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ABSTRACT
In intelligent transportation systems, effectively modeling and inter-
preting the complex interactions among autonomous agents, such
as vehicles and pedestrians, is crucial for traffic management and
safety. This paper introduces a novel generative traffic flow model
that employs a generative pretrained Transformer to capture multi-
agent interactions and detect anomalies in traffic patterns. We intro-
duce a two-stage tokenization process for set-structured traffic data,
efficiently encoding variable-sized agent states into fixed-length
sequences suitable for generative modeling. We demonstrate that
anomalies, which often indicate potential hazards or non-compliant
behaviors, can be identified as deviations from learned normal in-
teraction patterns among agents through a zero-shot detection
mechanism. Our experimental results in simulated urban settings
highlight the model’s capability to detect various types of traffic
anomalies with high accuracy. This work significantly advances
agent-based traffic modeling and underscores its potential for en-
hancing traffic safety and efficiency in multi-agent systems.
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1 INTRODUCTION
The increasing complexity of urban traffic systems necessitates ad-
vanced modeling techniques that account for the autonomous and
interactive nature of individual traffic participants. Each vehicle
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and pedestrian operates as an autonomous agent with its own objec-
tives, making decisions based on personal goals and environmental
perceptions. In multi-agent systems, the interactions among these
agents give rise to emergent traffic patterns, which are critical to
understand for effective traffic management and anomaly detec-
tion. Traditional traffic models often fall short in capturing these
complex agent interactions, as they typically rely on aggregated
data or simplified assumptions about agent behaviors [9].

We introduce a generative traffic flow model that incorporates
multi-agent interactions and allows capturing nuanced behaviors
and interaction that define urban traffic dynamics. Inspired from
recent advancements in generative modeling and large language
models (LLMs) in natural language processing (NLP), such as GPT
[1], we adapt the remarkable capabilities in capturing sequential
patterns and contexts from LLMs to model agent behaviors in traf-
fic systems. By framing traffic data as a sequential flow of agent
interactions, we leverage generative pre-training to learn normal
traffic patterns and subsequently identify anomalies as deviations
from these learned behaviors.

Figure 1: Two-stage tokenization process for traffic state rep-
resentation. Dotted lines represent training only process.

2 GENERATIVE TRAFFIC FLOWMODEL
The core architecture of our generative traffic flow model is built
upon the decoder-only Transformer model, which leverages the
self-attention mechanism to capture the interactions among the
tokens[10]. This architecture is well-suited for both the sequence
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modeling task and the set tokenization task. The following works
had been done to enable the implementation of the model.

Two-Stage Tokenization. The continuous and set-structured
nature of traffic data necessitates a more sophisticated tokenization
scheme, carried out in two stages: 1) Tokenizing the individual
elements of the input set into discrete tokens; and 2) Tokenizing
the entire set, where the elements have already been transformed
into discrete tokens.

In Stage 2, the tokenization process involves encoding the entire
set of elements, which have already been transformed into discrete
finite tokens in Stage 1. This stage turns the reconstruction task
into a classification problem, where the model predicts the tokens
of the input set. Consequently, the reconstruction loss becomes
the cross-entropy loss between the ground truth tokens and the
predicted tokens.

Set Encoder . The architecture of the set encoder mirrors that of
the traffic flow model but includes modifications to accommodate
set-structured data. The fixed-size output representation is achieved
by incorporating placeholder tokens P ∈ R𝐾 into the input set I,
forming an augmented set ¤I. The augmented set ¤I is then processed
by the Transformer model to produce the output tokens ¤H. Only the
last𝐾 tokens in ¤H (i.e. ¤H[−𝐾 :] ) are used as the output representation
of the set. The self-attention mechanism within the Transformer
allows each token, including the placeholder tokens, to attend to
all others in the set.

