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ABSTRACT
We consider the problem setting in which multiple autonomous
agents must cooperatively navigate and perform tasks in an un-
known, communication-constrained environment. Traditionalmulti-
agent reinforcement learning (MARL) approaches assume synchro-
nous communications and perform poorly in such environments.
We propose AsynCoMARL, an asynchronous MARL approach that
uses graph transformers to learn communication protocols from
dynamic graphs. AsynCoMARL can accommodate infrequent and
asynchronous communications between agents, with edges of the
graph only forming when agents communicate with each other.
We show that AsynCoMARL achieves similar success and collision
rates as leading baselines, despite 26% fewer messages being passed
between agents.
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1 INTRODUCTION
Communication is crucial in cooperative multi-agent systems with
partial observability, as it enables a better understanding of the
environment and improves coordination. In extreme environments
such as those underwater or in space, the frequency of communica-
tion between agents is often limited [7, 8]. For example, a satellite
may not be able to reliably receive and react to messages from
other satellites synchronously due to limited onboard power and
communication delays. In these scenarios, agents aim to establish a
communication protocol that allows them to operate independently
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while still receiving sufficient information to effectively coordinate
with nearby agents.

Multi-agent reinforcement learning (MARL) has emerged as a
popular approach for addressing cooperative navigation challenges
involving multiple agents. The classical MARL framework is syn-
chronous, with agents acting and communicating instantly, fre-
quently, and simultaneously, often broadcasting their states to all
others. As a result, traditional MARL algorithms are poorly suited
to asynchronous settings where agents operate on independent
time scales and cannot frequently communicate with one another.
We propose AsynCoMARL, a graph transformer-based communi-
cation protocol for MARL that relies on dynamic graphs to capture
asynchronous and infrequent communications between agents. We
empirically evaluate AsynCoMARL on two MARL benchmarks
(Cooperative Navigation [2], and Rover-Tower [4]) and show that
our method can achieve superior performance while using less
communication.

2 METHODOLOGY
Figure 1 provides a high-level summary of our algorithm. We define
a time scale 𝜏 to account for the specific actions each agent has
taken at different time steps. In Figure 1 panel (b), all three agents
take their first action at the same 𝑡 , resulting in the same time refer-
ence point for 𝜏1. We only include those steps where the agents are
taking an action. To improve the generalizability of our algorithm to
different periods of time between actions 𝜏1 and 𝜏2, during training,
we randomly generate the period between different actions. This
randomly generated period is chosen from a uniform distribution,
with different intervals used for training and testing to ensure di-
versity. For each initiation, the delay is selected randomly from this
distribution and remains constant throughout the episode rather
than changing after specific actions. This decision avoids creating
an incorrect association between certain movement actions and
specific delays, as we consider such realism beyond the scope of this
work and more applicable to domain-specific problems. Following
panel (c) of Figure 1, we rely on a graph transformer to encode
messages and characterize relationships between different entities
in the environment. Algorithmic details and more experiments can
be found in [1].
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Figure 1: Overview of AsynCoMARL: (a) Agents acting simultaneously at 𝑡 receive a shared reward. Arrows show recent graph
observations. (b) Active agents map to nodes on a dynamic graph, communicating with nearby agents. (c) Agent 𝑖’s observation
merges with graph transformer outputs for the actor network, while the critic evaluates its action using the full graph.

Algorithm 𝑓comm ↓ 𝑇 ↓ # col ↓ 𝑆% ↑
GCS [10] 1.0 0.36 0.34 100
asyncMAPPO [11] 0.21 0.10 0.86 100
Actor-Attention-Critic [4] 0.21 0.42 0.30 100
TransfQmix [3] 0.13 0.83 0.02 42
CACOM [6] 0.26 0.99 0.17 0
DGN [5] 0.20 0.96 0.12 0
AsynCoMARL 0.10 0.24 0.45 97

Table 1: Comparison of AsynCoMARL against other methods
in the Cooperative Navigation environment.

3 RESULTS
Cooperative Navigation: Table 1 compares the performance of
AsynCoMARL against the other baselines. The collision rate (# col)
should be judged in the context of success rate (𝑆%), as some policies
do notmove the agents from their initial positions.When evaluating
AsynCoMARL’s performance in the context of these other base-
lines, our method is able to achieve high success rates (𝑆%), efficient
episode completion rates (𝑇 ), and relatively low collision rates, de-
spite 26% fewermessages being passed between agents (𝑓𝑐𝑜𝑚𝑚). The
temporal graph formulation of our model, which inherently allows
communications to be masked to reduce communication overhead
during training, leads to a method capable of handling trade-offs
between communication frequency, success, and collision avoid-
ance. Both asyncMAPPO and Actor-Attention-Critic demonstrate
comparable performance in success and collision rates. Similar to
the design of AsynCoMARL, Actor-Attention-Critic is designed to
dynamically select which agents to focus on. This reduces 𝑓comm
and leads to improved success and collision rates. However, this
attention mechanism overlooks relationships between agents cap-
tured by the graph representation used in AsynCoMARL, leading
Actor-Attention-Critic to have a higher communication frequency
and episode completion rates.

Rover-Tower: Table 2 shows AsynCoMARL against the best-
performing baselines from the prior experiment. The reward func-
tion associated with this environment does not include any collision
penalty, so we do not include the # col metric. In this environment,
rovers must rely on encoded messages from their corresponding

Algorithm 𝑓comm ↓ 𝑇 ↓ 𝑆% ↑
Actor-Attention-Critic [4] 0.21 0.84 56%
AsyncMAPPO [11] 0.24 0.98 0%
TransfQmix [3] 0.40 0.98 0%
AsynCoMARL 0.14 0.55 50%

Table 2: Comparison against other methods in the Rover-
Tower environment.

tower to determine their action selection, whereas towers have
more advanced observation abilities. To account for these two
classes, Actor-Attention-Critic creates a separate network for the
rover class and the tower class, whereas AsynCoMARL does not.
Despite the fact that AsynCoMARL is using a singular network to
represent both the rovers and the towers, it still achieves a com-
parable success rate to the Actor-Attention-Critic. Additionally,
AsynCoMARLrelies on less communication and produces faster
episode completion rates than other baselines, suggesting that Asyn-
CoMARL is a more efficient, generalizable communication protocol
for this environment.

Discussion: In future research, we aim to exploremore advanced
communication protocol architectures that can model different
action-communication constraints common in real-world settings.
Additionally, we want to investigate the feasibility of integrating
additional mechanisms like control barrier functions to reduce the
overall number of collisions. ∗
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