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ABSTRACT
Agent-based models (ABM) are valuable for modelling complex
systems, however, they are often manually specified and lack be-
havioral and/or environmental adaptation. In this work, we develop
a generic two-layer framework for ADaptive AGEnt based mod-
elling (ADAGE) for addressing this. ADAGE formalises the bi-level
problem of agent and environment adaptation as a Stackelberg
game, providing a consolidated framework for adaptive ABM. We
demonstrate how ADAGE encapsulates several modelling tasks,
such as policy design, calibration, scenario generation, and robust
behavioural learning under one unified framework. We provide ex-
ample simulations on various environments, showing the flexibility
of ADAGE while addressing long-standing critiques of ABMs.
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1 INTRODUCTION
Agent-based models (ABMs) have shown promise for modelling
complex systems where outcomes deviate from equilibrium [3, 4].
However, ABMs crucially rely on the behavioural rules of the agents,
which are typically fixed and/or manually specified. This fixed
behaviour opens ABMs to the famed Lucas Critique: Given that
the model consists of decision rules of agents, and that decision rules
vary systematically with changes in the environment, any change
in policy will invalidate the model (paraphrased from [24]) raising
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Figure 1: ADAGE: Two-layer framework.

concerns about using fixed behaviour rules [26, 35]. While prior
efforts have tackled agent adaptation in macroeconomics [19, 30]
and AI [2, 9, 22, 38], the interplay between agent behavior and
environmental dynamics remains under-explored [44]. Sufficient
adaptation requires a framework for co-evolving agents and their
environment. The AI Economist [34, 44] introduced a two-layer
approach to adapt agent behavior and macroeconomic conditions,
excelling in tax policy design. However, this is tailored to policy
design and lacks a general formulation for broader modeling tasks.

In this work, we develop a generic two-layer framework for
ADaptive AGEnt-basedmodeling (ADAGE), unifying diverse model-
ing tasks, such as model calibration, policy design, and scenario gen-
eration. ADAGE formalises agent and environmental co-adaptation
as a Stackelberg game, where an outer layer updates the environ-
mental parameterization 𝜽 , and an inner simulation layer conditions
agent behavior on observations of 𝜽 . ADAGE addresses the Lucas
critique by co-adapting agents and environments, while unifying
diverse modeling tasks under a single versatile framework.

2 PROPOSED APPROACH
ADAGE (fig. 1) is represented as a Stackelberg game [7, 8, 18], a type
of Partially Observable Markov Game, with 𝑛 + 1 agents: a leader
𝐿 = 0 as the outer layer and 𝑛 followers F = {1, . . . , 𝑛} in the inner
simulation layer, operating in a parameterised environment [16, 41]
representing the ABM. ADAGE’s generality lies in 𝐿’s flexibility to
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Figure 2: Experimental Results

serve multiple purposes depending on the task, while maintaining
a unified representation and solution concept.

The game is defined by the tuple: (𝑆,𝐴,𝑇 , 𝑟,𝑂,𝛾) where 𝑆 is the
state space, 𝐴 = (𝐴0, 𝐴1, . . . , 𝐴𝑛) the action spaces, 𝑇 : 𝑆 ×𝐴 → 𝑆

the transition function, 𝑟 : 𝑆 × 𝐴 → R𝑁 the reward functions,
𝑂 = (𝑂0,𝑂1, . . . ,𝑂𝑁 ) the observation spaces where agents have a
(partial) observation of the state 𝑜𝑖 (𝑠) : 𝑆 → 𝑂𝑖 , and 𝛾 the discount
rate. The leader acts first, optimizing a global objective, influenc-
ing followers via the parameterization 𝜽 , derived from 𝐿’s policy
𝜋𝐿 , parameterizing the ABM. Followers condition their behaviour
𝜋𝑖 (𝑎 | 𝑜𝑖 , �̂� 𝑖 ) on observations of 𝜽 .At timestep 𝑡 each active agent
𝑖 takes an action 𝑎𝑖,𝑡 ∼ 𝜋𝑖 (𝑜𝑖,𝑡 ) based on their policy 𝜋𝑖 and pri-
vate observation 𝑜𝑖,𝑡 . The goal of agent 𝑖 is to find a policy 𝜋𝑖 to
maximise their expected return: 𝑅𝑖 = E[∑𝑡 𝛾

