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ABSTRACT
Population-population generalization is a challenging problem in
multi-agent reinforcement learning (MARL), particularly when
agents encounter unseen co-players. However, existing self-play-
based methods are constrained by the limitation of inside-space
generalization. In this study, we propose Bidirectional Distillation
(BiDist), a novel mixed-play framework, to overcome this limitation
in MARL. BiDist leverages knowledge distillation in two alternating
directions: forward distillation, which emulates the historical poli-
cies’ space and creates an implicit self-play, and reverse distillation,
which systematically drives agents towards novel distributions out-
side the known policy space in a non-self-play manner. Our results
highlight its remarkable generalization ability across a variety of
cooperative, competitive, and social dilemma tasks, and reveal that
BiDist significantly diversifies the policy distribution space.
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1 INTRODUCTION & RELATEDWORK
Multi-agent reinforcement learning (MARL) [9, 13, 18, 21] still strug-
gles with generalization [4] like zero-shot co-player generalization,
where agents trained together must maintain performance when
some are replaced with unseen ones [1, 8]. This paper focuses on
population-population generalization in MARL, where multiple
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agents interact with unseen co-players. This scenario presents a
greater challenge compared to ad-hoc teamplay [16, 19, 20], which
requires only a single agent to generalize with multiple partners

Standard MARL fosters coordination only among agents’ cur-
rent policies during training, limiting interaction diversity. Self-
play [2, 5, 11, 12, 15] mitigates this by leveraging historical policies,
ideally being able to cover the entire distribution space of both
current and historical training policies. While this improves “inside-
space” generalization, it struggles with “outside-space” general-
ization where zero-shot policies include those never encountered
during training. These distributions cannot be captured merely by
reusing historical training policies, and in such cases, self-play-
based methods fall short.

In this study, we propose a novel mixed-play method that en-
riches interaction diversity by strategically deviating from historical
policy space, especially in the outside space. BiDist alternates be-
tween two phases: forward distillation and reverse distillation. The
forward phase distills fictitious population policies from historical
ones, simulating implicit self-play without costly memorization.
The reverse phase, by contrast, pushes fictitious policies away from
historical patterns, promoting non-self-play exploration. Empirical
evaluations across cooperation, competition, and social dilemma
games show BiDist outperforms baselines, generalizes well, and
expands policy distribution.

2 BIDIRECTIONAL DISTILLATION
We introduce Bidirectional Distillation (BiDist) to address inside-
space and outside-space generalization in MARL. BiDist alternates
between forward distillation, which retains self-play knowledge,
and reverse distillation, which pushes beyond historical boundaries
to explore new behaviors. This approach systematically enhances
agent generalization beyond conventional self-play methods.

Fictitious population. To encourage diverse agent interactions,
we introduce a fictitious population 𝑔 as an imaginary background
population 𝑔 during training. It consists of agents randomly de-
tached from the trained population 𝑓 . The assignment is deter-
mined by a binary vector 𝒗 = 𝑣1, . . . , 𝑣𝑁 ∈ {0, 1}𝑁 , where 𝑣𝑖 = 1
denotes agent in the trained population and 𝑣𝑖 = 0 in the fictitious
population. The vector 𝒗 is sampled from the Bernoulli distribu-
tion. Agents in 𝑔 use distilled policies {𝜋𝜙𝑖

}𝑁
𝑖=1 instead of learning
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Table 1: The normalized focal per-capita returns of different algorithms on the testing scenarios for each substrate. SC denotes
the scenario. The returns are min-max normalized within each scenario.

Pure Coordination Coop Mining Chicken Coins Prisoners Dilemma

Method SC0 SC1 SC2 SC3 SC4 SC0 SC1 SC2 SC3 SC4 SC0 SC1 SC2 SC3 SC4 SC0 SC1 SC2 SC3 SC4 SC0 SC1 SC2 SC3 SC4

MAPPO 0.50 0.61 0.41 0.67 0.32 0.40 0.50 0.00 0.61 0.79 0.66 0.60 0.72 0.71 0.71 0.97 0.87 0.87 0.97 0.73 0.64 0.60 0.75 0.88 0.89
RanNet 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00
OPRE 0.40 0.58 0.26 0.86 0.03 0.52 0.74 0.93 0.78 0.72 0.54 0.62 0.61 0.72 0.72 0.93 0.92 0.75 1.00 1.00 0.00 0.27 0.14 0.20 0.29
PP 0.65 0.43 0.81 0.72 0.64 0.25 0.26 0.22 0.18 0.04 0.47 0.43 0.36 0.53 0.59 0.86 0.64 0.76 0.21 0.75 0.66 0.92 0.63 0.77 0.52
RPM 0.77 0.65 0.79 0.80 0.71 0.18 0.29 0.37 0.02 0.05 0.52 0.52 0.48 0.48 0.49 0.88 0.81 0.72 0.09 0.80 0.80 1.00 0.79 0.56 0.68

