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ABSTRACT
Fairness is essential for deploying artificial decision-making agents
in the real world. Existing work in sequential decision-making
ensures fairness among agents or objectives but struggles with
real-world problems that are both multi-agent and multi-objective.
Furthermore, research integrating fairness into Multi-Objective
Reinforcement Learning (MORL) is focused on ensuring fairness
over the objectives only on the average of several executions of
a policy, which is achived by optimizing the policy’s scalarized
expected return (SER). To achieve fairness over objectives during
each execution the expected scalarized return (ESR) of a policy
needs to be optimized instead. This paper presents an argument
on the necessity of using ESR in the context of fair multi-objective
decision-making and proposes the first mono-policy algorithm able
to learn efficient decentralized policies while ensuring fairness
across objectives under ESR.
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1 INTRODUCTION
Solving real-world sequential decision-making problems often re-
quires balancing multiple conflicting objectives while coordinating
several agents. However, existing reinforcement learning based
solutions typically simplify the problem to a single-agent or single-
objective setting, making them inadequate for multi-agent, multi-
objective scenarios. Furthermore, to be deployable, solutions must
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not only address these complexities but also guarantee ethical val-
ues such as fairness at every execution, not just on average across
multiple runs. For instance consider the problem where a fleet of
agents need to deliver a limited amount of resources to households
of different types (see Figure 1). The goal is to learn decentralized
policies that maximize delivery efficiency while ensuring that each
type of household receives the same proportion of the available
resources during each execution. To address this gap, this paper
explains why optimizing the Expected Scalarized Return (ESR) of
agents can be better suited for fair multi-objective decision-making,
and introduces a novel algorithm for the multi-agent case. Evalua-
tion results demonstrate that the algorithm balances efficiency and
fairness during each policy execution.

2 BACKGROUND AND NOTATIONS
The MO-DEC-POMDP framework models multi-objective coop-
erative multi-agent reinforcement learning problems. It extends
the DEC-POMDP model [6] and is a special case of the MO-POSG
framework [10].Supported by [5] we use the Nash Social Welfare
(NSW) function to balance fairness and efficiency. This scalarization
function can be applied in two ways within MORL [9]:
• Scalarized Expected Return (SER): Computes the policy
value by first averaging rewards over time and then applying
the scalarization function. Thus, the value 𝑉 𝜋

𝑢 of a policy 𝜋

under this criterion is given by:𝑉 𝜋
𝑢 = 𝑢

(
E
[∑∞

𝑖=0 𝛾
𝑡𝑟𝑖 | 𝜋, 𝑠0

] )
.

• Expected Scalarized Return (ESR): Applies the scalariza-
tion function to individual returns before averaging. The
value 𝑉 𝜋

𝑢 of a policy 𝜋 under ESR is therefore given by:
𝑉 𝜋
𝑢 = E

[
𝑢
(∑∞

𝑖=0 𝛾
𝑡𝑟𝑖

)
| 𝜋, 𝑠0

]
.

When the scalarization function is non-linear, these criteria yield
different optimal policies [3, 9, 10].

3 RELATEDWORK
Our approach solves Multi-Objective Multi-Agent Reinforcement
Learning (MOMARL) problems using a utility-based approach. This
section reviews existing solutions in the field.

Roijers et al. [8] proposed the Expected Utility Policy Gradient
(EUPG) algorithm, which learns an optimal policy under ESR with
a non-linear utility function. EUPG extends the policy gradient
method by conditioning the policy on both the accrued return and
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the state and including the accrued return in the computation of the
loss. EUPG was extended by [7] using an actor-critic method that
learns a multivariate distribution over returns. Extensions of the
Monte Carlo tree search algorithm were proposed by [2] to learn
policies under ESR. Hu et al. [4] introduced the first multipolicy
algorithm for cooperative MOMARL under SER. Current MOMARL
algorithms cannot solve cooperative tasks with known utilities,
and MORL solutions overlook ESR when considering fairness. This
paper addresses these limitations by proposing a decentralized
algorithm that ensures fairness and efficiency under ESR.

4 FAIRNESS WITH EXPECTED SCALARIZED
RETURN

This section demonstrates the need to differentiate between policies
ensuring fairness under SER and ESR. We show that algorithms
optimized for SER can lead to unfair policies, and demonstrate how
ESR optimization addresses this issue.
Example 1. Consider the MO-MDP [3] with initial state 𝑠0, actions
𝑎0, 𝑎1, and 𝑎2, and terminal states 𝑡1, 𝑡2, 𝑡3. The transition function
is given by Table 1 and the reward function by Table 2 with 𝛼, 𝜖 ∈
R∗+ and 𝛼 > 𝜖 . We compare deterministic policies 𝜋1 and 𝜋2, where
𝜋1 (𝑠0) = 𝜋2 (𝑠0) = 𝑎0, 𝜋1 (𝑠1) = 𝑎1, and 𝜋2 (𝑠1) = 𝑎2. Under SER, 𝜋2
is preferred (𝜋2 ≻ 𝜋1), but under ESR, 𝜋1 is preferred (𝜋1 ≻ 𝜋2).
We argue that 𝜋1 is the fairest policy in the example above. It

