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ABSTRACT
Consider a principal who wants to search through a space of sto-
chastic solutions for one maximizing their utility. If the principal
cannot conduct this search on their own, they may instead delegate
this problem to an agent with distinct and potentially misaligned
utilities. This is called delegated search, and the principal in such
problems faces a mechanism design problem in which they must
incentivize the agent to find and propose a solution maximizing
the principal’s expected utility. Following prior work in this area,
we consider mechanisms without payments and aim to achieve a
multiplicative approximation of the principal’s utility when they
solve the problem without delegation.

In the full version [6] of this extended abstract, we investigate a
natural and recently studied generalization of this model to multiple
agents and find nearly tight bounds on the principal’s approxima-
tion as the number of agents increases. As one might expect, this
approximation approaches 1 with increasing numbers of agents,
but, somewhat surprisingly, we show that this is largely not due to
direct competition among agents.
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1 INTRODUCTION
Consider the problem faced by a non-profit organization that funds
academic research through grants. As a member of this organiza-
tion, you are tasked with allocating a fixed amount of resources to
fund a single research project, and there are a variety of research
groups from which you can receive, evaluate, and approve pro-
posals. You are confident in your ability to evaluate proposals, but
recognize that each research group has its own interests that may be
misaligned with that of your organization. You must try to design a
grant proposal mechanism that motivates these groups to propose
research projects that are most beneficial to your non-profit’s goals.

This is a practical and simplified example of the kind of problems
that we investigate in this paper. More specficially, we consider
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a model in which the principal faces a stochastic optimization
problemwhere they have to find a solutionmaximizing the expected
value of some objective function. The task of searching for solutions
to this problem is then delegated to a fixed group of agents, who
each have distinct utility functions. Agents propose solutions to
the principal, and the principal picks a single winner who receives
utility for their proposal. We focus on models of delegation in
which the principal’s mechanism can not make outcome-contingent
payments, representing situations in which players are confined to
a fixed-price contract or are not allowed to make transfers of value
for specific outcomes.

Finally, in contrast to designing optimal mechanisms, we build
on recent delegation research [5, 7, 8, 13, 15] in which the principal
aims for a multiplicative approximation of their first-best expected
utility, i.e. their expected utility when the problem is not delegated
(alternatively, their utility when they delegate to agents with identi-
cal interests as the principal). This approximation factor, which can
be called the delegation gap, tells the principal what minimum frac-
tion of their optimal utility they are guaranteed while delegating
to arbitrary untrusted agents.

Prior work on approximation guarantees in delegation prob-
lems includes that of Kleinberg and Kleinberg [15], which proposed
two models of delegation without payments and showed that they
could be reduced to certain prophet inequalities and Pandora’s box
problems. This was expanded on by Bechtel and Dughmi [5], who
introduced combinatorial constraints on the principal and agent,
and Bechtel et al. [7], who consider different models of delegating
Pandora’s box problems. This line of work has shown that delega-
tion has close connections to prophet inequalities [10, 11, 16–19]
and contention resolution schemes [1, 9, 11], among other related
problems. A few other notable papers on related delegation prob-
lems include [2–4, 8, 12, 14]. See the full version of this paper [6]
or [5, 13, 15] for a more thorough overview.

Most similar is the work of Hajiaghayi et al. [13], who proposed
the model of strategic multi-agent delegation that we study. They
show that when all agents have the same number of i.i.d. elements,
the principal can achieve approximations tending to 1 as 𝛼𝑘𝑚 in-
creases, where 𝑘 is the number of agents,𝑚 is the number of el-
ements per agent, and 𝛼 is a parameter of the distributions. In
contrast, we achieve an approximation tending to 1 as 𝑘 increases
when agents have symmetric sets of elements (not necessarily i.i.d.),
with no conditions on the distributions or number of elements.

2 MODEL
The delegation model of interest in this paper is strategic multi-
agent delegation as originally defined by Hajiaghayi et al. [13].
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Definition 2.1 (Strategic Multi-Agent Delegation). An instance of
strategic multi-agent delegation consists of 𝑘 agents labeled 1, . . . , 𝑘 ,
each of which has a collection of distinct elements. Each element e is
associated with an a-priori unknown outcome 𝜔𝑒 ∈ Ω drawn from a
known distribution 𝜇𝑒 , where Ω is an abstract set of outcomes. We
assume the distributions 𝜇𝑒 for different elements 𝑒 have disjoint
support. Every outcome 𝜔 has a fixed utility 𝑥 (𝜔) for the principal
and 𝑦 (𝜔) for the agent.

