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ABSTRACT
We study hedonic games with common ranking property (HGCRP),

where all members of a coalition receive the same utility. We prove

the existence of partitions that are both strong individually stable

(SIS) and Pareto optimal (PO), as well as partitions that are contrac-

tually Nash stable (CNS) and PO. Moreover, we show that an SIS

partition can be found in polynomial time. We introduce a subclass

of HGCRP with submodular joint utility functions and establish

that its stability and efficiency properties align with those of gen-

eral HGCRP. Finally, we show that the core price of anarchy and

stability in submodular HGCRP are both 𝑛, where 𝑛 is the number

of agents.
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1 INTRODUCTION
Hedonic games provide a framework for coalition formation, where

each agent’s utility depends only on their coalition [19]. They nat-

urally model various multi-agent system problems [5], including

coordination, group activity selection [16], and task allocation [25].

A key subclass of hedonic games, HGCRP, ensures that all agents

in a coalition receive the same utility. Farrell and Scotchmer [20]

established the existence of core stable (CS) partitions in HGCRP.

This result is later extended by Banerjee et al. [7] to hedonic games

with the top coalition property. Dimitrov [18] introduced semistrict

core stability, proving its equivalence to core stability in HGCRP.

Caskurlu and Kizilkaya [14] showed the existence of a CS, individ-

ually stable (IS), and PO partition in HGCRP.

We improve upon these results by showing that every HGCRP

instance has a partition that is both SIS and PO, and that an SIS

partition can be computed in polynomial time. Additionally, we

prove that a CNS and PO partition always exists, though finding

one remains NP-hard due to the intractability of computing a PO

partition [14].
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A notable HGCRP subclass is Hedonic Expertise Games (HEGs)

[15], which model coalition formation among agents with comple-

mentary qualities. The joint utility function in HEGs is monotone

and submodular, requiring a coalition size limit 𝜅; otherwise, the

grand coalition would be a perfect solution. Caskurlu et al. [15]

introduced monotone HGCRP and showed that its stability and effi-

ciency guarantees align with those of HEGs across various stability

and efficiency notions.

We introduce submodular HGCRP, where coalition utilities fol-

low the law of diminishing returns, a fundamental economic prin-

ciple [27]. This framework naturally models coalition formation in

networks, such as cut games on weighted graphs [2]. Submodular

HGCRP generalizes HEGs while eliminating the need for a coalition

size limit. We show that it satisfies the same stability and efficiency

guarantees as general HGCRP across various notions, though the

complexity of finding such partitions may differ. Additionally, we

establish that the core price of anarchy and stability in submodular

HGCRP are 𝑛, where 𝑛 is the number of agents.

Hedonic games typically require exponential space to represent

utility values for all coalitions, motivating concise representations.

The individually rational coalition lists (IRCL) representation stores

preferences only for individually rational coalitions [6], which suf-

fices for many solution concepts. We assume (submodular) HGCRP

instances are represented using IRCL. Although most instances still

need exponential space, IRCL representation helps prove hardness

results by enabling reductions to polynomial-space instances in the

number of agents.

HGCRP is the cooperative counterpart of the resource selection

games (RSGs), a restricted form of singleton congestion games [24].

In RSGs, agents are partitioned into groups such that each group of

agents utilizes from the same resource and receives identical utility

[21]. The existence and computation of equilibrium in RSGs under

various stipulations on coordinating agent strategies are studied

heavily in the literature (see [1], [12], [13], [11]).

Related models include group activity selection [16, 17], and

additively separable hedonic games [9] with fractional [3], online

[10, 22], and fixed-sized coalition variants [8, 26]. See references

for details.

2 GAME DEFINITION
An HGCRP instance is defined as a pair G = (𝑁,𝑈 ), where 𝑁
is a finite set of 𝑛 agents, and 𝑈 : 2

𝑁 \ ∅ → R+ is a non-negative

real-valued function that assigns a joint utility to each nonempty

subset of 𝑁 . For convenience, we define 𝑈 (∅) = 0.

An instance G is a submodular HGCRP if𝑈 satisfies submod-
ularity, meaning that for every 𝑋,𝑌 ⊆ 𝑁 with 𝑋 ⊆ 𝑌 and every

𝑥 ∈ 𝑁 \ 𝑌 , we have 𝑈 (𝑋 ∪ {𝑥}) −𝑈 (𝑋 ) ≥ 𝑈 (𝑌 ∪ {𝑥}) −𝑈 (𝑌 ).
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A solution to an HGCRP instance is a partition (or coalition
structure) 𝜋 of 𝑁 . The coalition containing an agent 𝑖 ∈ 𝑁 in

partition 𝜋 is denoted by 𝜋 (𝑖). All agents in the same coalition 𝑆 ∈ 𝜋

receive the same utility, equal to 𝑈 (𝑆). The utility of an individual

agent 𝑖 in partition 𝜋 is denoted as 𝑢𝑖 (𝜋), where 𝑢𝑖 (𝜋) = 𝑈 (𝜋 (𝑖)).

3 POSITIVE RESULTS
Caskurlu and Kizilkaya [14] proved that every HGCRP instance ad-

mits a partition that is CS, IS, and PO by constructing the following

potential function.

For a fixedHGCRP instanceG = (𝑁,𝑈 ), let𝜓 (𝜋) be the sequence
of the utilities of the agents in partition 𝜋 in non-increasing order.

Let ⊵ denote the binary relation “lexicographically greater than or

equal to” over the set of sequences of utilities of agents. If𝜓 (𝜋∗) ⊵
𝜓 (𝜋) for every partition 𝜋 , then 𝜋∗ is CS, IS, and PO [14].

