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ABSTRACT
Although deep reinforcement learning has been shown to be ef-

fective, the model’s black-box nature presents barriers to direct

policy interpretation. To address this problem, we propose a neuro-

symbolic approach called neural DNF-MT for end-to-end policy

learning. The differentiable nature of the neural DNF-MT model

enables the use of deep actor-critic algorithms for training. At the

same time, its architecture is designed so that trained models can

be directly translated into interpretable policies expressed as stan-

dard (bivalent or probabilistic) logic programs. Moreover, additional

layers can be included to extract abstract features from complex

observations, acting as a form of predicate invention. The logic rep-

resentations are highly interpretable, and we show how the bivalent

representations of deterministic policies can be edited and incorpo-

rated back into a neural model, facilitating manual intervention and

adaptation of learned policies. We evaluate our approach on a range

of tasks requiring learning deterministic or stochastic behaviours

from various forms of observations. Our empirical results show

that our neural DNF-MT model performs at the level of competing

black-box methods whilst providing interpretable policies.
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1 INTRODUCTION
Remarkable progress has been made in reinforcement learning (RL)

with the advancement of deep neural networks. Since the demon-

stration of impressive performance in complex games like Go [29]

and Dota 2 [3], significant effort has been made to utilise deep

RL approaches for solving real-life problems, such as segmenting

surgical gestures [14] and providing treatment decisions [35]. How-

ever, the need for model interpretability grows with safety and

ethical considerations. In the EU’s AI Act, systems used in areas

such as healthcare fall into the high-risk category, requiring both
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a high level of accuracy and a method to explain and interpret

their output[1]. Therefore, the ‘black-box’ nature of neural models

becomes a concern when using them for such high-stakes decisions

in healthcare [15]. While many approaches exist to explain black-

box neural models with post-hoc methods, it is argued that using

inherently interpretable models is safer [26].

Various neuro-symbolic approaches address the lack of inter-

pretability in deep RL. We use the term ‘symbolic’ to refer to meth-

ods that offer logical rule representations, in contrast to program

synthesis approaches [4, 31, 32] that offer programmatic representa-
tions with forms of logic. Some of these neuro-symbolic methods

[9, 16] rely on manually engineered inductive bias to restrict the

search space and thus limit the rules they can learn. Others [18, 37]

without predefined inductive bias associate weights with predi-

cates but require pre-trained components to parse observations to

predicates [18] or a special critic for training [37].

In this paper, we propose a neuro-symbolic model, neural DNF-

MT, for learning interpretable and editable policies.
1
Our model is

built upon the semi-symbolic layer and neural DNF model proposed

in pix2rule [6] but with modifications that support probabilistic

representation for policy learning. The model is completely differ-

entiable and supports integration with deep actor-critic algorithms.

It can also be used to distil policies from other neural models. From

trained neural DNF-MT actors, we can extract bivalent logic pro-

grams for deterministic policies or probabilistic logic programs for

stochastic policies. These interpretable logical representations are

close approximations of the learned models. The neural-bivalent-

logic translation is bidirectional, thus enabling manual policy inter-

vention on the model. We can modify the bivalent logical program

and port it back to the neural model, benefiting from the tensor op-

erations and environment parallelism for fast inference. Compared

to existing works, we do not rely on rule templates or mode decla-

rations. Furthermore, our model is trained with a simple MLP critic

and supports trainable preceding layers to generalise relevant facts

from complex observations, such as multi-dimensional matrices.

To summarise, our main contributions are:

(1) We propose neural DNF-MT, a neuro-symbolic model for

end-to-end policy learning and distillation, without requir-

ing manually engineered inductive bias. It can be trained

with deep actor-critic algorithms and supports end-to-end

predicate invention.

(2) A trained neural DNF-MT actor’s policy can be represented

as a logic program (probabilistic for a stochastic policy and

bivalent for a deterministic policy), thus providing inter-

pretability.

1
Our main experiment repo is available at https://github.com/kittykg/neural-dnf-mt-

policy-learning.
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(3) The neural-to-bivalent-logic translation is bidirectional, and

we can modify the logical program for policy intervention

and port it back to the neural model, benefiting from tensor

operations and environment parallelism for fast inference.

2 BACKGROUND
2.1 Reinforcement Learning
RL tasks are commonly modelled as Markov Decision Processes

(MDPs) [24] or sometimes Partially Observable Markov Decision

Processes (POMDPs) [17, 38], depending on whether the observed

states are fully Markovian. The objective of an RL agent is to learn a

policy that maps states to action probabilities 𝜋 (𝑎𝑡 |𝑠𝑡 ) to maximise

the cumulative reward. Value-based methods such as Q-learning

[33] and Deep Q-Networks (DQN) [21] approximate the action-

value function 𝑄 (𝑠𝑡 , 𝑎𝑡 ), while policy-based methods such as RE-

INFORCE [34] directly parameterise the policy 𝜋 . Actor-critic al-

gorithms such as Advantage Actor-Critic (A2C) [20] and Proxi-

mal Policy Optimisation (PPO) [27] combine both value-based and

policy-based methods, where the actor learns the policy 𝜋 (𝑎𝑡 |𝑠𝑡 )
and the critic learns the value function𝑉 (𝑠𝑡 ). Specifically, PPO clips

the policy update in a certain range to prevent problematic large

policy changes, providing stability and better performance.

