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ABSTRACT
In this paper, we introduce SYMPLEX (Symbolic Policy Learning
from Experts/Exploration), an interactive framework that learns
complex hierarchies of behavioral norms as interpretable logical
constraints through a combination of autonomous exploration and
expert imitation. The approach ensures that learned constraints
are interpretable for human oversight, generalizable for transfer to
similar environments, and defeasible - enabling adaptation to novel
behaviors and facilitating the learning of exceptions in dynamic
domains. We demonstrate the utility of our approach in a traffic
simulation environment using a neuro-symbolic implementation
of SYMPLEX that interleaves a Deep Q-Learning (DQL) component
for policy optimization through goal-directed domain exploration,
with interactive Inductive Logic Programming (ILP) for example-
based symbolic constraint generation. At each iteration, inferred
constraints are imposed on the DQL via penalty terms appended
to the reward function, allowing the system to form exceptions to
previously-learned constraints. We illustrate SYMPLEX’s ability to
identify concise human-readable constraints in complex environ-
ments, and evidence the efficacy of learning norms as defeasible
constraints. Additionally, we exemplify the benefits of using an
interactive rule induction system in expediting convergence to
accurate norms.
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1 INTRODUCTION
Understanding and adhering to social norms is a fundamental re-
quirement for social artificial agents operating in human-agent
collaborative systems [2]. However, such norms are inherently nu-
anced and often implicit, making it impractical to fully encode them
into an agent ab initio [11].
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An effective solution is Inverse Constrained Reinforcement Learn-
ing (ICRL), whereby goal-directed, exploration-driven learning is
guided using constraints derived from expert examples [4, 5, 7, 9, 12].
ICRL methods alternate between updating an imitation policy and
learning a constraint function from a set of expert demonstrations
until convergence on a policy capable of reproducing expert be-
haviour. [5, 12]. A key limitation of current methods is their lack
of interpretability, making it difficult to verify what an agent has
learned. Ensuring safety requires validating which behaviors are
extracted from demonstrations, but interpreting environmental
constraints from numerous state-action pairs is challenging. Fur-
thermore, learned constraints often struggle to transfer across en-
vironments since they are tied to specific state-action spaces.

Recent research highlights significant potential benefits in deriv-
ing social norms as human-readable symbolic constraints, general-
ized over individual states, using a logic-based machine learning
method known as Inductive Logic Programming (ILP) [1]. Defining
constraints as high-level, human-readable concepts enhances both
interpretability and transferability. For example, instead of prohibit-
ing specific off-road state-action pairs within a traffic environment,
an agent can learn a general rule that driving off-road is undesirable
[1]. This conceptual representation applies across diverse traffic
environments more effectively than rigid state-based constraints.

However, at present, existing methods operate on a limited scale
and are restricted to learning hard constraints that cannot be ad-
justed if updates to the set of expert trajectories elicit new, conflict-
ing constraints. Further, these methods are built for fully-automatic
deployment, and do not exploit interactive rule-induction meth-
ods that would further accelerate learning and reduce constraint
violations while providing evidential usability benefits [3, 8, 10].

To address these issues, we propose a novel method for Sym-
bolic Policy Learning from Examples/Exploration (SYMPLEX). As
in ICRL, SYMPLEX learns by alternating between policy optimiza-
tion and constraint generation. The policy optimizer is instantiated
as a deep Q learner and constraints enforced at each iteration via
a penalty term appended to the reward function. This enables op-
eration in complex environments and the learning of defeasible
social norms that can be selectively overridden when conflicting
constraints arise. When the symbolic constraint generator is in-
stantiated with an interactive ILP system, this enables interactive
generation of interpretable constraints that can be iteratively re-
fined with human input [10].

2 IMPLEMENTATION
SYMPLEX takes as input a set of expert trajectories 𝑻 and a nominal
(unconstrained) Markov Decision Process, and outputs a symbolic
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representation of learned norms in the form of a logical hypothesis
𝑯 . All state-action pairs which are covered by 𝑯 are considered as
invalid and comprise the set of constraints 𝑪 .

