
Quantitative Operational Monitoring for BDI Agents
Extended Abstract

Marie Farrell
The University of Manchester
Manchester, United Kingdom
marie.farrell@manchester.ac.uk

Angelo Ferrando
University of Modena and Reggio

Emilia
Modena, Italy

angelo.ferrando@unimore.it

Mengwei Xu
Newcastle University

Newcastle, United Kingdom
mengwei.xu@newcastle.ac.uk

ABSTRACT
Belief-Desire-Intention (BDI) architecture is a popular framework
for designing autonomous systems. As these systems make inde-
pendent decisions and execute actions independent from humans,
ensuring their safety and reliability becomes a major concern. Tra-
ditional verification methods often fail to give run-time operational
insights into an agent’s behaviours, especially with quantitative as-
sessments under uncertain conditions, such as imprecise actuating.
Meanwhile, BDI agents, which rely on context-sensitive subtask
expansion, act as they go e.g. selecting plans at run time. To address
this, we have developed a monitoring method that combines real-
time operational data with probabilistic verification. This approach
allows us to quantitatively analyse the decisions of BDI agents as
they occur to understand the impact of each decision as it happens.

KEYWORDS
BDI Agents; Quantitative Monitoring
ACM Reference Format:
Marie Farrell, Angelo Ferrando, and Mengwei Xu. 2025. Quantitative Op-
erational Monitoring for BDI Agents: Extended Abstract. In Proc. of the
24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
The Belief-Desire-Intention (BDI) [8] framework is a well-studied
rational agent framework, forming the basis of, among others,
AgentSpeak [21], 3APL [15], 2APL [10], Jason [7], and Concep-
tual Agent Notation (Can) [22, 23]. In a BDI agent, the (B)eliefs
represent what the agent knows, the (D)esireswhat the agent wants
to bring about, and the (I)ntentions those desires the agent has cho-
sen to act upon. BDI agents have been very successful in many
areas such as business [6] and healthcare [9].

However, designing BDI-based agents can be complex e.g. with
a mix of declarative specification (a description of the state sought),
procedural specification (a set of instructions to perform), and in-
herently interleaved concurrent behaviours (e.g. multi-tasking).
Crucially, this complexity raises concerns about the safety and
trustworthiness of the deployment of these agents. As such, there
is a growing demand for verification techniques to analyse the
behaviours of these BDI agents, exemplified by works [1–3, 11, 13].

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

Most current verification methods analyse BDI agents before
deployment from some fixed starting states. However, BDI agents
make decisions during operation, and we often need to know, for
example, the probability of completing a task after doing actions X
and Y or selecting plans A and B. Manually updating the new initial
state and re-verifying it is possible. Unfortunately, the process for
such manual adjustments and subsequent re-verification each time
introduces both a high risk of errors (compromising the safety
assurance) and a substantial amount of inefficiency for the system
analysts. As such, we need an error-resistant and efficient approach
to analysing BDI agents that, by nature, make decisions at run time.

To achieve this, we adopt a monitor-based verification methodol-
ogy i.e. Run-time Verification (RV), a non-intrusive verification tech-
nique [4] to analyse systems during the operation. However, exist-
ing RV approaches often lack supporting probabilistic behaviours [5,
18] or use non-probabilistic counterparts e.g. [12, 20, 25]. This quali-
tative focus does not need the probabilistic nature of BDI-based sys-
tems e.g. imprecise actuating. As such, we propose our quantitative
operational monitoring methodology which not only retains the
strengths of traditional RV (e.g. robust performance with minimised
system impact) but also enriches it by quantitatively analysing the
probabilistic aspects of BDI-based system behaviours. It achieves
this by directly verifying a BDI agent at run time, providing a quan-
titative analysis of system behaviour (e.g. what is the probability of
achieving the given task after selecting plan A) instead of traditional
boolean ones. This quantitative approach allows finer responses,
facilitating proactive actions in near-failure scenarios, which is
essential for safety-critical autonomous systems.

Our methodology comprises two phases: Design Time and Run
Time. At design time, BDI agents are modelled using a suitable
probabilistic specification language chosen by the system analysts.
All potential behaviours are explored and captured in the transi-
tion system of a Discrete-Time Markov Chain (DTMC) [16] before
deployment. At run time, a monitor is automatically constructed to
observe the system during operation. The observed run-time data
is then used to update the DTMC to reflect the agent’s actual opera-
tional progress. In revising the DTMC, we avoid the re-construction
of transition systems, which is typically the most computationally
costly verification aspect. Analysing the probabilistic system via
an updated DTMC has negligible overhead, ensuring immediate
and relevant quantitative insights aligned with monitoring. If veri-
fication yields inconclusive results within set bounds, the system
proceeds, enabling further analysis with richer operational data
for a definitive conclusion. This approach ensures ongoing, precise
insights into system behaviour at any operation stage.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2517

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

probabilistic
BDI

agents

probabilistic
specification
languages

probabilistic
specification

tool

labelled
transition
systems

probabilistic
model
checker

interface monitor
run-time

quantitative
assurance

modelled in

a

full state space
exploration using

b

all behaviours
captured by

c

raw trace input

1

correlate observed data with model2

event trace input

3

update transitions4

analysed by

5

output6

Design Time

Run Time

Figure 1: Quantitative Operational Monitoring Methodology for BDI Agents.

