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ABSTRACT
We explore solutions for fairly allocating indivisible items among
agents assigned weights representing their entitlements. Our fair-
ness goal is weighted-envy-freeness (WEF), where each agent
deems their allocated portion relative to their entitlement at least as
favorable as any other’s relative to their own. In many cases, achiev-
ing WEF necessitates monetary transfers, which can be modeled
as third-party subsidies. The goal is to attain WEF with bounded
subsidies.

Previous work in the unweighted setting of subsidies relied on
basic characterizations of EF that fail in the weighted settings. This
makes our new setting challenging and theoretically intriguing.
We present polynomial-time algorithms that compute WEF-able
allocations with an upper bound on the subsidy per agent in three
distinct additive valuation scenarios: (1) general, (2) identical, and
(3) binary. When all weights are equal, our bounds reduce to the
bounds derived in the literature for the unweighted setting.

The full version is available at [20].
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1 INTRODUCTION
The mathematical theory of fair item allocation among multiple
agents has practical applications in scenarios like inheritance and
partnership dissolutions. When agents have equal entitlements,
as in inheritance cases, each agent naturally expects their allot-
ment to be at least as good as others’. An allocation satisfying this
requirement is called envy-free (EF).

When the items available for allocation are indivisible, an EF
allocation might not exist. A solution often applied in practice is to
use money to compensate for the envy. In the recent literature, it
is common to assume that a hypothetical third-party is willing to
subsidize the process such that all agents receive a non-negative
amount, and ask what is the minimum amount of subsidy required
to attain envy-freeness.
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It is common to assume that the agents are quasilinear. This
means that their utility equals their total value for the items they
receive, plus the amount of money they receive (which may be
positive or negative).

The subsidy minimization problem was first studied by Halpern
and Shah [18]. They showed that, for any given allocation, there
exists a permutation of the bundles that is envy-freeable (EF-able),
that is, can be made envy-free with subsidies. The total required
subsidy is at most (𝑛−1)𝑚𝑉 , where𝑚 is the number of items, 𝑛 the
number of agents, and𝑉 the maximum item value for an agent, and
this bound is tight in the worst case. Brustle et al. [7] considered
the case in which the allocation is not given, but can be chosen.
They presented an algorithm that finds an envy-freeable allocation
through iterative maximum matching, requiring a total subsidy of
at most (𝑛 − 1)𝑉 , which is tight too.

This paper extends previous work by considering agents with
different entitlements, which we call weights. This extension is use-
ful in partnership dissolutions, where partners often hold varying
numbers of shares, entitling them to different proportions of the
asset. In such cases, each agent expects to receive at least the same
"value per share" as others. For example, if agent 𝑖 has twice the
entitlement of agent 𝑗 , 𝑖 expects a bundle worth at least twice as
much as 𝑗 ’s.

Formally, an allocation is called weighted envy-free (WEF) (see
e.g. Chakraborty et al. [9], Robertson and Webb [24], Zeng [37])
if for every two agents 𝑖 and 𝑗 , 1

𝑤𝑖
times the utility that 𝑖 assigns

to his own bundle is at least as high as 1
𝑤𝑗

times the utility that 𝑖
assigns to the bundle of 𝑗 , where𝑤𝑖 is 𝑖’s entitlement and𝑤 𝑗 is 𝑗 ’s
entitlement.

Now, we define weighted envy-freeability (WEF-ablity), the key
concept we propose, analogously to the unweighted case: an al-
location is WEF-able if it can be made WEF with subsides. More
precisely, an allocation is WEF-able if for every two agents 𝑖 and 𝑗 ,
1
𝑤𝑖

times the sum of the utility that 𝑖 assigns to his own bundle and
the subsidy he receives is at least as high as 1

𝑤𝑗
times the sum of the

utility that 𝑖 assigns to the bundle of 𝑗 and the subsidy 𝑗 receives.
Here, we assume quasi-linear utilities.

To illustrate the difficulty in this generalized setting, we show
that the results from Brustle et al. [7], Halpern and Shah [18] fail
when agents have different entitlements.

Example 1.1. There are two items 𝑜1, 𝑜2 and two agents 𝑖1, 𝑖2, with
weights𝑤1 = 1,𝑤2 = 10 and valuation functions


𝑜1 𝑜2

𝑖1 5 7
𝑖2 10 8
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We will show that, contrary to the result of Halpern and Shah [18],
there exists a division of items where no permutation satisfies WEF.

Consider the bundles𝐴1 = {𝑜1} and𝐴2 = {𝑜2}, where 𝑖1 receives
𝐴1 and 𝑖2 receives 𝐴2. Let 𝑠1 and 𝑠2 represent the subsidies for
𝑖1 and 𝑖2, respectively. The utility of 𝑖1 for their own bundle is
5 + 𝑠1, and for 𝑖2’s bundle, it is 7 + 𝑠2. To satisfy WEF, we need:
5+𝑠1
1 ≥ 7+𝑠2

10 , which implies 𝑠2 ≤ 43 + 10𝑠1. Similarly, for agent 𝑖2,
WEF requires: 8+𝑠2

10 ≥ 10+𝑠1
1 , which implies 𝑠2 ≥ 92 + 10𝑠1. These

two conditions are contradictory, so no subsidies can make this
allocation WEF. Next, consider the permutation where 𝑖1 receives
𝐴2 and 𝑖2 receives 𝐴1. In this case, WEF requires: 7+𝑠1

1 ≥ 5+𝑠2
10 ,

which implies 𝑠2 ≤ 65+10𝑠1, and for 𝑖2: 10+𝑠210 ≥ 8+𝑠1
1 , which implies

𝑠2 ≥ 70 + 10𝑠1. Again, these conditions are contradictory, proving
that no permutation of bundles satisfies WEF. This example also
shows that the Iterated Maximum Matching algorithm of Brustle
et al. [7] does not guaranteeWEF. The algorithm yields an allocation
where all agents receive the same number of items, but as shown,
no such allocation can be made WEF.

