 13.41, 𝑝 < .001). This finding aligns with
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previous research suggesting that different interaction styles can
significantly impact user satisfaction in HRI [61].

To further elucidate the nature of these differences, we con-
ducted post-hoc analyses using Šidák’s multiple comparison test.
The results show significant pairwise differences: Condition 2 vs. 1:
Δ𝑚𝑒𝑎𝑛 = 4.42, 𝑝 = 0.02; Condition 3 vs. 1: Δ𝑚𝑒𝑎𝑛 = 8.23, 𝑝 < 0.001;
Condition 3 vs. 2: Δ𝑚𝑒𝑎𝑛 = 3.80, 𝑝 = 0.05. These results indicate
that both personality-congruent interactions and non-verbal ges-
tures significantly enhance communication satisfaction, with the
combined approach yielding the highest satisfaction. This find-
ing supports the importance of multimodal interaction in HRI, as
highlighted by [9].

To gain deeper insights, we conduct a multiple regression analy-
sis, with communication satisfaction with the LLM as the dependent
variable. Independent variables include the experimental conditions,
Big Five personality traits, and age of the participants. The results
are presented in Table 5. The regression model reveals that both
Condition 2 and Condition 3 have significant positive impacts on
user satisfaction (𝛽C2 = 4.42, 𝑝 < 0.01; 𝛽C3 = 8.23, 𝑝 < 0.01). This
result supports the effectiveness of personality complement and
alignment in LLM conversations, consistent with findings from
studies on human-human interactions [19].

Interestingly, two personality traits show significant effects on
LLM conversation satisfaction: agreeableness demonstrates a sig-
nificant positive effect (𝛽agree = 0.81, 𝑝 < 0.01) and extraversion
shows a marginally significant positive effect (𝛽extravert = 0.55, 𝑝 =

0.10). These results suggest that participants high in agreeable-
ness and extraversion tend to enjoy LLM conversations more than
those low in these traits. This aligns with research on human-
computer interaction showing that personality traits can influence
user preferences and behaviors [58]. Conversely, neuroticism ex-
hibits a significant negative effect on communication satisfaction
(𝛽neuro = −0.59, 𝑝 < .01), indicating that participants high in
neuroticism generally experience lower satisfaction with LLM in-
teractions. This finding is consistent with studies showing that
individuals high in neuroticism may experience more anxiety or
discomfort in novel social situations, including those with artificial
agents [60]. The regression model’s coefficient of determination
(𝑅2) was 0.45, indicating satisfactory explanatory power.

We also implement three metrics to evaluate engagement and
interaction quality; Median word count across conditions to gauge
engagement, TF-IDF vectorization and cosine similarity [44] as
a measure of semantic alignment between user inputs & robot
responses and finally, Pointwise Mutual Information (PMI) [18]
to assess topic coherence by measuring topic-relevant term co-
occurrences beyond random chance (Table 4). Results show pro-
gressive improvements across all metrics with the introduction of
personality adaptation and gestures. Substantial increases in word
count indicated enhanced user engagement, while relevance scores
(absolute values: 0.328, 0.392, and 0.466 for conditions 1–3) showed
greater response coherence in personality-adapted conditions. Sim-
ilarly, PMI scores demonstrated stronger topic adherence compared
to the baseline.

Table 4: Engagement and interaction metrics across the dif-
ferent conditions.

Condition
No.

Word Count
(Median)

Relevance Score
(Normalized) PMI Score

1 238 0.811 4.25
2 469 0.897 4.79
3 518 1.000 4.54

Table 5: Regression Results

Variable Coef. Std. Err. t P value

Condition 2 4.42 1.44 3.08 0.003
Condition 3 8.23 1.44 5.73 0.000
Extraversion 0.50 0.29 1.64 0.106
Agreeableness 0.81 0.26 3.08 0.003
Neuroticism -0.59 0.25 -2.41 0.019
Conscientiousness -0.11 0.29 -0.39 0.699
Openness 0.68 0.45 1.49 0.140
Age -0.57 0.29 -1.97 0.053
constant 26.74 7.70 3.47 0.001

4.5 Qualitative Analysis
Here, we discuss some of the findings from our qualitative analysis.
We show two cases of personality congruence and an example of
generative action.
Personality Congruence Case 1: High Neuroticism
Neuroticism, associated with emotional sensitivity, anxiety, and
stress, necessitates a conversational approach that offers reassur-
ance and empathy. The comparison between Condition 1 (vanilla
LLM) and Condition 2 (personality-aware LLM) demonstrated a
marked improvement in addressing these needs. In Condition 1,
when the participant expressed concern about robots potentially
taking over human roles, the vanilla LLM responded:

Condition 1: Vanilla LLM

Robot: You make a great point! On one hand, robots can take
over repetitive or physically demanding tasks, potentially giving
humans more leisure time. On the other hand, it raises concerns
about what will happen to human jobs. It’s definitely a complex
issue!

