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ABSTRACT

We present the PACTL-XR planner for FOND planning, a planner

based on symbolic model checking and 𝛼-CTL logic. The experi-

ments show that our planner can efficiently find policies for complex

planning goals, such extended reachability goals, and outperform

the results of state-of-the-art planners in some domains.
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1 INTRODUCTION

Automated planning is a long-standing field of AI that relies on a

high-level description language to define the agent’s planning task

and reason over such definition to automatically generate a plan.

A Fully Observable Non-Deterministic (FOND) planning problem

assumes uncertainty over the action effects. The objective is to

automatically synthesize a policy, a mapping between states and

actions, that can lead the agent toward the goal, possibly with a

loop from which the agent can eventually exit. In a real scenario the

agent can either reach the goal or a dead-end, i.e. a state from which

the agent can no longer achieve its goal. An R-Goal is a simple
reachability goal specified by a formula that must be satisfied in

a set 𝐺 of terminal states. A more complex goal is an XR-Goal,

extended reachability goal, that specifies an extra property which

must hold in all states along the path to 𝑠𝑔 ∈ 𝐺 .
In this work, we build upon a previously proposed FOND planner,

based on temporal logic, to design a new FOND planner called

PACTL-XR, which can reason about temporally extended goals

and is based on model checking and 𝛼-CTL logic, a branching

time temporal logical that considers actions in its semantics. We

also implemented a symbolic version called PACTL-XR-Sym. The
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experiments show that our planner can efficiently find policies for

complex planning goals, such XR-Goal. We also show that when

solving an XR-Goal that includes knowledge about dead-ends, we

can simplify the strong-cyclic solution and outperform the results

of state-of-the-art FOND planners in some domains.

2 FOND PLANNING FOUNDATION

A planning domain describes the environment dynamics and a task

defines the initial state and the goal. Formally, a FOND planning
domain is a tuple 𝒟 = ∐︀𝒮,ℒ,𝒯 ̃︀ over a set of propositional atoms

P and a set of actions A, such that: 𝒮 is a finite set of states; ℒ ∶
𝒮 ↦ 2

P
is a state labeling function; and 𝒯 ∶ 𝒮 ×A → 2

𝒮
is a non-

deterministic state transition function such that, given a state 𝑠 ∈ 𝑆
and an action 𝑎 ∈ A, 𝒯 returns a set of possible next states.

A FOND planning task is a tuple 𝒫 = ∐︀𝒟, 𝑠0,𝜑̃︀, where 𝒟 is the

planning domain, 𝑠0 ∈ 𝒮 is the initial state and 𝜑 is a logical goal

formula. For an R-Goal, 𝜑 is a propositional formula that must be

satisfied in a set of goal states𝐺 , i.e. 𝑠𝑔 ⊧ 𝜑 if 𝑠𝑔 ∈ 𝐺 . For an XR-Goal,

𝜑 is given by a pair of logical formulae i.e. 𝜑 = (𝜑1, 𝜑2), where 𝜑2

defines the property that must be satisfied in the set of goal states,

and 𝜑1 defines the property that must hold in all states visited

along the path to 𝑠𝑔 . We call 𝜑2 the target-goal and 𝜑1 the path-goal.
Although 𝜑1 can be any temporal formula, here we assume it is

a propositional formula. Note that if 𝜑1 = 𝑇𝑟𝑢𝑒 , the XR-Goal is

equivalent to an R-Goal, i.e., 𝜑 = (𝑇𝑟𝑢𝑒 , 𝜑2). A terminal state is a

state with no applicable actions or where the only applicable action

is a self-loop action, which can be a goal state or a dead-end state.

One can formally specify which type of policy quality best suits

the agent [4]. Considering an R-Goal task, by following a weak
policy, the agent can eventually reach the target-goal, but since this

is not guaranteed, the agent may reach a dead-end state. With a

strong policy, the agent should always reach the target-goal, despite

non-determinism. Finally, with a strong-cyclic policy, the agent

should always achieve the target-goal, under the fairness assumption
the execution will eventually exit all existing cycles.

