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ABSTRACT
Many real-world decision problems involve the interaction of mul-
tiple self-interested agents with limited sensing ability. The par-
tially observable stochastic game (POSG) provides a mathematical
framework for modeling these problems, however solving a POSG
requires difficult reasoning over two critical factors: (1) information
revealed by partial observations and (2) decisions other agents make.
In the single agent case, partially observable Markov decision pro-
cess (POMDP) planning can efficiently address partial observability
with particle filtering. In the multi-agent case, extensive form game
solution methods account for other agent’s decisions, but preclude
state-belief approximation. We propose a unifying framework that
combines POMDP-inspired state distribution approximation and
game-theoretic equilibrium search on information sets. This paper
lays a theoretical foundation for the approach by bounding errors
due to belief approximation, and empirically demonstrates effective-
ness with a numerical example. The new approach enables planning
in POSGs with very large state spaces, paving the way for reliable
autonomous interaction in real-world physical environments and
complementing multi-agent reinforcement learning.
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1 INTRODUCTION
This paper addresses game-theoretic planning in large, partially
observable state spaces, where both state uncertainty and interac-
tion uncertainty drive complex behaviors. Agents may cooperate,
compete adversarially, or have general-sum objectives, requiring
strategic reasoning beyond standard POMDP frameworks.

Existing methods either focus on state uncertainty (POMDP
solvers) or interaction uncertainty (game-theoretic approaches), but
handling both remains a challenge. We introduce the Conditional
Distribution Information Set Tree (CDIT), a structure that enables
belief approximation and multi-agent reasoning in extensive-form
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games. By representing a POSG in a way that existing game-solving
algorithms such as CFR can operate on, CDIT makes it possible to
find equilibria in continuous-state settings. We show theoretically
that a Nash equilibrium found using this approximation remains
close to the true equilibrium, without any direct dependence on
state space size.

Finally, we demonstrate CDIT’s effectiveness in a continuous-
state tag game, where existing POMDP and extensive-form game
methods fail.

2 BACKGROUND
Apartially observable stochastic game (POSG), also called a partially
observable Markov game (POMG), models multi-agent decision-
making under uncertainty, where players maximize individual util-
ities based on partial observations [1, 9]. Unlike single-agent opti-
mization problems, POSGs lack globally optimal solutions; instead,
equilibria such as Nash equilibria serve as solution concepts.

Imperfect information extensive-form games (EFGs) offer an
alternative framework for multi-agent decision-making but differ
structurally from POSGs in their sequential nature, terminal re-
wards, and information set representation of uncertainty. While
zero-sum EFGs can be solved via regret minimization techniques
such as counterfactual regret minimization (CFR) [20], these meth-
ods struggle with physical-world domains where belief approxima-
tion is necessary.

Tree search and belief-state planning techniques, common in
single-agent POMDPs [7, 13, 16, 18], can extend to cooperative
multi-agent settings (decentralized POMDPs) [19], but fail in general-
sum games where mixed strategies may be required. POSG beliefs
depend on other agents’ policies, making equilibrium computation
challenging without exact belief updates, which are impractical in
large or continuous spaces [5].

Existing game-theoretic solvers either leverage deep learning [6,
8, 12, 17]—which lacks theoretical guarantees—or rely on explicit
reach probabilities [3, 4, 11, 15], limiting their applicability to struc-
tured problems. Our approach circumvents these issues by effi-
ciently approximating expected utilities while preserving theoret-
ical guarantees, making it scalable to large, continuous domains
without reliance on extensive hyperparameter tuning.

3 CONDITIONAL DISTRIBUTION
INFORMATION SET TREES

In order to overcome the limitations above, we define a new tree
structure called the conditional distribution information set tree
(CDIT) that combines history-conditioned state distributions, sim-
ilar to POMDP beliefs, with information sets similar to those in
EFGs.
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Figure 1: Illustration of a CDIT (left) and its particle approx-
imation (right) for a POSG with A1=O2={1,2}, A2=O1={1}.