𝑡𝑟𝑖,𝑡 (𝑠𝑡 , 𝑎𝑖,𝑡 , 𝑎−𝑖,𝑡 )]
where 𝑎−𝑖,𝑡 is the action of the other agents. A Stackelberg equi-
librium (STE) is a solution (𝜋∗

𝐿
, 𝜋∗F) at which point no agent can

improve their return while holding the behavior of others fixed:
𝜋∗
𝐿

∈ argmax𝜋𝐿 [𝑅𝐿 |𝜋F ∼ 𝜀 (𝜋𝐿)], 𝜋F = {𝜋𝑖 : 𝑖 ∈ F} where 𝜀

represents a best-response oracle [18]. Generally, the task is to si-
multaneously optimise 𝜋𝐿, 𝜋F, as the oracle 𝜀 is unknown. Here,
we focuses on approximating the STE and applying it to adaptive
ABM, rather than convergence guarantees [15, 43]. To find an (ap-
proximate) STE, it suffices to solve 1 the following set of coupled
non-linear equations: {∇̃𝜋∗

𝑖
𝑅𝑖 = 0,∀𝑖 ∈ F, ∇̃𝜋∗

𝐿
𝑅𝐿 = 0} ([1, 21, 40]).

3 EXPERIMENTS
To demonstrate ADAGEs flexibility, we provide illustrative (but
non-exhaustive) examples spanning distinct modelling tasks and
environments, showing how each is is encapsulated by ADAGE.
Policy Design, a key modelling use case [29, 31, 42, 44], is cap-
tured by ADAGE. To demonstrate this, we use a tax policy simulator
based on TaxAI [25], with multiple households, firms, banks, and a
central government (similar to [10, 44]). The government 𝐿 selects
taxation rates 𝜽 to maximise social welfare of the households F, who
are maximising their individual reward subject to 𝜽 . ADAGE suc-
cessfully maximises social welfare (fig. 2a), significantly improving
upon the free market case, indicating the framework can perform
policy design in complex economic systems.
Calibration is another crucial modelling task, matching simulators
to real-world dynamics [5, 12, 37]. We demonstrate how this fits
within ADAGE using the Cobweb market game [20] (CMG). CMG
explores price fluctuations, where with human participants, we see
larger fluctuations than implied by perfectly rational participants,

1we use alternating gradient descent, iteratively updating 𝜋𝑖,𝑡 ∀𝑖 as an estimate of 𝜋∗
𝑖

based on the approximate gradient ∇̃𝜋𝑖,𝑡
𝑅𝑖 with 𝜋 𝑗 , ∀ 𝑗 ≠ 𝑖 fixed to their latest iterate.

so we must calibrate the level of bounded rationality of the agents
[13] through 𝜽 . ADAGE successfully calibrates the simulator to
real-world data (from [20]), capturing the overall distribution and
producing the best fit (fig. 2b), demonstrating that calibration and
bounded rationality are compatible with ADAGE.
Scenario Generation is another common modelling task [11, 28].
Despite being distinct from the previous tasks, we demonstrate the
compatibility with ADAGE. We utilise a market entrance game [27]
and explore the impact of Tobins tax [33] on controlling market
volatility [6, 32], where the goal is to generate scenarios for stabiliz-
ing the market. ADAGE discovers Tobin tax settings (paramaterised
by 𝜽 ) that reduce volatility (fig. 2c), aligning with prior manual find-
ings [6, 32], demonstrating scenario generation capabilities.
Robust Behaviour Learning is another modelling task, learning
behaviour across preferences, e.g., meta-learning [17]. We demon-
strate how ADAGE can be used for this in a financial environment
(adapted from [36, 39]) with a market maker (MM) trading with mul-
tiple zero-intelligence liquidity takers [14, 23]. The MM can have
different preferences𝜔 in terms of maximising market share𝜔 → 0
or PnL 𝜔 → 1, and the goal is to learn generic behaviour across
𝝎 = {0, 0.25, 0.5, 0.75, 1}. Despite having a single behavioural policy,
ADAGE reproduces fixed𝜔 results (fig. 2d) that previously required
retraining for each preference, demonstrating robust behavioural
learning with a single policy through sampling preferences via 𝜽 .

4 DISCUSSION AND CONCLUSION
We introduced ADAGE, a novel adaptive ABM framework in which
agents and their environment co-evolve, with agents adjusting
their behaviour in response to environmental changes and vice
versa, encompassing diverse modelling tasks (e.g., policy design,
calibration, scenario generation, and robust behavioural learning).
Given ADAGEs generality, we hope this will become a valuable
framework for developing adaptive agent-based simulations.