2.2 Semi-symbolic Layer and Neural DNF Model
A neural Disjunctive Normal Formmodel [6] is a fully differentiable

neural architecture where each node can be set to behave like a

semi-symbolic conjunction or disjunction of its inputs. For some

trainable weights𝑤𝑖 , 𝑖 = 1, . . . , 𝐼 , and a parameter 𝛿 , a node in the

neural DNF model is given by:

𝑦 = tanh

(
𝐼∑︁

𝑖=1

𝑤𝑖𝑥𝑖 + 𝛽
)
, with 𝛽 = 𝛿

(
𝐼

max

𝑖=1
|𝑤𝑖 | −

𝐼∑︁
𝑖=1

|𝑤𝑖 |
)

(1)

Here the 𝐼 (semi-symbolic) inputs to the node are constrained such

that 𝑥𝑖 ∈ [−1, 1], where the extreme value 1 (−1) is interpreted as

associated term 𝑖 taking the logical value ⊤ (⊥) with other values

representing intermediate strengths of belief (a form of fuzzy logic

or generalised belief). The node activation𝑦 ∈ (−1, 1) is interpreted
similarly but cannot take specific values 1 or −1. The node’s char-
acteristics are controlled by a hyperparameter 𝛿 , which induces

behaviour analogous to a logical conjunction (disjunction) when

𝛿 = 1 (= −1). The neural DNF model consists of a layer of con-

junctive nodes followed by a layer of disjunctive nodes. During

training, the absolute value of each 𝛿 in both layers is controlled

by a scheduler that increases from 0.1 to 1, as the model may fail to

learn any rules if the logical bias is at full strength at the beginning

of training.

Pix2rule [6] proposes interpreting trained neural DNF models as

logical rules with Answer Set Programming (ASP) [19] semantics

by treating each node’s output 𝑦 > 0 (≤ 0) as logical ⊤ (⊥) (akin to

a maximum likelihood estimate of the associated fact). However,

Baugh et al. [2] point out that the neural DNF models cannot be

used to describe multi-class classification problems because the

disjunctive layer fails to guarantee a logically mutually exclusive

output, i.e. with exactly one node taking value ⊤. Baugh et al. [2]

instead propose an extended model called neural DNF-EO, which

adds a non-trainable conjunctive semi-symbolic layer after the

final layer of the base neural DNF to approximate the ‘exactly-one’

logical constraint ‘𝑐𝑙𝑎𝑠𝑠 𝑗 ← ∧𝑘,𝑗≠𝑘 not 𝑐𝑙𝑎𝑠𝑠𝑘 ’, and again show

how ASP rules can be extracted from trained models.

3 NEURAL DNF-MT MODEL
This section explains why existing neural DNF-based models from

[6] and [2] are imperfectly suited to represent policies within a deep-

RL agent, and presents a new model called neural DNF with mutex-

tanh activation (neural DNF-MT) to address these limitations. It

then shows how trained models can be variously interpreted as

deterministic and stochastic policies for the associated domains.

3.1 Issues of Existing Neural DNF-based Models
Unlike multi-class classification, where each sample has a single

deterministic class, an RL actor seeks to approximate the optimal

policy with potentially arbitrary action probabilities [30]. It is possi-

ble for a domain to have an optimal deterministic policy and for the

RL algorithm to approach it with an ‘almost deterministic’ policy,

where for each state the optimal action’s probability is significantly

greater than the others (i.e. a single almost-1 value vs all the rest

close to 0). In this case, the actor almost always chooses a single ac-

tion, similar to a multi-class classification model predicting a single

class. A trained neural DNF-based model representing such a policy

should be interpreted as a bivalent logic program representing the

nearest deterministic policy. When we wish to preserve the proba-

bilities encoded within the trained neural DNF-based actor without

approximating it with the nearest deterministic policy, its inter-

pretation should be captured as a probabilistic logic program that

expresses the action distributions. There is no way to achieve both

of these objectives with the neural DNF and neural DNF-EOmodels,

since their interpretation frameworks do not satisfy two forms of

mutual exclusivity: (a) probabilistic mutual exclusivity when inter-

preted as a stochastic policy, and (b) logical mutual exclusivity when

interpreted as a deterministic policy. We first formalise the logic

system represented by neural DNF-based models (Definition 3.1)

and then define the two mutual exclusivities possible in this logic

system (Definition 3.2 and 3.3).

Definition 3.1 (Generalised Belief Logic). A neural DNF-
based model that builds upon semi-symbolic layers represents a logic
system. We refer to this logic system as Generalised Belief Logic
(GBL). A semi-symbolic node’s activation 𝑦𝑖 ∈ (−1, 1) represents its
belief in a logical proposition. For each activation 𝑦𝑖 , we define a biva-
lent logic variable 𝑏𝑖 ∈ {⊥,⊤} as its bivalent logical interpretation:

𝑏𝑖 =

{
⊤ if 𝑦𝑖 > 0

⊥ otherwise

Definition 3.2 (Logical mutual exclusivity). Given the final
activation of a neural DNF-based model for 𝑁 classes y ∈ (−1, 1)𝑁
and its bivalent logic interpretation b ∈ {⊥,⊤}𝑁 , the model satisfies
logical mutual exclusivity if there is exactly one 𝑏𝑖 that is ⊤:

|= ©«
∨

𝑖∈{1..𝑁 }
𝑏𝑖

ª®¬ ∧ ©«
∧

𝑖, 𝑗∈{1..𝑁 },𝑖< 𝑗

¬(𝑏𝑖 ∧ 𝑏 𝑗 )ª®¬
Definition 3.3 (Probabilistic mutual exclusivity). A proba-

bilistic interpretation of GBL is a function 𝑓𝑝 : (−1, 1) → (0, 1) that

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

253



maps each belief 𝑦𝑖 to probability 𝑝𝑖 that 𝑏𝑖 holds as true. Formally,

𝑝𝑖 = 𝑓𝑝 (𝑦𝑖 ) = Pr(𝑏𝑖 = ⊤|𝑦𝑖 )

A neural DNF-based model satisfies probabilistic mutual exclu-
sivity if the interpreted probabilities associated with its activations
y ∈ (0, 1)𝑁 under probabilistic interpretation 𝑓𝑝 sum to 1. That is:

𝑁∑︁
𝑖

𝑓𝑝 (𝑦𝑖 ) = 1

To be used for interpretable policy learning, a neural DNF-based

model must guarantee the following properties:

P1: The model provides a probabilistic mutually exclusive interpre-

tation (Definition 3.3) and can be interpreted as a probabilistic

logic program (such as ProbLog [8]),

P2: When the optimal policy is deterministic, the model can also be

interpreted as a bivalent logic program (such as ASP [19]) that

satisfies logical mutual exclusivity (Definition 3.2).

