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ABSTRACT
Belief-Desire-Intention (BDI) architecture is a popular framework
for designing autonomous systems. As these systems make inde-
pendent decisions and execute actions independent from humans,
ensuring their safety and reliability becomes a major concern. Tra-
ditional verification methods often fail to give run-time operational
insights into an agent’s behaviours, especially with quantitative as-
sessments under uncertain conditions, such as imprecise actuating.
Meanwhile, BDI agents, which rely on context-sensitive subtask
expansion, act as they go e.g. selecting plans at run time. To address
this, we have developed a monitoring method that combines real-
time operational data with probabilistic verification. This approach
allows us to quantitatively analyse the decisions of BDI agents as
they occur to understand the impact of each decision as it happens.
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1 INTRODUCTION
The Belief-Desire-Intention (BDI) [8] framework is a well-studied
rational agent framework, forming the basis of, among others,
AgentSpeak [21], 3APL [15], 2APL [10], Jason [7], and Concep-
tual Agent Notation (Can) [22, 23]. In a BDI agent, the (B)eliefs
represent what the agent knows, the (D)esireswhat the agent wants
to bring about, and the (I)ntentions those desires the agent has cho-
sen to act upon. BDI agents have been very successful in many
areas such as business [6] and healthcare [9].

However, designing BDI-based agents can be complex e.g. with
a mix of declarative specification (a description of the state sought),
procedural specification (a set of instructions to perform), and in-
herently interleaved concurrent behaviours (e.g. multi-tasking).
Crucially, this complexity raises concerns about the safety and
trustworthiness of the deployment of these agents. As such, there
is a growing demand for verification techniques to analyse the
behaviours of these BDI agents, exemplified by works [1–3, 11, 13].
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Most current verification methods analyse BDI agents before
deployment from some fixed starting states. However, BDI agents
make decisions during operation, and we often need to know, for
example, the probability of completing a task after doing actions X
and Y or selecting plans A and B. Manually updating the new initial
state and re-verifying it is possible. Unfortunately, the process for
such manual adjustments and subsequent re-verification each time
introduces both a high risk of errors (compromising the safety
assurance) and a substantial amount of inefficiency for the system
analysts. As such, we need an error-resistant and efficient approach
to analysing BDI agents that, by nature, make decisions at run time.

To achieve this, we adopt a monitor-based verification methodol-
ogy i.e. Run-time Verification (RV), a non-intrusive verification tech-
nique [4] to analyse systems during the operation. However, exist-
ing RV approaches often lack supporting probabilistic behaviours [5,
18] or use non-probabilistic counterparts e.g. [12, 20, 25]. This quali-
tative focus does not need the probabilistic nature of BDI-based sys-
tems e.g. imprecise actuating. As such, we propose our quantitative
operational monitoring methodology which not only retains the
strengths of traditional RV (e.g. robust performance with minimised
system impact) but also enriches it by quantitatively analysing the
probabilistic aspects of BDI-based system behaviours. It achieves
this by directly verifying a BDI agent at run time, providing a quan-
titative analysis of system behaviour (e.g. what is the probability of
achieving the given task after selecting plan A) instead of traditional
boolean ones. This quantitative approach allows finer responses,
facilitating proactive actions in near-failure scenarios, which is
essential for safety-critical autonomous systems.

Our methodology comprises two phases: Design Time and Run
Time. At design time, BDI agents are modelled using a suitable
probabilistic specification language chosen by the system analysts.
All potential behaviours are explored and captured in the transi-
tion system of a Discrete-Time Markov Chain (DTMC) [16] before
deployment. At run time, a monitor is automatically constructed to
observe the system during operation. The observed run-time data
is then used to update the DTMC to reflect the agent’s actual opera-
tional progress. In revising the DTMC, we avoid the re-construction
of transition systems, which is typically the most computationally
costly verification aspect. Analysing the probabilistic system via
an updated DTMC has negligible overhead, ensuring immediate
and relevant quantitative insights aligned with monitoring. If veri-
fication yields inconclusive results within set bounds, the system
proceeds, enabling further analysis with richer operational data
for a definitive conclusion. This approach ensures ongoing, precise
insights into system behaviour at any operation stage.
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Figure 1: Quantitative Operational Monitoring Methodology for BDI Agents.