DISCLAIMER: This paper was prepared for informational purposes by the Artificial
Intelligence Research group of JPMorgan Chase & Co. and its affiliates ("JP Morgan”)
and is not a product of the Research Department of JP Morgan. JP Morgan makes no
representation and warranty whatsoever and disclaims all liability, for the complete-
ness, accuracy or reliability of the information contained herein. This document is
not intended as investment research or investment advice, or a recommendation, offer
or solicitation for the purchase or sale of any security, financial instrument, financial
product or service, or to be used in any way for evaluating the merits of participating
in any transaction, and shall not constitute a solicitation under any jurisdiction or to
any person, if such solicitation under such jurisdiction or to such person would be
unlawful.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2511



REFERENCES
[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. 2021. On the

theory of policy gradient methods: Optimality, approximation, and distribution
shift. Journal of Machine Learning Research 22, 98 (2021), 1–76.

[2] Leo Ardon, Jared Vann, Deepeka Garg, Thomas Spooner, and Sumitra Ganesh.
2023. Phantom - A RL-drivenMulti-Agent Framework toModel Complex Systems.
In Proceedings of the 2023 International Conference on Autonomous Agents and
Multiagent Systems (London, United Kingdom) (AAMAS ’23). International Foun-
dation for Autonomous Agents andMultiagent Systems, Richland, SC, 2742–2744.

[3] W Brian Arthur. 2021. Foundations of complexity economics. Nature Reviews
Physics 3, 2 (2021), 136–145.

[4] Robert L Axtell and J Doyne Farmer. 2022. Agent-based modeling in economics
and finance: Past, present, and future. Journal of Economic Literature (2022),
1–101.

[5] Marco Benedetti, Gennaro Catapano, Francesco De Sclavis, Marco Favorito, Aldo
Glielmo, Davide Magnanimi, and Antonio Muci. 2022. Black-it: A ready-to-use
and easy-to-extend calibration kit for agent-based models. Journal of Open Source
Software 7, 79 (2022), 4622.

[6] Ginestra Bianconi, Tobias Galla, Matteo Marsili, and Paolo Pin. 2009. Effects of To-
bin taxes in minority game markets. Journal of Economic Behavior & Organization
70, 1-2 (2009), 231–240.

[7] Gianluca Brero, Darshan Chakrabarti, Alon Eden, Matthias Gerstgrasser, Vincent
Li, and David C Parkes. 2022. Learning stackelberg equilibria and applications to
economic design games. (2022).

[8] Gianluca Brero, Alon Eden, Darshan Chakrabarti, Matthias Gerstgrasser, Vincent
Li, and David C Parkes. 2022. Stackelberg POMDP: A Reinforcement Learning
Approach for Economic Design. arXiv preprint arXiv:2210.03852 (2022).

[9] M Ale Ebrahim Dehkordi, JM Lechner, Amineh Ghorbani, Igor Nikolic, EJL
Chappin, and PM Herder. 2023. Using machine learning for agent specifications
in agent-based models and simulations: A critical review and guidelines. Journal
of Artificial Societies and Social Simulation 26, 1 (2023), 9.

[10] Kshama Dwarakanath, Svitlana Vyetrenko, Peyman Tavallali, and Tucker Balch.
2024. ABIDES-Economist: Agent-Based Simulation of Economic Systems with
Learning Agents. arXiv preprint arXiv:2402.09563 (2024).

[11] Joel Dyer, Arnau Quera-Bofarull, Nicholas Bishop, J. Doyne Farmer, Anisoara
Calinescu, and Michael Wooldridge. 2024. Population Synthesis as Scenario
Generation for Simulation-based Planning under Uncertainty. In Proceedings of
the 23rd International Conference on Autonomous Agents and Multiagent Systems
(Auckland, NewZealand) (AAMAS ’24). International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 490–498.

[12] Joel Dyer, Arnau Quera-Bofarull, Ayush Chopra, J Doyne Farmer, Anisoara
Calinescu, and Michael Wooldridge. 2023. Gradient-assisted calibration for
financial agent-based models. In Proceedings of the Fourth ACM International
Conference on AI in Finance. 288–296.