A trained neural DNF model from [6] does not provide proba-

bilistic interpretation or guarantee logical mutual exclusivity in

its bivalent interpretation, and thus fails P1 and P2. A trained neu-

ral DNF-EO from [2] satisfies P2 via its constraint layer but fails

to provide probabilistic interpretation for P1. To address these re-

quirements, we propose a new model called neural DNF-MT and

post-training processing steps that translate a trained neural DNF-

MT model into a ProbLog program and, where applicable, into an

ASP program. Our proposed model satisfies both properties above.

3.2 Mutex-tanh Activation
Let d ∈ R𝑁

be the output vector of a disjunctive semi-symbolic

layer before any activation function and 𝑑𝑘 ∈ R be the output of

the 𝑘th disjunctive node. Using the softmax function, we define the

new activation function mutex-tanh as:

softmax(d)𝑘 =
𝑒𝑑𝑘∑𝑁
𝑖 𝑒𝑑𝑖

mutex-tanh(d)𝑘 = 2 · softmax(d)𝑘 − 1 (2)

With the mutex-tanh activation function, our neural DNF-MT

model is constructed with a semi-symbolic conjunctive layer with

a tanh activation function and a disjunctive semi-symbolic layer

with the mutex-tanh activation function:

c = tanh(Wcx + 𝛽c) Output of conj. layer

d = Wdc + 𝛽d Raw output of disj. layer

ỹ = mutex-tanh(d) mutex-tanh output of disj. layer

where Wc and Wd are trainable weights, and 𝛽c and 𝛽d are the

logical biases calculated as Eq (1). Note that ỹ ∈ (−1, 1)𝑁 shares

the same codomain as the disjunctive layer’s tanh output ŷ. The
disjunctive layer’s bivalent interpretation

ˆb still uses ŷ, with ˆ𝑏𝑖 = ⊤
when 𝑦𝑖 > 0 and ⊥ otherwise.

To satisfy P1, we compute the probability p̃ as:

p̃ =
(
𝑓𝑝 (𝑦1), . . . , 𝑓𝑝 (𝑦𝑁 )

)𝑇
where 𝑓𝑝 (𝑦𝑖 ) =

𝑦𝑖 + 1
2

(3)

By construction, p̃ ∈ (0, 1)𝑁 , and we have

∑𝑁
𝑘
𝑝𝑘 = 1 from Eq (2)

to satisfy probabilistic mutual exclusivity.

3.3 Policy Learning with Neural DNF-MT
In the following, we show how the neural DNF-MT model can be

trained in an end-to-end fashion to approximate a stochastic policy

and how to extract the policy into interpretable logical form.

Training Neural DNF-MT as Actor with PPO. Using the PPO
algorithm [27], we train a neural DNF-MT actor with an MLP critic.

The input to the neural DNF-MT actor must be in [−1, 1]𝐼 . Any
discrete observation is converted into a bivalent vector representa-

tion, as shown in Figure 1. If the observation is complex, as shown

in our experiment in Section 4.4, an encoder can be added before

the neural DNF-MT actor to invent predicates in GBL form. The

encoder output acts as input to the neural DNF-MT actor and the

MLP critic, as shown in Figure 2.

We here present the overall training loss of the actor-critic PPO

with a neural DNF-MT actor, which consists of multiple loss terms.

The base training loss component matches that from PPO [27]:

𝐿PPO (𝜃 ) = E𝑡
[
𝐿CLIP (𝜃 ) + 𝑐1𝐿value (𝜃 ) − 𝑐2𝑆 [𝜋𝜃 ] (𝑠𝑡 )

]
(4)

where 𝑐1, 𝑐2 ∈ R are hyperparameters, 𝐿CLIP (𝜃 ) is the clipped sur-

rogate objective, 𝑆 [𝜋𝜃 ] (𝑠𝑡 ) is the entropy of the actor in training,

and 𝐿value (𝜃 ) is the value loss. The action probability output of

the neural DNF-MT actor defined in Eq (3) is used to calculate the

probability ratio in 𝐿CLIP and the entropy term 𝑆 [𝜋𝜃 ] (𝑠𝑡 ).
We add the following auxiliary losses to facilitate the interpreta-

tion of the neural DNF-MT model into rules:

𝐿 (1) (𝜃 ) = 1

𝑁𝐹

𝑁𝐹∑︁
𝑖

|1 − |𝑓𝑖 | | (5)

𝐿 (2) (𝜃 ) = 1

|𝜃
disj
|
∑︁��𝜃

disj
· (6 − |𝜃

disj
|)
��

(6)

𝐿 (3) (𝜃 ) = 1

𝑁𝐶

𝑁𝐶∑︁
𝑖

|1 − |𝑐𝑖 | | (7)

𝐿 (4) (𝜃 ) = −
𝑁∑︁
𝑖

[
𝑝𝑖 log

(
𝑦𝑖 + 1
2

)
+ (1 − 𝑝𝑖 ) log

(
1 − 𝑦𝑖 + 1

2

)]
(8)

where 𝑓𝑖 is the invented predicate, 𝑁𝐹 is the number of output of

an encoder, and 𝑁𝐶 is the number of conjunctive nodes. Eq (5) is

used when there is an encoder before the neural DNF-MT actor

for predicate invention. It enforces the predicates’ activations to

be close to ±1 so that they are stronger beliefs of true/false. Eq (6)

is a weight regulariser to encourage the disjunctive weights to be

close to ±6 (the choice of ±6 is to saturate tanh, as tanh(±6) ≈
±1). Eq (7) encourages the tanh output of the conjunctive layer

to be close to ±1. Eq (8) is the key term to satisfy P2, pushing

for bivalent logical interpretations for deterministic policies. This

term mimics a cross-entropy loss between each mutex-tanh output

and corresponding individual tanh outputs of the disjunctive layer,

pushing the probability interpretations of the tanh outputs (i.e. (𝑦𝑖 +
1)/2) towards their action probability 𝑝𝑖 counterparts. If the optimal

policy is deterministic, all 𝑝𝑖 will be approximately 0 except for one,

which is close to 1. Each 𝑦𝑖 is pushed towards ±1, and only one

will be close to 1, thus having exactly one bivalent interpretation

𝑏𝑖 = ⊤ and satisfying logical mutual exclusivity.
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Neural
DNF-MT

Actor

MLP
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Value estimate:
-0.1993

Bivalent observation

 for  
and  otherwise

Observation
from

environment

(13, 10, 1)

Figure 1: Neural DNF-MT model as an actor in actor-
critic PPO, in environments with discrete observations.

