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ABSTRACT
Methods for solving classification tasks often assume a data gener-
ating process with stable structure that remains fixed during both
training and inference. However, autonomous agents deployed in
real-world environments often perform classification in situations
where the data generating process is dynamic and the ontology
of classes is only partially known. Such tasks are known as open-
world classification (OWC).We present open-world mixture modeling
(OMM), a framework for OWC using Bayesian Gaussian mixture
models. With only slight modifications to the standard Bayesian
variational inference algorithm, we are able to detect and model
novel classes as they appear in a data stream, while maintaining
and updating the classes learned during training. Empirical eval-
uations reveal that the method reliably detects novel classes with
performance similar to a supervised classifier trained on labeled
samples of the novel classes.
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1 INTRODUCTION
Consider the problem of an autonomous robot operating in a remote
wilderness environment with the task of estimating the popula-
tions of large animal species in a given area. Each time the robot
captures an image of an animal, it attempts to accurately classify
the species to ensure accurate population estimates. A classifier
could be trained in advance using images of all the species expected
to be in the area, but what if the robot encounters an unfamiliar
species? Ideally, the classifier would identify the animal as novel
and not a member of any of the species seen during training. Ad-
ditionally, the ideal classifier would correctly identify any future
animals that belong to the novel species. Finally, the ideal classifier
would improve its model of the novel species as more examples are
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observed. Such an ideal classifier requires capabilities beyond those
of existing machine learning methods.

In this work we introduce open-world mixture modeling (OMM), a
framework for open-world classification (§2). We develop an agent
based on a Bayesian Gaussian mixture model with a flexible number
of components that growswith the complexity of the data. Empirical
evaluation on synthetic and real-world datasets shows that the
method is effective at identifying and modeling new components
(§3). Despite the simplicity of OMM, we are not aware of any prior
work that uses mixture models to address OWC.

2 AGENT DESIGN
Constructing an open-world mixture model (OMM) begins by train-
ing a Bayesian Gaussian mixture model in a supervised manner
using data that is representative of the known classes in the envi-
ronment.

When a batch of data arrives, the agent must determine if it
contains any samples from new classes that were not seen during
training. Many existing approaches to this task define boundaries
around known classes and set a threshold on how far a new sample
must be from an existing class boundary to be considered novel.
Although these methods are somewhat successful [4], the OMM
takes a different approach by modeling a candidate novel class and
then using the information gathered to identify novel samples.

The model cannot be certain which samples from the batch, if
any, belong to the novel class, so it initializes the candidate novel
component via empirical Bayes, using the mean and covariance
of the batch data inversely weighted by the likelihood of each
sample under the current model. This has the effect of up-weighting
samples that are least likely under the existing model, and therefore
most likely to be samples from a new class.

To refine its estimate of the parameters of a potential novel
class, the model uses Bayesian variational EM [1], including the
potential new component. The strength of the priors on the existing
components’ parameters are usually much higher than for the
potential new component, so the parameter values of non-novel
components are more stable during EM.

Then, OMM compares the effective number samples assigned to

the candidate component 𝑘 , 𝑁𝑘 =
𝑁∑
𝑛=1

𝑝 (𝑧𝑘 = 1|x𝑛), to a detection

threshold hyperparameter to determine if there is sufficient evi-
dence to update the model. This is an important difference between
OMM and many other existing approaches. OMM does not need to
define a strict border for each class or a minimum distance thresh-
old to qualify as a novel sample. Instead, the results of EM identify
which samples should be considered novel and then OMM canmake
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an application specific decision if the evidence is sufficient to update
the model. The ability to avoid additions of invalid novel classes
distinguishes OMM from typical non-parametric Bayesian cluster-
ing approaches [2], which assume that the number of components
always increases with the number of samples.

3 EXPERIMENTAL RESULTS
3.1 Novelty Detection
To analyze the agent’s ability to detect samples from novel classes,
we simulate a scenario where the agent has been trained on an
initial set of known classes and then observes a single batch of new
data that includes a varying number of 𝑁𝑛𝑜𝑣𝑒𝑙 samples from a novel
class.

For each value of 𝑁𝑛𝑜𝑣𝑒𝑙 we generate 10 unique class config-
urations by iterating through the classes in the MNIST dataset,
where each class takes a turn serving as the novel class and three
random classes are selected to be used as the non-novel classes [3].
The initial model is trained using 2000 samples from each of the
known classes, where the 28𝑥28 images are normalized, flattened
into vectors, and reduced to 100 dimensions using PCA. The agent
then observes a single batch of new data with an additional 500
samples from each of the known classes, and a varying number
of samples from the novel class in the range [50, 1000]. For each
component configuration we repeat the sampling process five times,
which varies the specific novel samples being detected, but not their
number. The novelty detection threshold hyperparameter, which
is the minimum number of novel samples to be considered a valid
detection, is set to 75.

Figure 1 (Top) shows the binary detection rate as a function of
the number of novel samples in the batch (green line). We also
show that the rate of false detections is low over the same com-
ponent configurations when no novel samples are present in the
batch (red line), which demonstrates the agent’s ability to avoid
false detections and refrain from introducing unnecessary model
components. To evaluate whether the agent accurately identifies
which samples should be modeled by the new model component,
we report the accuracy of the instantiated novel component (or-
ange), as well as the accuracy (purple) and F1-score (blue) for the
complete model using a held out test set. This reflects the accuracy
of the model immediately after the detection process, before any
additional parameter updates.

3.2 Novelty Adaptation
To evaluate the agent’s ability to adapt to novel classes in a data
stream, we create an idealized DGP consisting of a set of Gaussian
components with random parameters uniformly sampled from the
range [−100, 100], and a marginal probability distribution repre-
senting the prior probability of a sample being associated with
each component. Data is generated sequentially by first randomly
selecting a component according to the marginal distribution, and
then sampling from that component using the current parameters.
With each batch, there is a probability 𝑝new that a new component
will be added to the DGP, and the marginal component probabilities
re-normalized.

The agent begins with two non-novel classes consisting of 400
samples each. We then generate new data in batches, each with

𝑁𝑏𝑎𝑡𝑐ℎ = 1000 samples. For each sample we generate its 𝑥 value. For
each batch with probability 𝑝𝑛𝑒𝑤 = 0.25 we generate parameters
for a new Gaussian component and add it to the DGP. We set the
marginal probability of all components to be equal, and normalize
them accordingly. This ensures a reasonable chance of detection
on the first attempt while still making the problem challenging.
Finally, at each step we evaluate the OMM’s classification accuracy
by generating a test set consisting of 200 samples for each class in
the DGP, regardless of whether they were detected by the agent.

Figure 1 (bottom) shows the agent’s accuracy when classifying
samples on the current test set after each batch is processed. The
vertical lines indicate when a new component was added to the
DGP. We find that the OMM performs nearly as well as a Gaussian
mixture model trained in a supervised setting, where labels of all
“novel” classes were provided during training.
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Figure 1: (Top) Novelty detection performance on the MNIST
dataset as a function of the number of novel samples in the
batch. (Bottom) Accuracy after each batch of synthetic data
on a held out test set containing samples from all classes in
the stream.
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