The base structure of a CDIT is a joint conditional distribution
tree consisting of alternating layers of joint action nodes (rect-
angles in Fig. 1) and joint observation nodes (unfilled circles in
Fig. 1). The history for a node is the sequence of joint actions and
joint observations on the path to that node from the root. Each
depth 𝑑 observation node has an associated state distribution, 𝑏𝑑 ,
conditioned on the history up to that point. This distribution can
be calculated exactly using Bayes’ rule. However, CDITs are most
scalable when this belief is approximated. Any approximation, for
example an extended Kalman filter or Gaussian mixture model can
be used, but this work focuses on a particle CDITs, where each distri-
bution is represented by𝐶 particles (filled circles in Fig. 1). Particles
are propagated by sampling the joint transition distribution, and
particle weights are updated according to observation probability.

Since the distributions in the tree described above are condi-
tioned on joint histories, they contain more information than any
one player has at a given depth. In order to limit the information
that policies can be conditioned on, distribution nodes correspond-
ing to histories that are indistinguishable to a player are grouped
together into information sets for each player. Specifically, two
nodes are in the same information set for a player if all actions
and observations for that player in the history leading up to that
node are identical. This grouping is similar to the information set
concept in EFGs. However, while EFGs may arbitrarily group states
into information sets, CDITs by definition group nodes according
to the criterion above. The combination of a joint conditional distri-
bution tree and history-based information sets constitutes a CDIT.
An information set in a CDIT can be interpreted as a summary of
the information about the state implied by the history observed by
an agent, without assuming anything about other agents’ policies.
We provide guarantees for using external sampling counterfactual
regret minimization (ESCFR) to efficiently traverse the CDIT and
synthesize a policy.

4 CONVERGENCE GUARANTEES FOR
APPROXIMATE NASH EQUILIBRIA ON
CDITS

When using a particle CDIT to approximate a game, a crucial ques-
tion is whether equilibria computed on the CDIT, for example with
the ESCFR algorithm, converge to equilibria in the original game
as the number of particles increases.

By leveraging recentwork in POMDPparticle approximation [10],
our guarantees come in the form of a concentration bound that is

Figure 2: Continuous Tag exploitability; 3𝜎 standard error
bounds shaded

parametric in the solving method. It demonstrates that a solver with
guarantees only for smaller finite games nowmay enjoy guarantees
for large or even continuous state spaces when using the CDIT.

We separate the convergence guarantees into three parts [2].
First, we show that the suboptimality of a solution calculated using
an approximate game is bounded when applied to the true game.
Then, we bound utility approximation error of this approximate
game. Next, we show that using a sampled subset of the strategies
and observations in the approximate game is sufficient to solve the
approximate game. Finally, we bound the suboptimality of a sparse
ESCFR solution.

5 NUMERICAL EXPERIMENTS
To demonstrate the effectiveness of our solver, we construct a game
of partially observable tag in 2-dimentional continuous state space
for each agent (4 dimensions total) with discrete finite actions and
observations.

To elucidate the adversarial nature of the interaction uncertainty
in these zero-sum games, we quantify suboptimality via exploitabil-
ity, which we define to be how much utility an opponent is able
to take away, should they know the produced policy exactly. This
exploitability over the course of solving is given in Fig. 2.

6 CONCLUSION
This paper introduces a novel approach to solving POSGs by inte-
grating imperfect information game methods with POMDP-based
distribution approximations. This enables low-exploitability solu-
tions in continuous state spaces and large observation spaces. While
our method improves scalability by reducing search complexity,
it remains intractable for large action spaces. Future work could
explore model-free deep reinforcement learning to further sparsify
CDIT sampling and generalize results. Additionally, while our ap-
proach lacks online replanning, extensions based on [14, 15] could
enable adaptive strategy refinement.
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