Input observation

Invented
predicates

in

Linear Layer
+

tanh
Activation

Neural
DNF-MT

Actor

Convolution
Layer

Encoder

MLP
Critic

Value estimate:
7.7256

Figure 2: Neural DNF-MT model as an actor in actor-critic
PPO, in environments with complex observations, such as an
image-like multi-dimensional matrix.

Trained
neural

DNF-MT
actor

0. Situational
Invented predicate

discretisation: 1. Pruning

(a) Stochastic policy:
ProbLog program

5. Situational
Invented predicate interpretation

via ASP optimisation function

2(a) Thresholding
conj. only 3. Re-pruning 4(a) ProbLog rule

extraction

Invented predicate definitions

Interpretable policy

2(b) Thresholding
both conj. + disj. 3. Re-pruning 4(b) ASP rule

extraction
(b) Deterministic policy:

ASP program

Figure 3: Post-training processing to extract an interpretable logical policy from a trained neural DNF-MT actor. There are two
branches: one with sub-label (a) for extracting a stochastic policy in ProbLog and the other with sub-label (b) for extracting a
deterministic policy in ASP.

Finally, the overall training loss is defined as:

𝐿(𝜃 ) = 𝐿PPO (𝜃 ) +
∑︁

𝑖∈{1,2,3,4}
𝜆𝑖𝐿
(𝑖 ) (𝜃 ) (9)

where 𝜆𝑖 ∈ R, 𝑖 ∈ {1, 2, 3, 4} are hyperparameters.

Post-training Processing. This extracts either a ProbLog pro-

gram for a stochastic policy or an ASP program for a close-to-

deterministic policy from a trained neural DNF-MT actor, where

the logic program is a close approximation of the model. It consists

of multiple stages, as shown in Figure 3, described as follows.

(1) Pruning: This step repeatedly passes over each edge that

connects an input to a conjunction or a conjunction to a disjunction,

and removes any edge that can be removed (i) without changing

the learned trajectory (for deterministic domains) or (ii) without

shifting any action probability for any state more than some thresh-

old 𝜏prune from the original learned policy (for stochastic domains).

Any unconnected nodes are also removed. The process terminates

when a pass fails to remove any edges or nodes.

(2) Thresholding: This process converts a semi-symbolic layer’s

weights from R to values in {−6, 0, 6}. Given some threshold 𝜏 ∈
R≥0, a new weight is computed as 𝑤 ′

k𝑖 𝑗
= 6 · 1 |𝑤k𝑖 𝑗 | ≥𝜏 (𝑤k𝑖 𝑗 ) ·

sign(𝑤
k𝑖 𝑗 ), k ∈ {c, d}. This weight update enables the neural to

bivalent logic translation described later. The selection of 𝜏 should

maintain the model’s trajectory/action probability, subject to the

same checks used in pruning. For a thresholded node with at least

one non-zero weight, we replace its tanh activation with step func-

tion ℎ(𝑥) = 2 · 1𝑥>0 (𝑥) − 1, changing its output’s range to {−1, 1}.
The thresholding process is applied differently to the disjunctive

layer depending on the nature of the policy desired.

(2.a) For stochastic policies: Only the conjunctive layer is thresh-
olded, i.e. choosing a value of 𝜏 , updating only its weights and

changing the activation function. The disjunctive layer still

outputs action probabilities.

(2.b) For deterministic policies: Thresholding is applied to both

the conjunctive and disjunctive layers: a single value 𝜏 is cho-

sen and applied in both layers’ weight update, and both layers

have their tanh activation replaced with the step function.

This process is only possible if the model satisfies P2.

(3) Re-pruning: The pruning process from Step 1 is repeated.

(4) Logical rules extraction: All nodes (conjunctive and dis-

junctive) are converted into some form of logical rules. The thresh-

olding process guarantees that all conjunctive nodes can be trans-

lated into bivalent logic representations. For a conjunctive node

𝑐 𝑗 , we consider the set X𝑗 = {𝑖 ∈ {1..𝐼 }|𝑤 ′
c𝑖 𝑗

≠ 0}, and |X𝑗 | ≠
0. We partition X𝑗 into subsets X+

𝑗
= {𝑖 ∈ X𝑗 |𝑤 ′

c𝑖 𝑗
= 6} and

X−
𝑗

= {𝑖 ∈ X𝑗 |𝑤 ′
c𝑖 𝑗

= −6}, and translate 𝑐 𝑗 to an ASP rule of the

form 𝑐𝑜𝑛 𝑗 𝑗 ←
∧

𝑖∈X+
𝑗
𝑎𝑡𝑜𝑚𝑖 ,

∧
𝑖∈X−

𝑗
(not 𝑎𝑡𝑜𝑚𝑖 ), where 𝑎𝑡𝑜𝑚𝑖 is an

atom for input 𝑥𝑖 . The disjunctive nodes are interpreted differently

depending on the desired policy type.

