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ABSTRACT
Contemporary machine learning faces key limitations, such as a
lack of integration with planning, incomprehensible structure, and
inability to learn continually. We present initial design for system,
Agential AI (AAI), that overcomes these issues. AAI’s core is a
learning method that models temporal dynamics with guarantees
of completeness, minimality, and continual learning. It integrates
this with a behavior algorithm that plans on a learned model and
encapsulates high-level behavior patterns. Preliminary experiments
on a simple environment show AAI’s effectiveness and potential.1
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1 INTRODUCTION
Machine learning currently relies on continuous approximations
of environmental relations through fixed architectures like neural
networks (NNs). While this has solved many challenges [7, 9, 15],
core limitations remain [3, 8, 10, 14], including the inability to
learn continually without destroying past knowledge or constrain-
ing assumptions like task boundaries [6, 12] or replay data [1],
incomprehensible structure [13], difficulty integrating learned in-
formation into deliberative behavior [2], and non-decomposability
of learned behaviors [11]. These limitations stem from relying on
fixed, unstructured models rather than learning the environment
in a structured manner. To address these, we introduce the early
design of a framework called Agential AI (AAI), composed of (1)
Modelleyen – a gradient-free structural learning mechanism that
enables continual learning without destructive adaptation, (2) a
planner that uses learnedmodels to deduce goal-directed actions, (3)
a behavior encapsulation mechanism that can decompose behaviors

1A full version of this work can be found in [4].
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Figure 1: Illustration of connection formation and refine-
ment. The target relationship is 𝑋0 → 𝑌 . (a) 𝑋0, 𝑋1 → 𝑌

observed. Connections from both 𝑋0 & 𝑋1 are formed. (b)
𝑋0 → 𝑌 observed. 𝑋1 is deduced unnecessary.

into subunits. We outline AAI’s design principles and demonstrate
proof-of-concept results in a simple environment.

2 MODELLEYEN
Modelleyen is an algorithm for learning a model for an environ-
ment, enabling continual learning and information reuse while
staying consistent with past experiences. Its core mechanism is a
local variation and selection process, playing key role in achieving
continual learning and structured environment modeling, form-
ing the foundation for all other capabilities. Modelleyen can be
applied to any prediction task, but this work specifically focuses on
modeling the dynamics of sequential environmental observations.

The core organizational units in Modelleyen are state variables
(SVs), which represent environmental observations, their dynamics,
and internal computational units capturing relationships between
SVs. A specific type, conditioning SVs (CSVs), drives learning by
modifying its source and target composition. This occurs in a two-
step process (Fig. 1): first, when an active SV lacks an explanation,
a new CSV is created, initially linking all active observational SVs
as positive (activatory) sources. Then, as the CSV state stabilizes,
inactive positive sources are refined. An analogous mechanism
applies to negative (inhibitory) sources. It can be shown (Theorem
1 in [4]) that these steps ensure past CSV responses remain intact
after modifications, except during the initial formation of negative
sources (a one-time event per CSV), offering a potent continual
learning guarantee from the lowest level of organization.

Fundamentally different from methods like NNs, Modelleyen
updates its model instantly with new information, leading to initial
"overfitting" that allows for precise generalization afterwards via
refinement to a minimal structure. This approach underlies the
continual learning capabilities of our design.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2507

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Figure 2: Illustration of the behavior encapsulation process,
where two ANs representing alternative pathways are de-
rived from a unified AN generated by the planner, and the
pathways between X and Z are encapsulated by identifying
reliable pathways in both networks, forming a newAN (right)
where each dashed encapsulated edge contains copies of the
corresponding subnetworks from the original AN variants.

3 PLANNER & BEHAVIOR ENCAPSULATION
Our planner design operates by constructing an action network
(AN) -a dependency graph linking current states to goal states with
alternative paths- using the model learned by Modelleyen, by trac-
ing back from desired goals to current states. This contrasts with
methods like model-based RL, which samples forward from initial
states. The behavior encapsulation mechanism restructures the
planner’s exhaustive action networks into a hierarchical, compre-
hensible format, improving both interpretability and reusability.
It does so by isolating alternative pathways into separate action
networks, refining them by extracting common components, and
encapsulating the subnetworks along these paths in different ANs
into behavioral units (Fig. 2). Beyond enhancing action network in-
terpretability, this method enables modular behavior reuse; though
it is currently demonstrated independently, with full integration
into agent operations left for future work.

4 EVALUATION
Setup: We validate AAI in a simple finite-state machine (FSM) en-
vironment that models various temporal succession patterns and is
divided into three subtypes to evaluate continual learning perfor-
mance. The agent learns actions step by step with Modelleyen, se-
lects actions based on the planner operating on the current learned
model state. We assess the average steps required to reach the goal
as a metric for effectively modeling the environment and evaluating
planner performance, while also presenting an example of behavior
encapsulation applied to planner-generated action networks.

