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ABSTRACT
News outlets, surveyors, and other organizations often conduct

polls on social networks to gain insights into public opinion. Such

a poll is typically started by someone on a social network who

sends it to her friends. If a person participates in the poll, the

poll information gets published on her wall, which in turn enables

her friends to participate, and the process continues. Eventually, a

subset of the population participates in the poll, and the pollster

learns the outcome of that poll. We initiate the study of a new but

natural type of election control in such online elections.

We study how difficult/easy it is to sway the outcome of such

polls in one’s favor/against (aka constructive vs destructive) by any

malicious influencer who nudges/bribes people for seemingly harm-

less actions like non-participation. These questions are important

from the standpoint of studying the power of resistance of online

voting against malicious behavior.
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1 INTRODUCTION
Voting is arguably the most widely used tool when a set of people

needs to decide on one alternative/candidate [19, 24]. The study of

various election malpractices and their complexity are one of the

core research focuses in computational social choice [1, 4].

This work focuses on online voting where there is a social net-

work on the set of voters. A voter initiates an election (online poll

or survey); e.g., on a Facebook network, a voter can post a poll on

her wall that, when her friends see it, they participate in it. When

their friends participate in that poll, their friends will see it and can

participate in it. If everyone who sees the poll participates in it, then,

if the social network is connected, then everyone in the network

participates in it. However, this is rarely the case because some

people may not participate in the poll even after seeing it. Hence,
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only a connected subset of people, including the poll initiator, par-

ticipates in that poll. We study an important type of attack on such

elections: persuading some voters not to participate in the election,

thereby controlling the set of voters that eventually participate in

the election. We primarily focus on the objective of helping some

candidate win/lose the election under a complexity-theoretic lens.

2 RELATEDWORK
Bartholdi et al. [1] initiated the study of electoral control. The chair

may exercise control over the candidate set by removing up to 𝑘

candidates from the election or by inserting new candidates from

a list of spoiler candidates. Hemaspaandra et al. [17] later defined

a variant of the problem where the number of spoiler candidates

that might be added by the election controller has a bound 𝑘 . Many

voting rules, for example, Fallback and Bucklin [9], Copeland
𝛼
[12],

Normalized Range Voting [21], SP-AV voting [10] and Schulze Vot-

ing [22] are resistant to all types of constructive control. Bodlaender

[2] showed that intractable computational problems on graphs usu-

ally become tractable if the treewidth is bounded by a constant.

Slinko and White examined the class of social choice functions

that can be safely manipulable [26, 27]. Hazon and Elkind [16] and

Ianovski et al. [18] have looked into the complexity of safely manip-

ulating popular voting rules. Faliszewski et al. [11] have shown that

in a bribery problem, a briber, who can be an election controller,

can change the minimum number of preferences to make way for

a preferred candidate to win the election. Bredereck and Elkind [5]

analysed the computational complexity of bribery and control by

adding/deleting links between users on an online social network

and altering the order in which voters update their opinions. Goles

and Olivos [14] showed that a sequence of at most O(𝑛2) synchro-
nous updates, where 𝑛 is the number of voters, always converges

to a stable state. Frischknecht et al. [13] strengthened the tightness

of the stated result. Wilder and Vorobeychik [29] showed hardness,

inapproximability, and algorithmic results for constructive and de-

structive control. Opinion dynamics and social choice have been

extensively studied by [6, 15, 23, 25, 28].

3 PRELIMINARIES AND DEFINITIONS
We refer to the full version of our paper for all the details [8].

Problem Definition 1 (Constructive and Destructive Con-

trol over Network). We are given a set C = {𝑐1, . . . , 𝑐𝑚} of𝑚
candidates, a set V = {𝑣1, . . . , 𝑣𝑛} of 𝑛 voters, a voting function
𝜏 : V → C, an undirected graph G = (V, E) whose vertices are the
voters, a target candidate 𝑐 ∈ C of the controller, a voter 𝑥 ∈ V who
conducts the election, a cost function 𝜋 : V −→ R≥0, and a budget
B of the controller. We extend the definition of 𝜋 to subsets ofV , and
define the cost 𝜋 (K) of a subset K ⊆ V as

∑
𝑣∈K 𝜋 (𝑣). We say that
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a subsetW ⊆ V \ {𝑥} is “budget feasible” if ∑𝑣∈W 𝜋 (𝑣) ≤ B. For
a budget feasible setW, letHW be the set of nodes reachable from
𝑥 in G \W.

We consider the plurality voting rule in this paper. A candidate

𝑐 ∈ C is declared a winner of the election if 𝑐 ∈ argmax𝑐′∈C |{𝑣 ∈
V | 𝜏 (𝑣) = 𝑐′}|. If there is only one winner 𝑐 of an election, then

𝑐 is said to win the election uniquely. Constructive Control

over Network problem asks whether there exists a budget fea-

sible set W such that 𝑐 wins uniquely in the restricted election

(C,V, 𝜏) where only votes of HW are counted. In contrast, De-

structive Control over Network problem asks whether there

exists a budget feasible setW such that a candidate other than 𝑐

unambiguously wins in the restricted election (C,V, 𝜏) where only
votes of HW are counted. Both Constructive Control over

Network and Destructive Control over Network take tuple

(C,V, 𝜏,G, 𝑐, 𝑥, 𝜋,B) as generic input. We also consider the special

setting where the budget is infinite. In this setting, the cost function

𝜋 is irrelevant, and any subset W ⊆ V \ {𝑥} trivially satisfies the

budget constraint. We refer to the corresponding versions as Bud-

getless Constructive Control over Network and Budgetless

Destructive Control over Network. An instance of the bud-

getless versions is a tuple (C,V, 𝜏,G, 𝑐, 𝑥), where the members of

the tuple are as per Problem Definition 1. Observe that an efficient

algorithm A for Constructive Control over Network can be

used to design an efficient algorithm for Destructive Control

over Network as follows: examine each candidate 𝑐′ other than 𝑐
in turn, and decide whether 𝑐′ can be made a unique winner within

the given budget by invoking A. Regular Exact 3-cover, defined

below, is known to be NP-complete [20].