Of course, since the unweighted case is equivalent to theweighted
case where each weight 𝑤𝑖 = 1/𝑛, all negative results from the
unweighted setting extend to the weighted case. In particular, it
is NP-hard to compute the minimum subsidy required to achieve
(weighted) envy-freeness, even in the binary additive case (as shown
in [18, Corollary 1]). Thus, following previous work, we develop
polynomial-time algorithms that, while not necessarily optimal,
guarantee an upper bound on the total subsidy.

1.1 Related Work
Our work integrates two lines of research: fair allocation with
monetary transfers and fair allocation with different entitlements.
We survey each line separately in [20].

Fewworks address both entitlements and subsidies.Wu et al. [34]
presented a polynomial-time algorithm for computing a weighted
proportional allocation of chores among agents with additive valua-
tions, with total subsidy at most (𝑛−1)𝑉

2 .
In a subsequent work (Wu et al. [36]), they further improved this

bound to ( 𝑛3 − 1
6 )𝑉 . As far as we know, weighted envy-freeness

with subsides has not been studied yet. Our paper aims to fill this
gap.

1.2 Our Results
We derive bounds on the amount of subsidy required in order to
attain a WEF allocation, in several different settings. We assume,
without loss of generality, that the entitlements are ordered in
increasing order:𝑤1 ≤ 𝑤2 ≤ . . . ≤ 𝑤𝑛 . We denote𝑊 :=

∑𝑛
𝑖=1𝑤𝑖 .

First, we assume a given allocation. As shown in Example 1.1,
there are instances in which no rearrangement of bundles yields a
WEF-able allocation. We prove a necessary and sufficient condition
under which the allocation is WEF-able. We show that, when the
allocation is WEF-able, a total subsidy of (𝑊𝑤1

− 1)𝑚𝑉 is sufficient
to make it WEF, and prove that this bound is tight in the worst case.

This raises the question of whether a weighted-envy-free alloca-
tion with subsidy always exists? We answer this affirmatively. For
additive valuations and integer weights, we show an𝑚-independent

Table 1: Distinctions between outcomes established in prior
research, and those newly established in the present study,
highlighted in bold. All subsidy upper bounds are attainable
by polynomial-time algorithms.

Unweighted
Setup

Weighted Setup
General

Valuations
Identical
Valuations

Binary
Valuations

Character-
ization
of WEF

Allocation

(1) No
positive

cost cycles,
(2) USW
maximi-
zation [18]

No positive-cost cycles.
[20]

Permut-
ation of
a given

allocation,
that

maximizes
sum of
values

Always
EF-able
[18]

Not
necessarily
WEF-able

[20]

Always
WEF-able.

[20]

For non-
redundant
allocation:
Always
WEF-able

[20]

Total
subsidy
upper
bound

(𝑛 − 1)𝑉
[18]

𝑊 −𝑤1
gcd(w)𝑉

[20]
(𝑛 − 1)𝑉
[20]

𝑊
𝑤1

− 1
[20]

Subsidy
bound
for a
given

allocation

(𝑛 − 1)𝑚𝑉

[18]

(
𝑊
𝑤1

− 1
)
𝑚𝑉

[20]

Total
subsidy
lower
bound

(𝑛 − 1)𝑉
[18]

(
𝑊
𝑤1

− 1
)
𝑉

[20]
(𝑛 − 1)𝑉
[20]

𝑊
𝑤2

− 1
[20]

upper bound: 𝑊 −𝑤1
gcd(w)𝑉 , where gcd(w) is the greatest common divi-

sor of all weights — largest number 𝑑 such that𝑤𝑖/𝑑 is an integer
for all 𝑖 ∈ 𝑁 . Our algorithm extends Brustle et al. [7] algorithm,
which, in the unweighted setting, ensures a total subsidy of at most
(𝑛−1)𝑉 . For equal entitlements, normalizing weights to 1 preserves
the same bounds as in the unweighted case.

Following Halpern and Shah [18], we study not only the setting
of general additive valuations but also the settings where agents
have identical and binary additive valuations.

For identical additive valuations, we compute a WEF-able and
WEF(0, 1) allocation with total subsidy at most (𝑛 − 1)𝑉 , which
is tight even in the unweighted case. Interestingly, in this special
case (in contrast with the general case), the bound on the subsidy
does not depend on the weights. For binary-additive valuations, we
adapt the General Yankee Swap algorithm (Viswanathan and Zick
[30]) to compute a WEF-able and WEF(0, 1) allocation with total
subsidy at most 𝑊

𝑤1
− 1, reducing to 𝑛 − 1 for equal weight.

Our findings and contributions are briefly summarized in Table 1.

Remark 1.2. Practical fair allocation cases use budget-balanced
payments rather than subsidies. We use the subsidies terminology
for consistency with previous works.
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