(4.a) Stochastic policy - ProbLog rules: We use ProbLog’s anno-

tated disjunctions to represent mutually exclusive action prob-

abilities. Each unique achievable activation of the conjunctive

layer c(𝑚) ∈ {−1, 1}𝐶′ with 1 ≤ 𝑚 ≤ 2
𝐶′ 2

forms the body of

a unique annotated disjunction of the form 𝑝1 :: 𝑎𝑐𝑡𝑖𝑜𝑛1; ...;

𝑝𝑁 :: 𝑎𝑐𝑡𝑖𝑜𝑛𝑁 ←
∧

𝑖∈C (𝑚)+ 𝑐𝑜𝑛 𝑗𝑖 ,
∧

𝑖∈C (𝑚)− (\+𝑐𝑜𝑛 𝑗𝑖 ), where
C (𝑚)+ = {𝑖 |𝑐 (𝑚)

𝑖
= 1}, C (𝑚)− = {𝑖 |𝑐 (𝑚)

𝑖
= −1}, and 𝑝 𝑗 =

2𝐶′ is the number of remaining conjunctive nodes after pruning, which may differ

from the initial choice of𝐶 .
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(𝑦 (𝑚)
𝑗
+ 1)/2 (the probability assigned to the 𝑗 th action in the

disjunctive activation for the𝑚th
unique activation). We com-

pute such annotated disjunctions for all unique conjunctive

activations. Listing 2 shows an example of ProbLog rules.

(4.b) Deterministic policy - ASP rules: Since the disjunctive

layer is also thresholded, we translate each disjunctive node

into a normal clause. For a disjunctive node𝑑 𝑗 , we consider the

set C𝑗 = {𝑖 ∈ {1..𝐶′}|𝑤 ′
d𝑖 𝑗

≠ 0}, and |C𝑗 | ≠ 0. We partition

C𝑗 into subsets C+
𝑗

= {𝑖 ∈ C𝑗 |𝑤 ′
d𝑖 𝑗

= 6} and C−
𝑗

= {𝑖 ∈
C𝑗 |𝑤 ′

d𝑖 𝑗
= −6}, and translate 𝑑 𝑗 to a formula of the form

𝑑𝑖𝑠 𝑗 𝑗 ← (∨𝑖∈C+
𝑗
𝑐𝑜𝑛 𝑗𝑖 ) ∨ (

∨
𝑖∈C−

𝑗
(not 𝑐𝑜𝑛 𝑗𝑖 )). In practice,

the formula is represented as multiple rules with the same

head in ASP. Listing 1 shows an example of ASP rules.

If there is an encoder before the neural DNF-MT actor in the

overall architecture, we perform a mandatory step of invented

predicate discretisation (step 0 in Figure 3) at the beginning of the

post-training process. We take the sign of the invented predicate

tanh activations, converting them to±1 to interpret them as bivalent

logical truth values of ⊤ or ⊥. Each invented predicate is defined

as a minimal set of raw observations using an ASP optimisation

function (step 5 in Figure 3).

Neural-bivalent-logic translation. The translation for determin-

istic policies is bidirectional and maintains truth value equivalence:

given an input tensor and its translated logical assignment, the

interpreted bivalent truth value of the neural DNF-MT model with

only ±6-and-0-valued weights is the same as the logical valuation of

its translated ASP program, and vice versa.
3
A formal proof of this

bidirectional claim can be found in the full version of this paper.
4

4 EXPERIMENTS
We evaluate the RL performance (measured in episodic return) of

our neural DNF-MT actors and their interpreted logical policies in

four sets of environments with various forms of observations. Some

tasks require stochastic behaviours, while others can be solved with

deterministic policies. We compare our method with two baselines:

Q-tables trained with Q-learning where applicable and MLP ac-

tors trained with actor-critic PPO. Our neural DNF-MT actors are

trained with MLP critics using the PPO algorithm in the Switcheroo

Corridor set, Blackjack and Door Corridor environments. In the

Taxi environment, we distil a neural DNF-MT actor from a trained

MLP actor. We do not directly evaluate the extracted ProbLog poli-

cies because of the long ProbLog query time. Instead, we evaluate

their final neural DNF-MT actors before logical rule extraction (i.e.

after step 3, re-pruning) as an approximation. The approximation

is acceptable because a ProbLog policy’s action distribution is the

same as its corresponding neural DNF-MT’s action distribution to

3 decimal places. Figure 4 summarises the performance evaluation.

4.1 Switcheroo Corridor
We adopt an example environment from [30] and create a set of

Switcheroo Corridor environments that support MDP tasks with

deterministic policies and POMDP tasks with stochastic policies.

The observation can be either (i) the state number one-hot encoding

3
This translation does not support predicate invention.

4
Available at https://arxiv.org/abs/2501.03888.

of the agent’s current position (anMDP task) or thewall status of the

agent’s current position (a POMDP task). In most states, going left

or right results in moving in the intended direction. However, there

are special states that reverse the action effect. Thus, the nature

of the task decides whether the optimal policy is deterministic or

stochastic. In the MDP setting, the optimal policy is deterministic:

identifying the special states based on the state number and going

left in them. In the POMDP setting, identifying the special states

based solely on wall status observations is impossible without a

memory. The optimal policy shows stochastic behaviour so that

the correct action may be sampled in the special states.

Start

Goal

Special

Figure 5: Small corridor (SC),
same as the one from [30].

The start, goal, and spe-

cial states are customis-

able but fixed once created

throughout training and in-

ference. We create three

corridors based on differ-

ent configurations: Small

Corridor (SC) as shown in

Figure 5, Long Corridor-5 (LC-5), and Long Corridor-11 (LC-11), to

test the actor’s learning ability when the environment complexity

increases. The configurations of LC-5 and LC-11 are listed below.

Table 1: Environment configurations for LC-5 and LC-11.

Name

Corridor

Length

Start

State

Goal

State

Special

State(s)

LC-5 5 0 4 [1]

LC-11 11 7 3 [5, 6, 7, 8]

The first six groups in Figure 4 show the performance of all

models in the environment set. In MDP settings, all methods using

argmax action selection perform equally well, reaching the goal

with the minimum number of steps. In POMDP settings, MLP and

neural DNF-MT actors perform better than Q-table with 𝜖-greedy

sampling as expected, with minor performance differences. Neural

DNF-MT actors provide interpretability via logical programs com-

pared to MLP actors. Listing 1 shows the ASP program for a neural

DNF-MT actor in SC MDP, where state 1 is identified as special.