The 𝛼-CTL Logic. 𝛼-CTL [8] is a branching time temporal logic

whose semantics is defined over transition-labeled Kripke struc-

tures. The formulae of 𝛼-CTL are composed by atomic propositions,

logical connectives (¬, ∧ and ∨), path quantifiers (∃ and ∀), and the
following temporal operators: ⊙ (next), ⊡ (invariantly),⟐ (finally)
and D (until) [8]. Intuitively, the 𝛼-CTL formula ∀⊙ 𝜑 holds on a

state 𝑠 ∈ 𝒟 if and only if there exists an action 𝛼 , whose execution

in 𝑠 necessarily leads to an immediate successor 𝑠
′
satisfying 𝜑 . The

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2443

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


modality ⊙ represents the set of 𝛼-successors of 𝑠 , for some particu-
lar action 𝛼 , and the quantifier ∀ requires that every state in this set

can satisfy 𝜑 . The semantics of other modal operators are derived

from the semantics of the operators ∃⊙𝜑 and∀⊙𝜑 , using minimum

and maximum fixed-point operations. The formal definition of the

𝛼-CTL’s semantics is based on the concept of preimage.

Definition 1 (Weak Preimage in 𝛼-CTL with transitions).

Let 𝑋 ⊆ 𝒮 be a set of states. The weak preimage of 𝑋 is the set
{(𝑠, 𝑎) ∶ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 and 𝒯 (𝑠, 𝑎) ∩𝑋 ≠ ∅}.

Definition 2 (Strong Preimage in 𝛼-CTL with transi-

tions). Let 𝑋 ⊆ 𝒮 be a set of states. The strong preimage of 𝑋 is the
set {(𝑠, 𝑎) ∶ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 and ∅ ⇑= 𝒯 (𝑠, 𝑎) ⊆ 𝑋}.

Given a FOND planning problem 𝒫 = ∐︀𝒟, 𝑠0, 𝜑̃︀, where 𝜑 is an

XR-Goal, we can express in 𝛼-CTL a new complex goal, called 𝜑 ,

that includes the desired policy quality as follows: 𝜑 = ∃(𝜑1 D 𝜑2)
to specify aweak policy; 𝜑 = ∀(𝜑1D𝜑2) to specify a strong policy;
and 𝜑 = ∀ ⊡ ∃(𝜑1 D 𝜑2) for strong-cyclic policy.

3 PACTL-XR PLANNER

Given a planning problem𝒫 = ∐︀𝒟, 𝑠0,𝜑̃︀, PACTL-XR has algorithms

for each of the policy types and XR-Goal.

Strong policy for XR-Goal. To find a strong policy we first com-

pute the set of states𝐺1 that satisfies 𝜑1 and the set of states𝐺2 that

satisfies 𝜑2 (target-goal state set). Then, the submodel defined by

𝐺2 is expanded through strong preimage (Def. 2) operations until

reaching a fixed point. At each preimage step, state-action pairs

that are not in 𝐺1 are pruned. If the expanded submodel contains

the initial state 𝑠0, then a strong policy can be extracted from it.

Weak policy for XR-Goal. Similar to Strong Policy but it uses the

weak preimage operation (Def. 1) to compute a weak submodel.

Strong-cyclic policy for XR-Goal. This algorithm starts by com-

puting the sets 𝐺1 and 𝐺2. Then, it computes a submodel by alter-

nating between two Phases: 1) Generation of a weak submodel𝑀1

by the preimage computation from 𝐺2 that intersects 𝐺1; and 2) A

new model𝑀2 is computed as a set of state-action pairs that neces-

sarily reaches some state in𝑀1 (the removed states are dead-ends).

To synthesize𝑀2, the algorithm applies strong preimage operations

until reaching a fixed point. These two phases alternate until the

algorithm reaches a fixed point. It is important to highlight that

once Phase 2 is computed, we return to Phase 1 to compute the

preimage ignoring the eliminated state-action pairs.

Strong-cyclic policy for XR-Goal: a simplified version. Com-

puting a strong-cyclic policy for an XR-Goal is the most costy

algorithm since it involves two phases. Thus, if the path goal 𝜑1 is

a condition representing knowledge about dead-ends, the strong-

cyclic policy algorithm can be simplified by removing state-action

pairs that leads to states that do not satisfy 𝜑1 in the first Phase,

eliminating the need for the second Phase of the algorithm.

The complexity of computing a fixed point is 𝑂(⋃︀𝒮 ⋃︀). Note that
the weak, strong, and simplified strong-cyclic policies have one

fixed point, while the strong-cyclic policy requires at least three.