Definition 3.1 (Regular Exact 3-cover). For a positive integer ℓ ,
letU := {1, . . . , 3ℓ}. We are given𝑚 subsets 𝑆1, . . . , 𝑆𝑚 ofU, each of

cardinality 3 such that ∪𝑖∈[𝑚]𝑆𝑖 = U. Furthermore, each element

in U belongs to exactly two sets in the collection {𝑆1, . . . , 𝑆𝑚}.
Decide whether there exists a subset 𝐴 ⊆ [𝑚] of size ℓ such that

∪𝑖∈𝐴𝑆𝑖 = U. Note that if such a set 𝐴 exists, then the sets {𝑆𝑖 | 𝑖 ∈
𝐴} are pairwise disjoint. We denote an instance of Regular Exact

3-cover as (ℓ, 𝑆1, . . . , 𝑆𝑚).

3.1 Tree decomposition and treewidth
We refer to the full version of our paper for all the details [8]. Also

see [7] for more details.

4 OUR CONTRIBUTION
We study the computational complexity ofConstructive Control

over Network and Destructive Control over Network.

Our first result shows that Destructive Control over Net-

work admits a polynomial time algorithm for the special case where

the treewidth (see Section 3.1 for related definitions) of the graph

G is a constant.

Theorem 4.1. There exists an algorithm that, given an input
(C,V, 𝜏,G, 𝑐, 𝑥, 𝜋,B) of Destructive Control over Network

and a tree decomposition𝑇 of the graphG of width𝑤 , solvesDestruc-
tive Control over Network in time𝑤O(𝑤 ) · 𝑛O(𝑤 ) · poly(𝑛,𝑚).
In particular, Destructive Control over Network admits a poly-
nomial time algorithm when G is a tree.

How about Constructive Control over Network? As dis-

cussed in Section 3, Constructive Control over Network is

computationally at least as hard as Destructive Control over

Network (up to a factor of𝑚). Our next result obtains a polyno-

mial time algorithm for Constructive Control over Network

with an assumption of the treewidth of G being a constant as in

Theorem 4.1, and an additional assumption that the number of

candidates𝑚 is a constant.

Theorem 4.2. There exists an algorithm that, given an input
(C,V, 𝜏,G, 𝑐, 𝑥, 𝜋,B) of Constructive Control over Network

and a tree decomposition 𝑇 of the graph G of width 𝑤 , solves Con-
structive Control over Network in time 𝑤O(𝑤 ) · 𝑛O(𝑚𝑤 ) ·
poly(𝑛,𝑚). In particular, Constructive Control over Network

admits a polynomial time algorithm when G is a tree, and the number
of candidates𝑚 is a constant.

Theorem 4.1 and Theorem 4.2 assume that a tree decomposition

of low treewidth is given as a part of the input. However, this

assumption is not restrictive; it is known that given a graph G
with 𝑛 vertices it is possible to construct a tree decomposition of

G of width 𝔱𝔴(G) in time O(𝑓 (𝔱𝔴(G)) · 𝑛), where 𝑓 (·) is a quasi-
polynomially growing function [3, 7].

Are the assumptions in Theorem 4.1 and Theorem 4.2 necessary?

We answer this question in the affirmative by two hardness results.

The first one shows that Constructive Control over Network

is NP-complete even when the graph G is a tree (i.e. has treewidth

1) and the setting is budgetless.

Theorem 4.3. Budgetless Constructive Control over Net-

work is NP-complete even if the input graph G is a tree.

Our next result shows that both the problems are NP-complete

even in the special case where there are two candidates and the

setting is budgetless.

Theorem 4.4. Budgetless Constructive Control over Net-

work and Budgetless Destructive Control over Network are
NP-complete even for the special case where there are two candidates
(i.e.𝑚 = 2).

Observe that for𝑚 = 2 the two problems are equivalent in the fol-

lowing sense. Let C = {0, 1}. For each 𝑏 ∈ C, (C,V, 𝜏,G, 𝑏, 𝑥, 𝜋,B)
is a YES instance of Constructive Control over Network if and
only if (C,V, 𝜏,G, 1−𝑏, 𝑥, 𝜋,B) is a YES instance of Destructive
Control over Network. Thus, in order to prove Theorem 4.4 it

suffices to prove the NP-hardness of Constructive Control over

Network for𝑚 = 2 in the budgetless setting.

Our hardness results presented in Theorem 4.3 and Theorem 4.4

thus complement our algorithmic results presented in Theorem 4.1

and Theorem 4.2, and establish the unavoidability of the assump-

tions made in them. This paper presents a comprehensive study of

the computational complexity of Constructive Control over

Network and Destructive Control over Network.
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