Listing 2 shows the ProbLog rules for a neural DNF-MT actor in

SC POMDP. As shown in line 1 in Listing 2, the actor favours the

action going right when only the left wall is present, which only

happens in state 0. Line 2 shows the case when the agent is in either

state 1 or 2 with no wall on either side, and the actor shows close

to 50-50 preference for both actions.

1 action(left) :- in_s_1. action(right) :- not in_s_1.

Listing 1: ASP rules of a neural DNF-MT actor in SC MDP.

1 0.041:: action(left) ; 0.959:: action(right) :-
left_wall_present , \+ right_wall_present.

2 0.581:: action(left) ; 0.419:: action(right) :- \+
left_wall_present , \+ right_wall_present.

Listing 2: ProbLog rules of a neural DNF-MT actor in SC
POMDP.
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Figure 4: Mean episodic return (y-axis) ± standard error of the baselines and neural DNF-MT models, together with the
ProbLog/ASP programs extracted from their corresponding neural DNF-MT models. All Q-tables are trained using Q-learning,
and all MLP actors are trained with actor-critic PPO. Most neural DNF-MT actors are trained with actor-critic PPO. Except
in the Taxi environment, the neural DNF-MT actor is distilled from a trained MLP actor (shown in dashed border and faded
colour). Different symbols after the actor’s name indicate different action selection methods: * for argmax action selection, †
for 𝜖-greedy sampling, and ‡ for actor’s distribution sampling.

4.2 Blackjack
The Blackjack environment from [30] is a simplified version of the

card game Blackjack, where the goal is to beat the dealer by having

a hand closer to 21 without going over. The agent sees the sum of

its hand, the dealer’s face-up card, and whether it has a usable ace.

It can choose to hit or stick. The performance across the models is

shown in the 7
th
group in Figure 4 and Table 2. The baseline Q-table

from [30] only shows a single action, so we only evaluate it with

argmax action selection. We evaluate the MLP and neural DNF-MT

actors with both argmax action selection and actor’s distribution

sampling. MLP actors with argmax action selection perform bet-

ter than their distribution sampling counterparts, with a higher

episodic return and win rate. The same is observed for neural DNF-

MT actors. The extracted ProbLog rules perform worse than their

original neural DNF-MT actors (no post-training processing), with

a higher policy divergence from the Q-table from [30]. We observe

a policy change from a trained neural DNF-MT actor to its extracted

ProbLog policy at the thresholding stage during the post-training

processing. This unwanted policy change caused by thresholding

leads to performance loss and persists in later environments; we

will discuss this issue further in Section 5.

Table 2: Blackjack: performance of MLP actors, neural DNF-
MT actors, and the extracted ProbLog programs. Policy diver-
gence measures the proportion of states where the argmax
policy disagrees with the Q-table from [30].

Model Episodic return Win rate Policy Divergence

Q-table [30]* -0.050 ± 0.001 42.94% ± 0.00% NA

MLP* -0.045 ± 0.000 43.24% ± 0.02%

15.87% ± 0.30%

MLP‡ -0.057 ± 0.001 42.84% ± 0.02%

NDNF-MT* -0.050 ± 0.001 42.82% ± 0.06%

20.66% ± 0.56%

NDNF-MT‡ -0.068 ± 0.001 42.17% ± 0.03%

ProbLog‡ -0.099 ± 0.007 40.79% ± 0.31% 27.92% ± 1.25%

4.3 Taxi
In the Taxi environment from [10], the agent controls a taxi to pick

up a passenger first and drop them off at the destination hotel. A

state number is used as the observation, and it encodes the taxi,

passenger and hotel locations using the formula ((𝑡𝑎𝑥𝑖_𝑟𝑜𝑤 ∗ 5 +
𝑡𝑎𝑥𝑖_𝑐𝑜𝑙) ∗5+𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟_𝑙𝑜𝑐) ∗4+𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛. Apart from moving

in four directions, the agent can pick up/drop off the passenger, but

illegally picking up/dropping offwill be penalised. The environment

is designed for hierarchical reinforcement learning but is solvable

with PPO and without task decomposition. However, for both MLP

actors and neural DNF-MT actors, we find that the performance

is more sensitive to PPO’s hyperparameters and fine-tuning the

hyperparameters is more difficult than in other environments. With

the wrong set of hyperparameters, the actor settles at a local optimal

with a reward of -200: never perform ‘pickup’/‘drop-off’ and move

until the step limit (200 steps). The environment is complex due to

its hierarchical nature, and learning the task dependencies based

on purely state numbers proves to be difficult, as a 1-value change

in the x/y coordinate of the taxi results is a change of state number

in 100s/10s. We successfully trained MLP actors with actor-critic

PPO but failed to find a working set of hyperparameters to train

neural DNF-MT actors. Instead, we distil a neural DNF-MT actor

from a trained MLP actor, taking the same observation as input and

aiming to output the exact action probabilities as the MLP oracle.

The performance is shown in the 8
th
group in Figure 4. Actors

using argmax action selection perform better than their distribution

sampling counterparts. Again, we observe a performance drop in

extracted ProbLog rules. With 300 unique possible starting states,

the extracted ProbLog rules are not guaranteed to finish in 200 steps:

2 out of the 10 ProbLog evaluations with action probabilities sam-

pling have truncated episodes. Across ten post-training-processed

neural DNF-MT actors with argmax action selection, there are an

average of 3.3 unique starting states where the models cannot fin-

ish the environment within 200 steps. De-coupling the observation

seems complicated and makes it hard to learn concise conjunctions,

thus increasing the error rate in the post-training processing.

4.4 Door Corridor
Inspired by Minigrid [5], we design a corridor grid with a fixed

configuration called Door Corridor, as shown in Figure 6. The agent

observes a 3×3 grid in front of it (as shown as the input in Figure 2)

and has a choice of four actions: turn left, turn right, move forward,
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and toggle. The toggle action only changes the status of a door

right in front of the agent.