[13] Benjamin Patrick Evans and Sumitra Ganesh. 2024. Learning and Calibrating
Heterogeneous Bounded Rational Market Behaviour with Multi-agent Reinforce-
ment Learning. In Proceedings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems (Auckland, New Zealand) (AAMAS ’24). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, 534–543.

[14] J Doyne Farmer, Paolo Patelli, and Ilija I Zovko. 2005. The predictive power of
zero intelligence in financial markets. Proceedings of the National Academy of
Sciences 102, 6 (2005), 2254–2259.

[15] Tanner Fiez, Benjamin Chasnov, and Lillian Ratliff. 2020. Implicit Learning Dy-
namics in Stackelberg Games: Equilibria Characterization, Convergence Analysis,
and Empirical Study. In Proceedings of the 37th International Conference on Ma-
chine Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé
III and Aarti Singh (Eds.). PMLR, 3133–3144.

[16] Carmel Fiscko, Brian Swenson, Soummya Kar, and Bruno Sinopoli. 2019. Control
of parametric games. In 2019 18th European Control Conference (ECC). IEEE,
1036–1042.

[17] Matthias Gerstgrasser and David C Parkes. 2022. Meta-RL for Multi-Agent RL:
Learning to Adapt to Evolving Agents. In Sixth Workshop on Meta-Learning at
the Conference on Neural Information Processing Systems.

[18] Matthias Gerstgrasser and David C Parkes. 2023. Oracles & followers: Stackelberg
equilibria in deep multi-agent reinforcement learning. In International Conference
on Machine Learning. PMLR, 11213–11236.

[19] Cars Hommes, Mario He, Sebastian Poledna, Melissa Siqueira, and Yang Zhang.
2024. CANVAS: A Canadian behavioral agent-based model for monetary policy.
Journal of Economic Dynamics and Control (2024), 104986.

[20] Cars Hommes, Joep Sonnemans, Jan Tuinstra, and Henk Van De Velden. 2007.
Learning in cobweb experiments. Macroeconomic Dynamics 11, S1 (2007), 8–33.

[21] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. 2023. A two-
timescale stochastic algorithm framework for bilevel optimization: Complexity
analysis and application to actor-critic. SIAM Journal on Optimization 33, 1 (2023),
147–180.

[22] Franziska Klügl and Hildegunn Kyvik Nordås. 2023. Modelling Agent Decision
Making in Agent-based Simulation-Analysis Using an Economic Technology
Uptake Model. In 22nd International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2023), London, United Kingdom, May 29–June 2, 2023.
International Foundation for Autonomous Agents and Multiagent Systems, 1903–
1911.

[23] Dan Ladley. 2012. Zero intelligence in economics and finance. The Knowledge
Engineering Review 27, 2 (2012), 273–286.

[24] Robert E Lucas Jr. 1976. Econometric policy evaluation: A critique. In Carnegie-
Rochester conference series on public policy, Vol. 1. North-Holland, 19–46.

[25] Qirui Mi, Siyu Xia, Yan Song, Haifeng Zhang, Shenghao Zhu, and Jun Wang.
2024. TaxAI: A Dynamic Economic Simulator and Benchmark for Multi-agent
Reinforcement Learning. In Proceedings of the 23rd International Conference on
Autonomous Agents and Multiagent Systems (Auckland, New Zealand) (AAMAS
’24). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 1390–1399.

[26] Mauro Napoletano. 2018. A short walk on the wild side: Agent-based models
and their implications for macroeconomic analysis. Revue de l’OFCE 3 (2018),
257–281.

[27] Benjamin Patrick Evans and Mikhail Prokopenko. 2023. Bounded strategic
reasoning explains crisis emergence in multi-agent market games. Royal Society
Open Science 10, 2 (2023), 221164.

[28] Pisit Praiwattana and Abdennour El Rhalibi. 2016. Survey: Development and
analysis of a games-based crisis scenario generation system. In E-Learning and
Games: 10th International Conference, Edutainment 2016, Hangzhou, China, April
14-16, 2016, Revised Selected Papers 10. Springer, 85–100.

[29] Arnau Quera-Bofarull, Ayush Chopra, Joseph Aylett-Bullock, Carolina Cuesta-
Lazaro, Anisoara Calinescu, Ramesh Raskar, andMichaelWooldridge. 2023. Don’t
Simulate Twice: One-Shot Sensitivity Analyses via Automatic Differentiation. In
Proceedings of the 2023 International Conference on Autonomous Agents and Multi-
agent Systems (London, United Kingdom) (AAMAS ’23). International Foundation
for Autonomous Agents and Multiagent Systems, Richland, SC, 1867–1876.