2 METHODOLOGY
Our methodology in Fig. 1 consists of two phases: Design Time and
Run Time. In the former, on the top-left, we have probabilistic BDI
agents (e.g. from [2]) modelled ( a ) in a suitable probabilistic speci-
fication language. A design-time full-state space exploration ( b )
follows by the relevant tool for the chosen probabilistic language.
Its output is captured in the transition system of a DTMC, specify-
ing all possible system behaviours ( c ). We note that a design-time
quantitative analysis could be obtained through step 5 immedi-
ately, employing model checkers (such as PRISM [17]) to verify
properties from a manually specified initial state.

Our objective is to provide a quantitative analysis of the be-
haviours of BDI agents in operation. This requires collecting and
reasoning about run-time operational data from the BDI agents,
and, importantly, providing the run-time analysis at any given point
during operation. We achieve this in the run-time phase by employ-
ing a monitor-based verification approach that does not necessitate
interfering with the model itself. Instead, it always observes the
system as it operates ( 1 ), capturing the latest data (in the form
of raw input such as system logs) from the system. To verify the
running system, we correlate the observed data with the model ( 2 ),
obtaining the trace of events (e.g. executed path) in the model ( 3 ).
We update the transition system accordingly to reflect the system’s
evolution regarding these events ( 4 ). We highlight that by di-
rectly updating the transition system with events observed in the
monitor, we bypass the need to re-construct these transition sys-
tems, typically the most computationally costly verification aspect.
Meanwhile, inspecting the system via the transition system has
extremely low computational overhead [1] ( 5 and 6 ). As such,
each quantitative verification is as prompt as the monitoring itself,
guaranteeing the quantitative insights are timely and pertinent.

3 RELATEDWORK
Formal verification of BDI has been summarised in a survey [19].
However, none of them supports the operational monitoring that
was provided in our work. Meanwhile, there is a vast and mature
community of run-time verification see e.g. in [4]. However, most
of them do not support probabilistic reasoning. As such, there is

a growing trend that applies probabilistic verification techniques
for the run-time analysis on other systems, which may need to
be re-constructed, e.g. adaptive software systems. For example,
[14] focus on system re-configurations (e.g. a new device in the
network), using a run-time probabilistic verification that re-uses
the previous analysis results when some small changes are made
to the model of the system. Our approach, which is on BDI agents,
maintains the same high-level governing descriptions of agent
behaviours through semantics. That said, given different initial BDI
agent configurations (i.e. different agent programs), corresponding
DTMCs can be generated and monitored by our approach.

Another loosely related approach for run-time probabilistic ver-
ification is through statistical model checking [24]. This method,
largely proposed to overcome the state space explosion issue inher-
ent in traditional model checking, avoids exhaustive exploration of
all system states by sampling system executions and statistically
estimating the probability that specific properties hold. As such,
it can return a verification result relatively fast to be acceptable
for run-time usage. However, it still remains “static” unless initial
states in the model are manually updated each time to be in sync
with the current state of the actual system, and, importantly, by by-
passing exhaustive exploration, it sacrifices the strong correctness
guarantees we are seeking for responsible autonomous systems.

4 CONCLUSION
Quantitative operational monitoring, providing run-time insights,
enables proactive decision-making and mitigation strategies for
BDI agent analysts to react promptly before safety violations even
occur. Besides the proposed methodology, we note that significant
progress has been made in implementing our methodology, illus-
trating our approach in action with proven practicality. In addition
to the feasibility, we are also in the process of extensively analysing
our approach for computational efficiency and scalability, ensuring
broader applicability independent of particular BDI designs.
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