For this environment, we use the architecture shown in Figure

2, where an encoder is shared between the actor and the critic.

The performance of MLP actors, neural DNF-MT actors and their

extracted ASP programs are shown in the last group in Figure 4.

Both of the neural actors learn the optimal deterministic policy.

Figure 6: Door Corridor
(DC): the agent needs to
turn right first, and tog-
gle and go through three
doors to reach the end of
the corridor.

To evaluate an extracted ASP

program in the environment, we

first pass the 3 × 3 observation

to the encoder, convert invented

predicates with bivalent interpre-

tations ⊤ to ASP facts, and then

append these facts as context to

the base policy. The combined

ASP program has to (i) output one

stable model with only one ac-

tion at each step (logically mutual

exclusive) and (ii) finish without

truncation to be counted as a suc-

cessful run. These requirements are also reflected in the neural

DNF-MT actor: the final tanh activation should only have one value

greater than 0, and taking that only action with greater-than-0 tanh

activation at each step finishes the environment without truncation.

The auxiliary loss terms in Equations 5, 7 and 8 help the neural

DNF-MT actor to achieve these requirements but make the training

less likely to converge on a good solution. Out of 32 runs, 6 runs

cannot finish the environment within the step limit. However, 25

of the 26 remaining runs can be interpreted as ASP policies. For

the single failing case, it fails to maintain logical mutual exclusivity

after thresholding. While it is possible to extract a ProbLog program

from it, we know the environment supports an optimal determinis-

tic policy. Hence, no logical program is extracted for this run. The

ASP programs of the 25 runs successfully finish the environment

with minimal steps, as reported in Figure 4. Listing 3 shows an

example of the extracted ASP program from one of the successful

runs and a possible set of definitions for the invented predicates.

1 action(turn_right) :- a_5 , a_8.
2 action(forward) :- a_2.
3 action(toggle) :- a_3.
4 % Definitions of each invented predicate a_i:
5 a_2 :- top_right_corner_wall.
6 a_3 :- one_step_ahead_closed_door.
7 a_5 :- not curr_location_open_door ,
8 not one_step_ahead_closed_door.
9 a_8 :- two_step_ahead_unseen.

Listing 3: An ASP policy for a neural DNF-MT actor in DC,
with a possible set of definitions for the invented predicates.

Policy Intervention. We create two variations of the base Door

Corridor environment with different termination conditions: Door

Corridor-T (DC-T), where the agent must be in front of the goal and

toggle it instead of moving into it, and Door Corridor-OT (DC-OT),

where the agent must stand on the goal and take the action ‘toggle’.

The input observation remains unchanged since only the goal cell’s

mechanism changes. The encoder can be reused immediately, but

the actor and critic cannot. An MLP actor trained on DC fails to

finish within step limits in DC-T and DC-OT environments without

re-training. However, we can modify the ASP policy to achieve the

optimal reward in both DC-T and DC-OT environments. Listings

4 and 5 show the modified ASP programs for DC-T and DC-OT

environments, respectively. The modified ASP programs can be

ported back to neural DNF-MT actors by virtue of the bidirectional

neural-bivalent-logic translation. The modified neural DNF-MT

actors also finish DC-T and DC-OT environments with minimal

steps without any re-training.

1 action(turn_right) :- a_5 , a_8.
2 action(forward) :- not a_1, a_2.
3 action(toggle) :- a_3.
4 action(toggle) :- a_1, not a_3, a_12.

Listing 4: Policy for DC-T, modified from Listing 3’s policy.

1 action(turn_right) :- a_5 , a_8 , a_11.
2 action(forward) :- a_2.
3 action(toggle) :- a_3.
4 action(toggle) :- not a_2, not a_3, not a_11.

Listing 5: Policy for DC-OT, modified from Listing 3’s policy.

5 DISCUSSIONS
We first analyse the persistent performance loss issue in Blackjack,

Taxi, and Door Corridor environments.

Performance loss due to thresholding. The thresholding step
converts the target layer(s) from a weighted continuous space to a

discrete space with only 0 and ±6 values, saturating the tanh activa-

tion at ±1 and enabling the translation to bivalent logic. However,

the thresholding step may not maintain the same logical interpre-

tation of the layer output. Here we show this issue through an

example in Listing 6, where a thresholded neural DNF-MT actor

fails to maintain logical mutual exclusivity in the Door Corridor en-

vironment. Note that we apply thresholding on both the conjunctive

and disjunctive layers since we desire a deterministic policy.

1 % Conjunctive nodes:
2 c_0 = 3.03 x_7 + bias_c0
3 c_7 = 0.56 x_13 + bias_c7
4 c_9 = -1.56 x_2 + bias_c9
5 c_11 = -1.05 x_9 + bias_c11
6 % Disjunctive nodes:
7 d_1 = 4.58 c_0 + bias_d1
8 d_2 = -3.48 c_9 + bias_d2
9 d_3 = 1.29 c_7 + 0.76 c_9 + 4.33 c_11 + bias_d3
10 % Thresholded nodes with tau = 0 (and ASP translation):
11 c_0 = 6 x_7 (conj_0 :- a_7.)
12 c_7 = 6 x_13 (conj_7 :- a_13.)
13 c_9 = -6 x_2 (conj_9 :- not a_2.)
14 c_11 = -6 x_9 (conj_11 :- not a_9.)
15 d_1 = 6 c_0 (act(1) :- conj_0 .)
16 d_2 = -6 c_9 (act(2) :- not conj_9 .)
17 d_3 = 6 c_7 + 6 c_9 + 6 c_11 + 12
18 (act(3) :- conj_7. act(3) :- conj_9. act(3) :- conj_11 .)

Listing 6: A neural DNF-MT actor in the Door Corridor
environment that fails at the thresholding stage. We leave
the bias terms uncalculated for brevity.