The principal starts by committing to a mechanism, which con-
sists of sets of valid signals Σ1, . . . , Σ𝑘 for each agent and a condi-
tional acceptance function 𝑔 : Σ1 × · · · × Σ𝑘 → Ω ∪ {⊥} that maps
the signals from all agents into a single winning outcome 𝜔 or a
rejection of all outcomes ⊥. After learning the mechanism, each
agent observes their own type, the full set of outcomes sampled
from their elements, and must select a signal to send to the principal.
The principal receives these signals and uses 𝑔 to transform them
into a winning outcome or a rejection. If the winning outcome 𝜔
from agent 𝑖 is verified by the principal, then the principal receives
utility 𝑥 (𝜔) and agent 𝑖 receives utility 𝑦 (𝜔), while all other agents
receive nothing. Otherwise, everyone receives nothing.

Recall the example from the introduction of a non-profit that
funds academic research through grants. Clearly, the non-profit is
represented by the principal and the agents by the research groups.
Each element represents a rough idea for a proposal with a-priori
unknown random value, and sampling the element represents the
process of investigating and evaluating this idea to determine its
true utility for the principal and agent. The mechanism set by
the principal consists of a description of what constitutes a valid
proposal, as well as the specific details of the process they will use
to determine the winner.

One challenge posed by this model is the complexity of analyzing
agents’ equilibrium strategies, how these equilibria are affected by
the choice of mechanism, and how they affect the principal’s utility.
To this end, we also study a simplified model in which agents are
assumed to act adversarially against the principal. More specifically,
adversarial multi-agent delegation is the same as the strategic model
above, except that we do not define agents’ utilities and all agents
instead aim to minimize the principal’s expected utility subject to
maintaining a positive probability of winning.

3 RESULTS
We start by showing that bounds on the delegation gap in the strate-
gic case can be reduced to identical bounds in the adversarial case.
This comes in two parts: the simple observation that delegating to
strategic agents is at least as easy as delegating to adversarial agents
(Lemma 3.2), and, less obviously, that for every adversarial instance
within a central class of problems, there is an analogous strategic
instance with identical behavior from the principal’s perspective
(Lemma 3.3). This may be somewhat surprising, since it implies
that any increase in utility from delegating to multiple agents is
not, in general, attributable to strategic competition between those
agents. Rather, the principal’s utility seems to increase simply as a
consequence of the larger pool of acceptable options afforded by a
larger pool of agents.

Turning our focus toward adversarial delegation, we find a harsh
1/2-approximation upper bound for any number of agents that

carries over from the related single-agent model. This is due to
the fact that the general form of the model allows for one agent to
hold all elements that contribute non-zero expected utility to the
principal, so, in essence, the principal must delegate to just that
one agent.

However, moving beyond this impossibility, we show that when
all agents have identical sets of elements, it is possible to achieve
a competitive delegation gap of 1 − O

(
ln𝑘
𝑘

)
. This is done in two

parts: first achieving this approximation for instances with only
atomless distributions (Proposition 4.2), and then showing how to
modify the strategy to deal with atoms (Theorem 4.3). Notably, this
approximation uses only a very simple threshold mechanism, so it
is easy to implement.

In the interest of demonstrating that other forms of symmetry
also give competitive approximations, we consider also a random-
ized version of the adversarial model in which each element is given
to a uniform random agent, and the principal’s utility is measured in
expectation over this randomness. For this model of shuffled multi-
agent delegation, we show that the delegation gap has the same
1−O

(
ln𝑘
𝑘

)
lower-bound (Proposition 4.5 and Theorem 4.6). Noting

that a different symmetry assumption gives the same result, we
conjecture that this is an instance of a more general phenomenon.

Finally, we show that the optimal delegation gap achievable
with k agents in the agent-symmetric case is upper bounded by
1 − Ω

(
1
𝑘

)
(Theorem 4.7). We leave open for future work whether

the gap between these upper and lower bounds can be closed.

4 OPEN QUESTIONS
We conclude by listing some open questions and interesting direc-
tions for future work:

(1) Are either of our bounds on the delegation gap tight?
(2) Could Myerson-type mechanisms (which we define analo-

gously to Myerson’s optimal auctions) be optimal for strate-
gic multi-agent delegation?

(3) Does the delegation gap improvewhen considering the larger
class of randomized mechanisms?

(4) Previous work [5, 7, 15] has considered single-agent delega-
tion in the presence of “probing constraints” such as probing
costs and combinatorial constraints on sets of probed ele-
ments. How do these affect multi-agent delegation?

(5) Previous work has also considered single-agent delegation
in which the principal can accept sets of outcomes subject to
a hard constraint. Can this be extended to multiple agents?

(6) Are there weaker or alternative forms of symmetry under
which the principal can still achieve strictly better than a
1/2-approximation in general?
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