It utilizes two sub-modules to iteratively build 𝑯 , and subse-
quently, 𝑪 . One sub-module consists of a Deep Q Learner (DQL)
used to identify seed constraints - state action pairs deemed op-
timal according to the DQL’s current learned policy, but are not
contained within the set of expert trajectories. This is added to the
set of overall constraints 𝑪 . ACUITY, an ILP system forming the
partner induction module, generalizes this updated constraint set
by inducing a hypothesis intended to represent the identified social
norms [10]. All state-action pairs that satisfy this learned hypothe-
sis are added to the overall set of constraints 𝑪 . 𝑪 is then used to
update the agent’s nominal policy by applying graded penalties to
the DQL’s reward function, with newly learned constraints receiv-
ing larger associated penalties. A new seed constraint can then be
inferred with this updated policy and the process repeats as 𝑪 is
iteratively augmented. Throughout this, end users can optionally
exploit ACUITY’s interactive mechanisms such as hypothesis shap-
ing and example titration to avoid redundant clauses or to identify
potential exceptions as new hypotheses are induced.

3 CASE STUDY: TRAFFIC SIMULATION
3.1 Environment
We validate the SYMPLEX method with a case study using the
SUMO Traffic environment [6]. Within this environment, the be-
haviour of learning agents is constrained by accepted norms and
rules of the road, namely: a) stay on the road, and b) only move
into a junction on a green light.

3.2 Defeasible Constraint Inference
SYMPLEX successfully learns a logical program 𝑯 that ensures it
reaches defined goals while adhering to the environmental norms.
A selected subset of the learned program is presented below, where
𝐴 denotes an arbitrary state-action pair.

invalid(𝐴) :- at(𝐴, 𝐵,𝐶), go(𝐴, 𝐷),
move(𝐵,𝐶, 𝐷, 𝐸, 𝐹 ),¬onRoad(𝐸, 𝐹 ).

invalid(𝐴) :- at(𝐴, 𝐵,𝐶), go(𝐴, 𝐷),
atJunction(𝐵,𝐶, 𝐷), traffic_light(𝐴, 𝑟𝑒𝑑). (1)

As SYMPLEX learns this first constraint ("stay on the road"), it
is enforced over the policy learner via coefficients within the re-
ward function. As a result, learned constraints can be corrected
and overridden if new contrastive constraints are introduced by
the induction step. To demonstrate, we introduce an augmented set
of expert trajectories 𝑇+ which represents a larger 10𝑥10 grid. Cru-
cially, the northern section of this enlarged environment contains
an obstacle on the road; here, we envision this as a pothole that the
agent should avoid (see Figure 1). To navigate this, a learning agent
would have to violate the learned 𝑜𝑛𝑅𝑜𝑎𝑑 constraint and leave the
road, bypass the obstacle, and return to continue its journey to the
goal.

Owing to SYMPLEX’s graded penalization factors, the system
can acquire a constraint that prevents the agent from entering the

Figure 1: Pothole Scenario: the arrow depicts the agent’s (car)
trajectory to the goal. Left: an agent following the initial ’Stay
on road’ constraint. Middle: Non-defeasible hard constraints
prohibit navigation around an obstacle (red square). Right:
SYMPLEX’s defeasible constraints allow a policy to override
the previous constraint and proceed to the goal.

Pothole state without necessitating a complete re-initialization. (see
Clause 2). The action of leaving the road remains permissible, all-be-
it with a penalty, so the agent learns to violate the past constraint
to continue on to its goal.

invalid(𝐴) :- at(𝐴, 𝐵,𝐶),
beforePothole(𝐵,𝐶, 𝐷), not(go(𝐴, 𝐷)),

(2)

3.3 Interactive Rule Induction
While SYMPLEX can be effective as a fully automatic system, there
is evident benefits of exploiting ACUITY’s interactive mechanisms
to avoid redundant clauses or to identify potential exceptions. For
example, a human-in-the-loop may intervene at the point at which
the initial "stay on the road" clause was induced, and encourage
ACUITY to search for an alternative rule which considers the "pot-
hole" exception. This could be done through the titration of a poten-
tially informative example taken from a wider dataset of unlabeled
state-action pairs [10]. Alternatively, a user may rebut ACUITY’s
proposed clause and point it towards relevant sections of the hy-
pothesis space that would elucidate a useful exception (e.g., clauses
containing the 𝑏𝑒 𝑓 𝑜𝑟𝑒𝑃𝑜𝑡ℎ𝑜𝑙𝑒/3 predicate). In this way, ACUITY’s
interactive mechanisms can allow for an effective user-agent col-
laboration that accelerates the identification of reliable constraints.

4 CONCLUSION
In sum, we present a method for learning social norms in the form
of high-level symbolic constraints by combining autonomous ex-
ploration with expert imitation. To accommodate exceptions to
previously learned constraints, the system learns defeasible con-
straints through interactions with the agent’s reward function,
which can be shaped and refined by a human in the loop. As a
result, the method generates norm exception hierarchies that are
both interpretable and verifiable, with the necessary scalability to
handle non-trivial examples.
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