Surrogate Reconstruction. Given the variable size of the input
set, the encoder E is commissioned to encode a fixed number (𝐾)
of latent vectors from the input set I. To ensure the decoder D
can accurately reconstruct or query specific elements from this
fixed set of tokens, we employ a surrogate strategy that involves
randomly sampling a fixed number of elements from the input set
and from empty space during the training process. The encoder
is then trained to minimize the discrepancy between the original
input I and its reconstructed version, and maximize the accuracy
on recognition of presence of elements at any position.

3 EXPERIMENT
We evaluate the performance of the model with anomaly detec-
tion in traffic flow, which is the identification of atypical traffic
behaviors. Such anomalies may indicate potential accidents, unex-
pected congestion, or unlawful driving maneuvers. Previous meth-
ods have approached this challenge using image recognition tech-
niques [7, 12, 13] and statistical approaches [2, 11].

We collect a dataset of abnormal traffic scenarios by manually
introducing anomalies into the traffic environment in the CARLA
simulator[4], an open-source agent-based simulator proven suc-
cessful for dataset generation for autonomous driving research
[3, 5, 6]. These anomalies include sudden stops, illegal lane changes,
wrong-way driving, running red lights, speeding, etc. Data from
these scenarios provide a labeled dataset for training a linear clas-
sifier. The dataset comprises 25 distinct abnormal traffic samples,
and an equal number of normal traffic scenarios. In every traffic
sample, different modalities such as agent trajectories, states of
traffic signals and map data are recorded.

We evaluate the model using leave-one-out cross-validation
(LOOCV) to assess its performance rigorously while having small

Table 1: Anomaly detection results.

Timestep level Scenario level
Method AUPR-N AUPR-A AUROC F1 Avg-TPR

STGAE [11] 0.817 0.390 0.597 0.372 0.32
LaneGCN [8] 0.781 0.272 0.504 0.370 0.36
QCNet [14] 0.815 0.252 0.567 0.368 0.04

Ours 0.855 0.325 0.643 0.413 0.92

dataset. Each scenario is sequentially excluded from the training set
and used as the test set, while the remaining scenarios contribute
to training the linear classifier.

Embeddings are generated for each time step in the traffic scenar-
ios by the frozen flowmodel pretrained with a larger dataset outside
the 50 traffic samples. Only end-of-time-step token embeddings
are taken. A logistic regression classifier is then fitted on these
embeddings. Configured with L2 regularization with a strength of
𝐶 = 1, the training iterates up to 2000 times to ensure convergence
and accuracy in distinguishing normal from abnormal traffic states.

We evaluate the model’s performance using several metrics,
specifically, Scenario-level true positive rate (TPR) is used. 500 addi-
tional normal scenarios are generated as the negative class for this
test. With "abnormal" as the positive class, we have a false positive
rate of 0.05. The score of all the time steps in the normal/abnormal
scenarios are averaged to get the average score. Anomaly is deter-
mined by whether the score of the scenario drops below a threshold,
and then the TPR is determined by whether the abnormal scenario
is correctly classified. The average TPR across all LOOCV iterations
is reported.

Note that each validation iteration includes one abnormal and
one normal scenario. Within each scenario, there are variable-
length time steps. The scenario-level metric is calculated for every
scenario and averaged across all scenarios. In contrast, the time
step-level metrics are computed using the predictions from all time
steps across all test scenarios.

We compare our model against an array of state-of-the-art anom-
aly detection models, including STGAE [11], LaneGCN [8], and
QCNet [14]. STGAE and LaneGCN are graph-based models that
leverage graph neural networks to model traffic interactions, while
QCNet is a transformer-based model that takes advantage of the
attention mechanism. All three models are trained on the same
dataset to predict trajectories. Similarly, the final latent embed-
dings are used as input to a linear classifier for anomaly detection.
The results are summarized in Table 1, where our model outper-
forms others. Remarkably, our model achieves a scenario-level true
positive rate of 92%, significantly higher all other models.
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