Theorem 3.1 strengthen this result by proving the existence of a

partition that is both SIS and PO.

Theorem 3.1. Every HGCRP instance has a coalition structure
that is strong individually stable and Pareto optimal at the same time.

The proof of Theorem 3.1 uses the same potential function. We

show that any deviation violating SIS would contradict the func-

tion’s maximization, ensuring that an SIS and PO partition exists.

Finding such a partition is NP-hard, but Theorem 3.2 guarantees

that an SIS partition can be found efficiently.

Theorem 3.2. A strong individually stable partition of any given
HGCRP instance G = (𝑁,𝑈 ) can be found in polynomial time by a
simple greedy algorithm.

Theorem 3.3. Every HGCRP instance has a coalition structure
that is both contractually Nash stable and Pareto optimal.

The proof of Theorem 3.3 constructs a sequence of partitions,

starting from any initial partition, where each partition in the se-

quence either contractually Nash dominates or Pareto dominates

the previous one. Given the finite number of partitions, this pro-

cess must eventually reach a CNS and PO partition. Otherwise, it

would result in an infinite improving sequence, forming a cycle and

leading to a contradiction.

4 NEGATIVE RESULTS
HEGs are a special class of hedonic games with monotone and

submodular utility functions, limited to coalitions of size at most 𝜅 .

Any HEG instance can be transformed into an equivalent HGCRP

instance, extending the nonexistence results from HEGs [15] to

both submodular and general HGCRP, as stated in Theorem 4.1.

Theorem 4.1. The following statements are true:
• A submodular HGCRP (and thus, an HGCRP) instance may
not have a core stable and socially optimal partition.

• A submodular HGCRP (and thus, an HGCRP) instance may
not have an individually stable and socially optimal partition.

• A submodular HGCRP (and thus, an HGCRP) instance may
not have a strict core stable partition.

Theorem 4.2. A submodular HGCRP (and thus, an HGCRP) in-
stance may not have a contractually Nash stable and individually
stable partition.

Proof. LetG = (𝑁,𝑈 ) be a submodular HGCRP instance, where

𝑁 = {1, 2, 3} and𝑈 is defined as𝑈 ({1, 2}) = 3,𝑈 ({1}) = 𝑈 ({2}) =
2,𝑈 ({1, 2, 3}) = 𝑈 ({1, 3}) = 1, and𝑈 ({2, 3}) = 𝑈 ({3}) = 0.

Let 𝜋 be an IS partition. {1} ∉ 𝜋 , since agent 2 would deviate

by moving into coalition {1} to form {1, 2}. {2} ∉ 𝜋 , since agent 1

would deviate bymoving into coalition {2} to form {1, 2}. {1, 3} ∉ 𝜋 ,

since agent 1would deviate to form a singleton coalition. {2, 3} ∉ 𝜋 ,

since agent 2 would deviate to form a singleton coalition. {1, 2, 3} ∉
𝜋 , since either agent 1 or agent 2 would deviate to form a singleton

coalition. Thus, 𝜋 = {{1, 2}, {3}} is the unique IS solution. 𝜋 is not

CNS, since agent 3 strictly benefits from moving into {1, 2}. □

We now present a submodular HGCRP instance that we use as a

counterexample in the proofs of Theorem 4.3 and Theorem 4.4.

Example 1. Let G1 = (𝑁1,𝑈1) be a submodular HGCRP instance,

where 𝑁1 = {1, 2, 3}, and 𝑈1 is defined as follows: 𝑈1 ({3}) =

𝑈1 ({1, 3}) = 0,𝑈1 ({1}) = 𝑈1 ({2}) = 𝑈1 ({2, 3}) = 𝑈1 ({1, 2, 3}) = 1,

𝑈1 ({1, 2}) = 2.

Theorem 4.3. A submodular HGCRP (and thus, an HGCRP) in-
stance may not have a contractually Nash stable and socially optimal
(SO) partition.

Proof. The unique SO solution of G1 is 𝜋 = {{1, 2}, {3}}. 𝜋 is

not a CNS partition, since agent 3 strictly benefits from joining

{1, 2}. □

Theorem 4.4. A submodular HGCRP (and thus, an HGCRP) in-
stance may not have a contractually Nash stable and core stable
partition.

Proof. The unique CS solution of G1 is 𝜋 = {{1, 2}, {3}}. This is
because {1, 2} is the only coalition with maximum joint utility, and

thus has to be contained in any CS solution. However, 𝜋 is not a

CNS partition since agent 3 strictly benefits from joining {1, 2}. □

Finding a PO partition of an HGCRP instance is NP-hard [14].

We show this hardness holds even for submodular HGCRP (Corol-

lary 4.7), using Theorem 4.5.

Theorem 4.5 (Aziz et al. [4]). For any hedonic game class where
perfectness can be checked in polynomial time, the NP-hardness of
finding a perfect partition (if it exists) implies the NP-hardness of
computing a Pareto optimal partition.

Since perfectness in submodular HGCRP can be checked in poly-

nomial time, it suffices to prove the hardness of finding a perfect

partition. The proof of Theorem 4.6 follows via a polynomial-time

reduction from the Exact Cover by 3-Sets (X3C) problem [23].

Theorem 4.6. Finding a perfect partition (if it exists) for a sub-
modular HGCRP instance is NP-hard.

Thus, by Theorems 4.5 and 4.6, we obtain:

Corollary 4.7. Finding a Pareto optimal partition of a submodu-
lar HGCRP instance is NP-hard.

Theorem 4.8 establishes the core price of anarchy and the core

price of stability of submodular HGCRP.

Theorem 4.8. Both the core price of anarchy and the core price of
stability of submodular HGCRP are 𝑛.
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