[30] Isabelle L Salle. 2015. Modeling expectations in agent-based models—An applica-
tion to central bank’s communication and monetary policy. Economic Modelling
46 (2015), 130–141.

[31] Tuomas Sandholm. 2003. Automated mechanism design: A new application area
for search algorithms. In International Conference on Principles and Practice of
Constraint Programming. Springer, 19–36.

[32] Dipyaman Sanyal. 2019. Effect of Tobin Tax on Trading Decisions in an Experimental
Minority Game. Springer International Publishing, Cham, 71–79. https://doi.
org/10.1007/978-3-030-11364-3_6

[33] James Tobin. 1978. A proposal for international monetary reform. Eastern
economic journal 4, 3/4 (1978), 153–159.

[34] Alexander Trott, Sunil Srinivasa, Douwe van der Wal, Sebastien Haneuse, and
Stephan Zheng. 2021. Building a foundation for data-driven, interpretable, and
robust policy design using the AI economist. arXiv preprint arXiv:2108.02904
(2021).

[35] Arthur Turrell. 2016. Agent-based models: understanding the economy from the
bottom up. Bank of England Quarterly Bulletin (2016), Q4.

[36] Nelson Vadori, Leo Ardon, Sumitra Ganesh, Thomas Spooner, Selim Amrouni,
Jared Vann, Mengda Xu, Zeyu Zheng, Tucker Balch, and Manuela Veloso. 2023.
Towards multi-agent reinforcement learning-driven over-the-counter market
simulations. Mathematical Finance (2023).

[37] Nelson Vadori, Sumitra Ganesh, Prashant Reddy, and Manuela Veloso. 2020.
Calibration of shared equilibria in general sum partially observable Markov
games. In Proceedings of the 34th International Conference on Neural Information
Processing Systems (Vancouver, BC, Canada). Curran Associates Inc., Red Hook,
NY, USA, Article 1184, 11 pages.

[38] Xiaohan Wang, Lin Zhang, Yuanjun Laili, Kunyu Xie, Han Lu, and Chun Zhao.
2021. MADES: AUnified Framework for Integrating Agent-Based Simulationwith
Multi-Agent Reinforcement Learning. In 2021 Annual Modeling and Simulation
Conference (ANNSIM). 1–12.

[39] Mason Wright and Michael P Wellman. 2018. Evaluating the stability of non-
adaptive trading in continuous double auctions. In 17th International Conference
on Autonomous Agents and Multiagent Systems.

[40] Sihan Zeng, Thinh TDoan, and Justin Romberg. 2024. A two-time-scale stochastic
optimization framework with applications in control and reinforcement learning.
SIAM Journal on Optimization 34, 1 (2024), 946–976.

[41] Brian Zhang, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani,
Stephen McAleer, Andreas Haupt, Andrea Celli, Nicola Gatti, Vincent Conitzer,
and Tuomas Sandholm. 2024. Computing optimal equilibria and mechanisms
via learning in zero-sum extensive-form games. Advances in Neural Information
Processing Systems 36 (2024).

[42] Edwin Zhang, Sadie Zhao, Tonghan Wang, Safwan Hossain, Henry Gasztowtt,
Stephan Zheng, David C. Parkes, Milind Tambe, and Yiling Chen. 2024. Position:
Social Environment Design Should be Further Developed for AI-based Policy-
Making. 235 (21–27 Jul 2024), 60527–60540.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2512

https://doi.org/10.1007/978-3-030-11364-3_6
https://doi.org/10.1007/978-3-030-11364-3_6


[43] Liyuan Zheng, Tanner Fiez, Zane Alumbaugh, Benjamin Chasnov, and Lillian J
Ratliff. 2022. Stackelberg actor-critic: Game-theoretic reinforcement learning
algorithms. In Proceedings of the AAAI conference on artificial intelligence, Vol. 36.
9217–9224.

[44] Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C Parkes, and Richard
Socher. 2022. The AI Economist: Taxation policy design via two-level deep
multiagent reinforcement learning. Science Advances 8, 18 (2022), eabk2607.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2513


	Abstract
	1 Introduction
	2 Proposed Approach
	3 Experiments
	4 Discussion and Conclusion
	References