PACTL-XR-Sym: symbolic planning. We implemented a sym-

bolic version of the PACTL-XR planner using Binary Decision Dia-

grams (BDDs) [2]. This approach consists of representing sets of

states and actions using Quantified Boolean Formulae (QBF) logic

[3] (formulae 𝜉(.)) which allows preimage operations to be per-

formed on sets of states rather than on individual state. The symbol

∃ is a quantifier of QBF logic, where ∃𝑥𝜑 ≡ 𝜑(︀0⇑𝑥⌋︀ ∨ 𝜑(︀1⇑𝑥⌋︀.
In our symbolic version, a state 𝑠 is represented by the formula:

𝜉(𝑠) = ⋀𝑝 ∈ℒ(𝑠) 𝑝 ∧ ⋀𝑞 ∈P∖ℒ(𝑠) ¬𝑞. A set of states 𝑋 ⊆ 𝒮 can be

represented by a disjunction of every state 𝑠 ∈ 𝑋 . A precondition

of an action 𝑎, denoted by 𝑝𝑟𝑒𝑐(𝑎), is given by a conjunction of

∀𝑝 ∈ 𝑝𝑟𝑒𝑐(𝑎). The effects representing the changes in 𝑠 after the

execution of 𝑎, are respectively represented in QBF as following:

𝜉(eff(𝑎, 𝑒𝑖)) = (⋀𝑞 ∈ eff+(𝑎,𝑒𝑖) 𝑞 ∧ ⋀𝑟 ∈ eff−(𝑎,𝑒𝑖) ¬𝑟), 𝑒𝑖 ∈ eff(𝑎) .

Definition 3 (Symbolic Weak Regression). The weak regres-
sion of a set of states 𝑋 by a non-deterministic action 𝑎, computes the
set of states from which a state in 𝑋 is reached by some effect of 𝑎, i.e.:
𝜉(𝑝𝑟𝑒𝑐(𝑎)) ∧ (⋁𝑒𝑖∈{1...𝑛} ∃changes(𝑎, 𝑒𝑖).(𝜉(eff(𝑎, 𝑒𝑖))∧ 𝜉(𝑋))).

Definition 4 (Symbolic Strong Regression). The strong re-
gression of a set of states 𝑋 computes the states from which all the
non-deterministic effects of 𝑎 reach a state in 𝑋 , i.e.: 𝜉(𝑝𝑟𝑒𝑐(𝑎)) ∧
(⋀𝑒𝑖∈{1...𝑛} ∃changes(𝑎, 𝑒𝑖).(𝜉(eff(𝑎, 𝑒𝑖)) ∧ 𝜉(𝑋))).

4 EMPIRICAL ANALYSIS

Domain

total score % Solve

PRP PR2 PACTL-XR-Sym PRP PR2 PACTL-XR-Sym

R-Goal R-Goal R-Goal XR-Goal R-Goal R-Goal R-Goal XR-Goal

Gripper 10.51 15 13.58 14.57 100 100 100 100

Triangle 10 10 9.92 9.99 100 100 100 100

Island 16.69 30 27.46 28.97 66.66 100 100 100

Travel 10 10 9.93 9.99 100 100 100 100

Table 1: Statistics to find strong-cyclic policies; higher total scores

means better performance; %solve indicates the planner’s coverage.

We run experiments to find strong-cyclic policies for (i) R-Goal

tasks and (ii) XR-Goal tasks, with 𝜑1 formula containing knowledge

about dead-ends. We compare the results with PRP [7] and PR2 [6]

only for R-Goal tasks, since they cannot deal with XR-Goal tasks,

even when knowledge about dead-ends is given. We analized four

benchmark planning domains: Gripper (IPC), Triangle-Tire (IPC),

Island [5] and Traveling (a variation of Triangle-Tire).

Table 1 shows the total score and the percentage of instances

solved (normalized coverage) by the planners for each analyzed

domain. The task-score is 1 if a task is solved within 1 second, 0 if

unsolved, and 1−log(𝑇 )⇑ log(MAXTIME) for 1 ≤ 𝑡𝑖𝑚𝑒 ≤MAXTIME

(we set MAXTIME to 1800 seconds). The task-score rewards plan-

ners for being faster. The total score is the sum of all task-scores in

a domain. With the exception of PRP, which couldn’t solve all the

Island domain tasks, all planners solved all the tasks. PR2 achieved

the best total score results. For the Gripper and Island domains,

PACTL-XR-Sym achieved a score close to PR2 (either for R-Goal

and XR-Goal tasks) and outperformed PRP. In the TriangleTire

and Travelling domains, PACTL-XR-Sym scored similarly to other

planners. PACTL-XR-Sym performed better when solving XR-Goal

tasks in the same domain; this is due to the simplified version of

the algorithm. Finally, our experiments show that PACTL-XR-Sym

delivers competitive results when compared to the other planners.
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