BiDist 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 0.96 1.00 1.00 1.00

policies {𝜋𝜃𝑖 }𝑁𝑖=1, gathering trajectories as:

𝜏 ∼ GatherTrajectories(Z, {𝜋𝜃𝑖 }𝑣𝑖=1︸     ︷︷     ︸
Population 𝑓

, {𝜋𝜙𝑖
}𝑣𝑖=0︸     ︷︷     ︸

Population 𝑔

), (1)

whereZ denotes the environment and 𝜏 denotes the trajectory.
Forward distillation. We employ knowledge distillation [3]

to implicitly retain historical learning policies while minimizing
resource consumption. This involves using the distilled policy net-
works {𝜋𝜙𝑖

}𝑁
𝑖=1 to approximate the distributions of the learning

policy networks {𝜋𝜃𝑖 }𝑁𝑖=1 throughout training

LKL (𝝓) = 1
𝑁

∑︁𝑁

𝑖=1
E𝑜𝑖∼D

[
𝐷KL

(
𝜋𝜃𝑖 (·|𝑜𝑖 ) | |𝜋𝜙𝑖

(·|𝑜𝑖 )
)]

, (2)

with parameter updates:𝝓 ← 𝝓−𝜂𝑓 ·∇𝝓LKL (𝝓). Distillation occurs
periodically at an interval 𝑘𝑑 , maintaining a lagged representation
of learning policies.

Reverse distillation. To promote exploration, reverse distilla-
tion shifts preferences in 𝑔 beyond historical distributions. This is
achieved by maximizing the KL divergence: 𝝓 ← 𝝓+𝜂𝑟 ·∇𝝓LKL (𝝓).
By doing so, the distilled policies can capture action preferences
that differ from the learning policies, enabling them to explore and
generalize beyond the inside-space distribution. Throughout the
training, forward and reverse distillations alternate at intervals of
𝑘𝑑 iterations. This dynamic interplay balances retention and inno-
vation, ensuring that not only inherit the strengths of self-play but
also adapt to novel outside-space scenarios.

3 EXPERIMENT
In our experiment, we carry out 5 different generalization tasks
across cooperation, competition, and social dilemmas, on Deep-
Mind’s Melting Pot [1]. Our baseline methods include MAPPO [21],
a multi-agent version of the PPO series [10, 14], as well as Rand-
Net [7], OPRE [17], population-based self-play (PP), and RPM [12], a
self-play MARL generalization approach. The results are presented
in Table 1. We report the min-max normalized focal per-capita
returns of five test scenarios (scenarios 0-4) for each substrate.

Main results. We observe that RanNet struggles to achieve
population-population generalization. In comparison, OPRE, PP,
and RPM achieve competitive outcomes in certain tasks. However,
their generalization ability displays discontinuity in different scenar-
ios. For example, RPM ranges from a peak of 1.00 in the prisoner’s
dilemma to a low of 0.56, whereas OPRE varies from 0.86 in pure
coordination scenarios to a mere 0.03 at its weakest. These incon-
sistencies highlight their difficulties in effectively incorporating
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Figure 1: Ablation studies of BiDist on Pure Coordination.

preference shifts to address the outside-space generalization. Con-
sequently, while their performance may shine in certain scenarios,
they falter in others where agents hold disparate preferences. In
contrast, our BiDist consistently achieves high normalized focal
per-capita returns across varying dynamics. By integrating prefer-
ence shifts into the training data, BiDist more effectively addresses
both inside-space and outside-space challenges.

Ablations. Figure 1 examines the ablations of BiDist by setting
𝒗 = 0 (BiDist (𝒗 = 0)), removing reverse distillation (BiDist (+F,
-R)) and then further removing forward distillation (BiDist (-F, -R)).
The results show a significant drop in BiDist (𝒗 = 0), highlighting
the importance of fictitious agents. Both BiDist (+F, -R) and BiDist
(-F, -R) perform poorly, emphasizing the need for both forward and
reverse distillations.

4 CONCLUSION & FUTUREWORK
In this paper, we addressed the challenge of population-population
generalization in MARL and proposed a concise and effective ap-
proach, called BiDist. Central to our contribution is the formulation
of a mixed-play framework that leverages the power of diversity in
agent interactions. BiDist consists of two alternating phases: for-
ward and reverse distillations, which work together to effectively
achieve historical knowledge retention and preference shifts for
the fictitious population, thereby enhancing the diversity in agent
interactions. One direction for future work lies in long-term knowl-
edge retention and adaptation, for example, through continuous
learning [6].
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