Planning with a learned model and continual learning: Our
experiments show that Modelleyen can continuously learn a func-
tional model of the environment without compromising existing
knowledge when the environment subtype changes, allowing the
planner to effectively operate on this learned model to achieve a
specified goal state. This is illustrated in Figure 3, which demon-
strates a decrease in the time it takes for the agent to reach the goal
as learning progresses, while also retaining previous performance
levels in specific environment subtypes even after exposure to and
learning from multiple other subtypes.

Behavior encapsulation: Figure 4 presents a sample action
network alongside a demonstration of the resulting encapsulated

Figure 3: Average (across 5 trials) episode durations through-
out learning with changing environment subtypes. Vertical
limits show the environment changes.

(a) Full action network. (b) Encapsulated action network.

Figure 4: Example of action networks on test environment.
Bold edges are encapsulated. Each node represents a different
state variable, and each edge represents conditioning and
succession relations between them.

action network (AN). Despite the inherent complexity of the full
action network, even in this simple environment, encapsulation
effectively transforms it into a comprehensible, structured, and
minimal format. As previously mentioned, the identified subgoals,
pathways, and encapsulated components can serve as foundational
subpolicies for future behaviors, although we have yet to fully
integrate this mechanism into the agent’s ongoing operations.

5 CONCLUSION
Agential AI, comprising Modelleyen, Planlayan, and a behavior en-
capsulator, addresses key challenges in classical machine learning
by improving continual learning, enhancing comprehensibility, in-
tegrating learning and planning effectively, and enabling behavior
decomposition into hierarchical structures. Its primary strength
lies in constructing a structured model of the environment while
preserving past information using a local variation and selection
method. Future work will focus on extending Modelleyen to move
beyond the current Markovian assumption, which relies on imme-
diate temporal successions, and to adapt it for high-dimensional
structured observation spaces, such as visual data. Both of these can
be addressed by redefining the observation space as a network and
modifying the foundational operation of Modelleyen to function
on networks rather than lists of SVs; see [5] for an extension that
applies this approach to visual processing.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2508



REFERENCES
[1] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone

Calderara. 2020. Dark experience for general continual learning: a strong, simple
baseline. Advances in neural information processing systems 33 (2020), 15920–
15930.

[2] Sinan Çalışır and Meltem Kurt Pehlivanoğlu. 2019. Model-free reinforcement
learning algorithms: A survey. In 2019 27th signal processing and communications
applications conference (SIU). IEEE, 1–4.

[3] Jeff Clune. 2019. AI-GAs: AI-generating algorithms, an alternate paradigm for
producing general artificial intelligence. arXiv preprint arXiv:1905.10985 (2019).

[4] Zeki Doruk Erden and Boi Faltings. 2025. Agential AI for Integrated
Continual Learning, Deliberative Behavior, and Comprehensible Models.
arXiv:2501.16922 [cs.AI] https://arxiv.org/abs/2501.16922

[5] Zeki Doruk Erden and Boi Faltings. 2025. Continually Learning Struc-
tured Visual Representations via Network Refinement with Rerelation.
arXiv:2502.13935 [cs.CV] https://arxiv.org/abs/2502.13935

[6] Maxwell J Jacobson, Case Q Wright, Nan Jiang, Gustavo Rodriguez-Rivera, and
Yexiang Xue. 2022. Task Detection in Continual Learning via Familiarity Autoen-
coders. In 2022 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 1–8.

[7] Abdullah Ayub Khan, Asif Ali Laghari, and Shafique Ahmed Awan. 2021. Machine
learning in computer vision: a review. EAI Endorsed Transactions on Scalable
Information Systems 8, 32 (2021), e4–e4.

[8] Yann LeCun. 2022. A path towards autonomous machine intelligence version 0.9.
2, 2022-06-27. Open Review 62, 1 (2022).

[9] Yuxi Li. 2017. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274 (2017).

[10] Gary Marcus. 2018. Deep learning: A critical appraisal. arXiv preprint
arXiv:1801.00631 (2018).

[11] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. 2021.
Hierarchical reinforcement learning: A comprehensive survey. ACM Computing
Surveys (CSUR) 54, 5 (2021), 1–35.

[12] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive neural networks. arXiv preprint arXiv:1606.04671 (2016).

[13] Feiyu Xu, Hans Uszkoreit, Yangzhou Du, Wei Fan, Dongyan Zhao, and Jun Zhu.
2019. Explainable AI: A brief survey on history, research areas, approaches
and challenges. In Natural Language Processing and Chinese Computing: 8th CCF
International Conference, NLPCC 2019, Dunhuang, China, October 9–14, 2019,
Proceedings, Part II 8. Springer, 563–574.

[14] Anthony M Zador. 2019. A critique of pure learning and what artificial neural
networks can learn from animal brains. Nature communications 10, 1 (2019),
3770.

[15] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2509

https://arxiv.org/abs/2501.16922
https://arxiv.org/abs/2501.16922
https://arxiv.org/abs/2502.13935
https://arxiv.org/abs/2502.13935

	Abstract
	1 Introduction
	2 Modelleyen
	3 Planner & Behavior Encapsulation
	4 Evaluation
	5 Conclusion
	References