While this response acknowledged the complexity of the issue, it
failed to directly address the participant’s anxiety about robots
"taking over" and making humans lazy, missing an opportunity to
offer emotional reassurance. Contrastingly, in Condition 2, when
the participant voiced concerns about robots’ capability to handle
complex teaching situations, the personality-aware LLM responded:

Condition 2: Personality-Aware LLM

Robot: You bring up some valid points. It’s true that robots
lack emotional intuition and the deep understanding that comes
from human experiences. Teaching is indeed a sensitive area that
often requires empathy and the ability to respond to nuanced
questions. While robots may excel at providing information
and structured learning, the emotional connections that human
teachers create can be irreplaceable.
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This response not only validated the participant’s concerns but also
offered both factual reassurance and emotional support, demon-
strating a more nuanced approach to addressing the participant’s
neuroticism. By acknowledging both the intellectual and emotional
aspects of teaching, the personality-aware LLM showed greater
empathy, likely helping the participant feel understood.
Personality Congruence Case 2: Low Extraversion
Low extraversion is characterized by a preference for less stimulat-
ing environments and more reserved interactions. The comparison
between Conditions revealed significant differences in how each
LLM adapted to these traits. In Condition 1, the vanilla LLM initiated
the conversation with an energetic tone:

Condition 1: Vanilla LLM

Robot: Hi there! How are you feeling about the topic of robots
and employment? Human: I’m not sure how I am feeling. Ro-
bot: That’s completely okay! It’s a complex topic. Do you think
robots might take jobs away from people, or do you see benefits
in having robots do tough tasks? Human: I think there’s a pos-
sibility that robots might take some of the jobs that people do
right now. Robot: That’s a valid concern. Many people worry
about job displacement. On the flip side, robots can take on
challenging tasks and potentially create new job opportunities
too. What do you think about that?

This approach, while well-intentioned, failed to adapt to the par-
ticipant’s preference for a calmer, less stimulating dialogue. The
LLM continued with multiple questions and complex ideas, poten-
tially overwhelming the low-extraversion participant. In contrast,
Condition 2 demonstrated a more tailored approach:

Condition 2: Personality-Aware LLM

Robot: Hello! It’s wonderful to meet you today. I’ve been pon-
dering the role of robots like me being used as teaching as-
sistants or tutors in schools. What do you think about that?
Human: I don’t think anything about that. Robot: That’s com-
pletely okay! Sometimes it can be hard to form an opinion on
topics like this. Robots in education are definitely a unique idea.
If you ever feel curious about it, I’m here to share thoughts or
information!

The personality-aware LLM recognized the participant’s hesitation
and responded with a calmer tone, providing space for the partic-
ipant to engage at their own pace. When the participant showed
interest, the LLM introduced information gradually:

Condition 2: Personality-Aware LLM (continued)

Robot: Great! One interesting aspect of using robots as teaching
assistants is their ability to provide personalized learning expe-
riences. They could adapt to different learning paces and styles,
helping students who might struggle in traditional classroom
settings. What do you think about that benefit?

By simplifying the conversation and focusing on one concept at a
time, the LLM better accommodated the participant’s preference
for a more reserved interaction style.

���� �������������������� ���������������� ����������������

Figure 4: Comparing predefined and generated actions by
the Pepper robot. The first image shows the robot idle. The
second demonstrates a generated "Thrilled" action by a LLM.
The third and fourth images show similar actions: the prede-
fined "Hello" gesture and the LLM-generated "Wave."

Generative Action
In Figure 4, we present a comparison between predefined and gen-
erated actions executed by the Pepper robot. The robot is seen
performing the predefined action "Hello" as well as the generated
action "Wave," which is generated by the LLM. Additionally, we
showcase the generated action "Thrilled," emphasizing the diver-
sity and adaptability of the robot’s movements. In the following
response, the robot expressed these two actions (actions in blue):

Condition 3: Generative Action

Robot: Hello! (Hello) I’m doing great, thank you for asking.
It’s wonderful to meet you today. I’m excited to chat about the
impact of social media platforms on society. (Thrilled) I’d love
to hear your thoughts on this topic!

5 CONCLUSION
This research advances human-robot interaction by demonstrating
the benefits of personality-adaptive communication and context-
aware gesture generation. Using the Big Five personality traits, we
tailored robot conversational styles to match individual user pro-
files, fostering a deeper sense of connection and satisfaction. The
addition of dynamic context-sensitive gestures further enhanced the
interaction experience, making the robots appear more engaging
and lifelike. Our findings reveal that dynamic personality model-
ing combined with multimodal behavior generation significantly
enhances user satisfaction and communication efficacy compared
to static approaches. The study presents several limitations that
warrant consideration. First, while our LLM-based approach demon-
strated advantages in scalability and adaptability over rule-based
systems, GPT-4o’s inherent variability introduces replication chal-
lenges, particularly in maintaining precise personality consistency
across interactions. Second, our participant pool, predominantly
comprising university-educated individuals with technological fa-
miliarity, limits generalizability to broader populations—a crucial
consideration for real-world deployment scenarios. Future work
should also focus on better latency optimization and multimodal
sensing.
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