𝑠 𝑎 𝑠′ 𝑃𝑟

𝑠0 𝑎0 𝑠1 1
𝑠1 𝑎1 𝑡1 1
𝑠1 𝑎2 𝑡2 0.5
𝑠1 𝑎2 𝑡3 0.5

Table 1: Transition function
of the MO-MDP of example 1

𝑠 𝑎 𝑠′ 𝑟

𝑠0 𝑎0 𝑠1 (0, 𝛼)
𝑠1 𝑎1 𝑡1 (𝛼, 0)
𝑠1 𝑎2 𝑡2 (0, 𝛼)
𝑠1 𝑎2 𝑡3 (2𝛼, 𝜖 − 𝛼)

Table 2: Reward function of
the MO-MDP of example 1

achieves fairer returns during a single execution and remains fair on
average across multiple executions, while 𝜋2 only achieves fairness
on average. We also note that a fair policy optimized for SER can be
riskier[2] and the importance of conditioning the agent by the past
returns for ESR optimization. Moreover, in the MO-MDP example,
the returns from action 𝑎1 are Pareto-dominated by 𝑎2, but using
NSW under ESR prefers 𝜋1. This shows that NSW does not satisfy
Pareto optimality under ESR, unlike under SER [5]. We argue that
first-order stochastic dominance and its extension proposed by [1]
are more suitable dominance properties for ESR optimization.
Example 2. Consider the multi-objective matrix game in Table
3. We compare policy 𝜋1 that always selects joint action (𝑏, 𝑏),
with policy 𝜋2, selecting joint actions (𝑎, 𝑏) and (𝑏, 𝑎) with equal
probability. Under SER, 𝜋2 ≻ 𝜋1, while under ESR, 𝜋1 ≻ 𝜋2. This
difference shows that, in both stochastic and deterministic settings,
distinguishing between ESR and SER is crucial when the agents’
policies are stochastic and scalarization function is non-linear.

5 DECENTRALIZED EXPECTED UTILITY
POLICY GRADIENT(DEC-EUPG)

We propose a decentralized policy-gradient algorithm to learn fair
distributed policies under ESR. Inspired by [8], each agent applies

𝑎 𝑏

𝑎 (1, 1) (0, 11)
𝑏 (11, 0) (5, 5)

Table 3: MO matrix game
considered in Example 2

Figure 1: Environmentwith
3 agents and 3 objectives

EUPG independently, treating other agents as part of the environ-
ment. The policy of agent 𝑖 𝜋𝜃𝑖

𝑖
is conditioned on its observation

history ℎ𝑖𝑡 and the global accumulated return G−𝑡 =
∑𝑡
𝑘=0 𝛾

𝑘R𝑘 .
Policies update after each episode using the update rule given by
Equation 1,

𝜃𝑖 ← 𝜃𝑖 + 𝛼𝛾𝑡𝑢 (G−𝑡 + G+𝑡 )∇𝜃𝑖 ln𝜋𝜃𝑖 (𝑎
𝑖
𝑡 |ℎ𝑖𝑡 ,G−𝑡 ) (1)

where 𝑎𝑖𝑡 is the agent’s action and G+𝑡 its future reward. However,
a key limitation of this approach is reliance on global accumulated
returns, often unavailable during execution. To address this, we
propose a variant where, instead, the agent’s policy is conditionned
by its local accumulated return G𝑖−

𝑡 =
∑𝑡
𝑘=0 𝛾

𝑘R𝑖
𝑘
.

We evaluate our approach on the delivery task described in
Section 1. This task allows to test the validity and scalability of the
proposed algorithm. Since no existing algorithm solves such a task,
we compare our method to a centralized agent controlling all agents
and a decentralized mono-agent mono-objective approach which
takes a problem with 𝑛 objectives and 𝑛 agents and decomposes
into 𝑛 mono-objective mono-agent problems by assigning to each
agent a unique objective to optimize. To ensure a fair comparison
between our approach and these baselines, the EUPG algorithm
was used to train the centralized baseline and the policy gradient
algorithm was used to train the decomposition baseline.

Results show that Dec-EUPG solves cooperative MOMARL prob-
lems while ensuring fairness. The local-reward variant proved to
be more efficient than the global-reward variant while achieving
the same fairness. It makes our algorithms more practical and suit-
able for deployment in real-world applications eventhough this
approach is only feasible when global rewards can be transformed
into local ones. We argue that the proposed solutions are most
suited for applications where fairness needs to be guaranteed at
each execution such as ethical applications of MORL.

6 CONCLUSION
This paper highlights a flaw in existing fair MORL algorithms:
current approaches ensure fairness only over multiple policy exe-
cutions but fail to guarantee fairness across objectives for singlular
executions of the policy. To address this, we proposed Dec-EUPG, an
algorithm for solving cooperative multi-agent multi-objective tasks
while balancing fairness and efficiency. Experiments on delivery
tasks show it matches centralized fairness while learning decentral-
ized policies and outperforming decomposition-based approaches.
However, challenges remain, including sample efficiency, credit
assignment, and deployment when local rewards are infeasible.
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