The 1
st
row of values in Table 3 are the pre-thresholding tanh output

when 𝑥2 = −1, 𝑥7 = 1, 𝑥9 = 1, 𝑥13 = −1 , with only 𝑦1 interpreted as

⊤ and chosen as action. The thresholded conjunctive nodes in the

2
nd

row share the same sign as row 1, but 𝑦3 becomes positive after

thresholding, resulting in two actions being ⊤ and thus violating

logical mutual exclusivity. The disjunctive nodes’ original weights

achieve the balance of importance between 𝑐7, 𝑐9 and 𝑐11 to make
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Table 3: Conjunctive and disjunctive nodes’ tanh output when
𝑥2 = −1, 𝑥7 = 1, 𝑥9 = 1, 𝑥13 = −1, calculated based on the for-
mulation in Listing 6. Row 1 is the original output without
applying thresholding, and row 2 is the output after thresh-
olding on value 0.

𝑐0 𝑐7 𝑐9 𝑐11 𝑦1 𝑦2 𝑦3

1.00 -0.51 0.92 -0.78 1.00 -1.00 -0.86

1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00

𝑦3 negative. However, the thresholding process ignores the weights

and makes them equally important, leading to a different output

and truth value. It shows that the thresholding stage cannot handle

volatile and interdependent weights and maintain the underlying

truth table represented by the model. We leave it as a future work to

improve/replace the thresholding stage with a more robust method.

We now discuss the implications of our work in terms of perfor-

mance, interpretability, inference, and policy intervention.

Performance. From the experiments, we see that the neural DNF-

MT actor can be trained with actor-critic PPO or distilled from an

MLP oracle to learn an optimal policy in the Switcheroo Corridor,

Taxi, and Door Corridor environments. In Blackjack, the perfor-

mance is worse but close to an optimal MLP actor. Furthermore, we

demonstrate that an encoder for handling complex observations

and realising predicate invention can be end-to-end trained with

the neural DNF-MT actor in the Door Corridor environment.

Interpretability. The logical programs extracted from trained

neural DNF-MT actors provide interpretability, which MLP actors

lack. We also demonstrate through different environments that

we can represent stochastic and deterministic policies in different

forms of logic (ProbLog and ASP, respectively).

Inference. Even if the actor has learnt an interpretable policy,

running a fully logic-based agent might not be efficient. Inference

in neural DNF-MT actors is significantly faster than in ProbLog or

ASP, thanks to tensor operations and environment parallelism.
5

Policy Intervention. The bidirectional neural-bivalent-logic trans-
lation allows us to modify the ASP program and translate it back

to the neural architecture without re-training, as shown in Door

Corridor’s variations in Section 4.4. This feature could be helpful

in tasks where we have background knowledge. By pre-encoding

the information into logical rules or modifying the logical rules of

an actor trained in a similar environment, the edited logic program

can be ported back to the neural model to provide a hot start in

training. This functionality will be explored in future work.

In summary, our neural DNF-MT model learns interpretable and

editable policies, with the neural benefits of end-to-end training

and parallelism in inference and the logical benefits of interpretable

logical program representation.

6 RELATEDWORK
Many neuro-symbolic approaches perform the task of inductive

logic programming (ILP) [7, 23] in differentiable models, and poli-

cies are learned and represented as logical rules. They are commonly

5
We provide a detailed comparison in the full version of the paper.

applied in Relational RL [12, 36] domains that utilise symbolic rep-

resentations for states, actions, and policies. NLRL [16] and NUDGE

[9] are two approaches based on the differentiable ILP system [13]

and its extension from [28], where the search space needs to be

defined first. NLRL generates candidate rules using rule templates.

NUDGE distils symbolic policy from a trained neural model by

defining its search space with mode declarations [22] and then

training rule-associated weights. NeSyRL [18] and Differentiable

Logic Machine (DLM) [37] do not associate weights with rules but

predicates; thus, they are not reliant on rule templates or mode

declarations. NeSyRL uses a disjunctive normal form Logical Neural

Network (LNN) [25] as its actor, and each neuron represents an

atom/logical connective. A pre-trained semantic parser extracts

first-order logic predicates from text-based observations, and the

LNN selects actions to generate trajectories that get stored in a

replay buffer for training, similar to DQN [21]. DLM builds upon

Neural Logic Machine [11] to realise forward chaining, but with

logical computation units to provide interpretability. A DLM actor

is trained with actor-critic PPO [27], with a specially designed critic

with GRUs to handle different-arity predicates.

Different from NLRL [16] and NUDGE [9], our neural DNF-MT

model does not use rule templates or mode declarations. Therefore,

it does not rely on human engineering to construct the inductive

bias and can learn a wider range of rules. Compared to the men-

tioned works that either operate on relational-based observations

[9, 16, 37] or require pre-trained networks to extract logical pred-

icates [9, 18], we demonstrate that our neural DNF-MT model is

end-to-end trainable with preceding layers for predicate invention.

Akin to DLM [37], we use the PPO algorithm for training; however,

our method does not require a specialised critic.

7 CONCLUSION
We propose a neuro-symbolic approach named the neural DNF-MT

model for learning interpretable and editable policy in RL. It can

be trained with actor-critic PPO or distilled from a trained MLP

actor, and an encoder for predicate invention can also be end-to-end

trained together with it. The trained neural DNF-MT model can be

represented as either a ProbLog program for stochastic policy or

an ASP program for deterministic policy. The neural-bivalent-logic

translation is bidirectional, allowing policy intervention by modi-

fying the ASP program and then converting it back to the neural

model for efficient inference in parallel environments. We evaluate

the neural DNF-MT model in four environments with different

forms of observations and stochastic/deterministic behaviours. The

experiments show the neural DNF-MT model’s capability to learn

the optimal policy with performance similar to an MLP actor’s. Fur-

thermore, it provides logical representation and use cases for policy

intervention, neither of which can be provided easily by an MLP.

In future work, we aim to follow up on the policy intervention idea

by providing the neural DNF-MT actor with a hot starting point

from a modified policy. Moreover, the thresholding stage during

post-training processing needs to be improved/replaced so that the

underlying logical relations learned by the neural DNF-MT model

can be extracted without performance loss.
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