2 METHODOLOGY
Our methodology in Fig. 1 consists of two phases: Design Time and
Run Time. In the former, on the top-left, we have probabilistic BDI
agents (e.g. from [2]) modelled (a) in a suitable probabilistic speci-
fication language. A design-time full-state space exploration (b)
follows by the relevant tool for the chosen probabilistic language.
Its output is captured in the transition system of a DTMC, specify-
ing all possible system behaviours (c). We note that a design-time
quantitative analysis could be obtained through step 5 immedi-
ately, employing model checkers (such as PRISM [17]) to verify
properties from a manually specified initial state.

Our objective is to provide a quantitative analysis of the be-
haviours of BDI agents in operation. This requires collecting and
reasoning about run-time operational data from the BDI agents,
and, importantly, providing the run-time analysis at any given point
during operation. We achieve this in the run-time phase by employ-
ing a monitor-based verification approach that does not necessitate
interfering with the model itself. Instead, it always observes the
system as it operates (1), capturing the latest data (in the form
of raw input such as system logs) from the system. To verify the
running system, we correlate the observed data with the model (2),
obtaining the trace of events (e.g. executed path) in the model (3).
We update the transition system accordingly to reflect the system’s
evolution regarding these events (4). We highlight that by di-
rectly updating the transition system with events observed in the
monitor, we bypass the need to re-construct these transition sys-
tems, typically the most computationally costly verification aspect.
Meanwhile, inspecting the system via the transition system has
extremely low computational overhead [1] (5 and 6). As such,
each quantitative verification is as prompt as the monitoring itself,
guaranteeing the quantitative insights are timely and pertinent.

3 RELATEDWORK
Formal verification of BDI has been summarised in a survey [19].
However, none of them supports the operational monitoring that
was provided in our work. Meanwhile, there is a vast and mature
community of run-time verification see e.g. in [4]. However, most
of them do not support probabilistic reasoning. As such, there is

a growing trend that applies probabilistic verification techniques
for the run-time analysis on other systems, which may need to
be re-constructed, e.g. adaptive software systems. For example,
[14] focus on system re-configurations (e.g. a new device in the
network), using a run-time probabilistic verification that re-uses
the previous analysis results when some small changes are made
to the model of the system. Our approach, which is on BDI agents,
maintains the same high-level governing descriptions of agent
behaviours through semantics. That said, given different initial BDI
agent configurations (i.e. different agent programs), corresponding
DTMCs can be generated and monitored by our approach.

Another loosely related approach for run-time probabilistic ver-
ification is through statistical model checking [24]. This method,
largely proposed to overcome the state space explosion issue inher-
ent in traditional model checking, avoids exhaustive exploration of
all system states by sampling system executions and statistically
estimating the probability that specific properties hold. As such,
it can return a verification result relatively fast to be acceptable
for run-time usage. However, it still remains “static” unless initial
states in the model are manually updated each time to be in sync
with the current state of the actual system, and, importantly, by by-
passing exhaustive exploration, it sacrifices the strong correctness
guarantees we are seeking for responsible autonomous systems.

4 CONCLUSION
Quantitative operational monitoring, providing run-time insights,
enables proactive decision-making and mitigation strategies for
BDI agent analysts to react promptly before safety violations even
occur. Besides the proposed methodology, we note that significant
progress has been made in implementing our methodology, illus-
trating our approach in action with proven practicality. In addition
to the feasibility, we are also in the process of extensively analysing
our approach for computational efficiency and scalability, ensuring
broader applicability independent of particular BDI designs.

ACKNOWLEDGMENTS
This work is partially supported by a Royal Academy of Engineering
Research Fellowship. Authors are listed alphabetically to indicate
equal contributions.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2518

REFERENCES
[1] Blair Archibald, Muffy Calder, Michele Sevegnani, and Mengwei Xu. 2022. Mod-

elling and Verifying BDI Agents with Bigraphs. Science of Computer Programming
215 (2022), 102760. https://doi.org/10.1016/j.scico.2021.102760

[2] Blair Archibald, Muffy Calder, Michele Sevegnani, and Mengwei Xu. 2023. Quan-
titative modelling and analysis of BDI agents. Software and Systems Modeling
(2023).

[3] Blair Archibald, Muffy Calder, Michele Sevegnani, and Mengwei Xu. 2023. Quan-
titative Verification and Strategy Synthesis for BDI Agents. In Proceedings of
NASA Formal Methods. Springer Nature Switzerland, 241–259.

[4] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. 2018. Introduc-
tion to Runtime Verification. In Lectures on Runtime Verification - Introductory
and Advanced Topics (Lecture Notes in Computer Science, Vol. 10457). Springer,
1–33.

[5] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime Verifica-
tion for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20, 4 (2011), 14:1–14:64.

[6] Steve S Benfield, Jim Hendrickson, and Daniel Galanti. 2006. Making a strong
business case for multiagent technology. In Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent systems. ACM, 10–15.

[7] R.H. Bordini, J.F. Hübner, and M. Wooldridge. 2007. Programming multi-agent
systems in AgentSpeak using Jason. Vol. 8. John Wiley & Sons.

[8] Michael Bratman. 1987. Intention, Plans, and Practical reason. Harvard University
Press.

[9] Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. 2014. Negotiation-
based Patient Scheduling in Hospitals. In Advanced Intelligent Computational
Technologies and Decision Support Systems. 107–121.

[10] Mehdi Dastani. 2008. 2APL: a practical agent programming language. Autonomous
agents and multi-agent systems 16, 3 (2008), 214–248.

[11] Louise A Dennis, Michael Fisher, Nicholas K Lincoln, Alexei Lisitsa, and Sandor M
Veres. 2016. Practical verification of decision-making in agent-based autonomous
systems. Automated Software Engineering 23 (2016), 305–359.

[12] Angelo Ferrando, Rafael C. Cardoso, Marie Farrell, Matt Luckcuck, Fabio Papac-
chini, Michael Fisher, and Viviana Mascardi. 2021. Bridging the gap between
single- and multi-model predictive runtime verification. Formal Methods Syst.
Des. 59, 1 (2021), 44–76.

[13] Michael Fisher, Viviana Mascardi, Kristin Yvonne Rozier, Bernd-Holger Schlin-
gloff, Michael Winikoff, and Neil Yorke-Smith. 2021. Towards a framework for
certification of reliable autonomous systems. Autonomous Agents and Multi-Agent
Systems 35 (2021), 1–65.

[14] Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, Hongyang Qu, and Mateusz
Ujma. 2012. Incremental Runtime Verification of Probabilistic Systems. In Runtime
Verification, Third International Conference, RV 2012, Istanbul, Turkey, September
25-28, 2012, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 7687).
Springer, 314–319. https://doi.org/10.1007/978-3-642-35632-2_30

[15] Koen V. Hindriks, Frank S. De Boer, Wiebe Van der Hoek, and John-Jules Ch
Meyer. 1999. Agent programming in 3APL. Autonomous Agents and Multi-Agent
Systems 2, 4 (1999), 357–401.

[16] Marta Kwiatkowska, Gethin Norman, and David Parker. 2010. Advances and chal-
lenges of probabilistic model checking. In 2010 48th Annual Allerton Conference
on Communication, Control, and Computing (Allerton). IEEE, 1691–1698.

[17] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0:
Verification of Probabilistic Real-Time Systems. In Computer Aided Verification
- 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings (Lecture Notes in Computer Science, Vol. 6806). Springer, 585–591.

[18] Martin Leucker and Christian Schallhart. 2009. A brief account of runtime
verification. J. Log. Algebraic Methods Program. 78, 5 (2009), 293–303.

[19] Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher.
2019. Formal specification and verification of autonomous robotic systems: A
survey. ACM Computing Surveys (CSUR) 52, 5 (2019), 1–41.

[20] Stefan Mitsch and André Platzer. 2016. ModelPlex: verified runtime validation of
verified cyber-physical system models. Formal Methods Syst. Des. 49, 1-2 (2016),
33–74.

[21] Anand S. Rao. 1996. AgentSpeak (L): BDI agents speak out in a logical computable
language. In Proceedings of European Workshop on Modelling Autonomous Agents
in a Multi-Agent World. Springer, 42–55.

[22] Sebastian Sardina and Lin Padgham. 2011. A BDI agent programming language
with failure handling, declarative goals, and planning. Autonomous Agents and
Multi-Agent Systems 23 (2011), 18–70.

[23] Michael Winikoff, Lin Padgham, James Harland, and John Thangarajah. 2002.
Declarative & procedural goals in intelligent agent systems. KR 2002 (2002),
470–481.

[24] Håkan LS Younes, Marta Kwiatkowska, Gethin Norman, and David Parker. 2004.
Numerical vs. statistical probabilistic model checking: An empirical study. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 46–60.

[25] Yuhong Zhao, Simon Oberthür, Martin Kardos, and Franz-Josef Rammig. 2005.
Model-based Runtime Verification Framework for Self-optimizing Systems. In
Proceedings of the Fifth Workshop on Runtime Verification, RV@CAV 2005, Edin-
burgh, UK, July 12, 2005 (Electronic Notes in Theoretical Computer Science, Vol. 144).
Elsevier, 125–145.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2519

https://doi.org/10.1016/j.scico.2021.102760
https://doi.org/10.1007/978-3-642-35632-2_30

	Abstract
	1 Introduction
	2 Methodology
	3 Related Work
	4 Conclusion
	Acknowledgments
	References

