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ABSTRACT
Cooperative heterogeneous multi-agent tasks require agents to
effectively coordinate their behaviors while accounting for their
relative capabilities. Learning-based solutions span between two
extremes with opposing tradeoffs: i) shared-parameter solutions,
which encode diverse behaviors within a single architecture by
assigning an ID to each agent, are sample-efficient but result in
limited behavioral diversity; ii) independent solutions, which learn
a separate policy for each agent, show greater behavioral diversity
but lack sample-efficiency. Prior work has also explored selective
parameter-sharing, allowing for a compromise between diversity
and efficiency. None of these approaches, however, effectively gen-
eralize to unseen agents or teams. We present Capability-Aware
Shared Hypernetworks (CASH), a novel architecture for heteroge-
neous multi-agent coordination that generates behavioral diversity
while staying sample-efficient via soft parameter-sharing hypernet-
works. CASH allows the team to learn common strategies using a
shared encoder, which are then adapted according to the team’s ca-
pabilities with a hypernetwork, allowing for zero-shot generalization
to unseen teams and agents. We conduct experiments across two
heterogeneous coordination tasks and three learning paradigms
(imitation learning, on- and off-policy reinforcement learning). Re-
sults show that CASH outperforms baseline architectures in success
rate and sample efficiency when evaluated on unseen teams and
agents despite using 60-80% fewer learnable parameters.
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Figure 1: We present Capability-Aware Shared Hypernet-
works (CASH), an architecture for flexible and decentralized
heterogeneous multi-agent coordination. CASH uses hyper-
networks to achieve soft parameter sharing, and conditions
agent behavior on individual and collective capabilities to
generate sufficient behavioral diversity. Our implementation
can be found at https://github.com/GT-STAR-Lab/CASH.

1 INTRODUCTION
Consider a firefighting scenario where a team of heterogeneous
robots is tasked with putting out several wildfires in a large forest.
Robots in this team have different capabilities (e.g. speed, firefight-
ing capacity) and thusmust reason about their collective capabilities
in order to effectively cooperate. Suppose we do not know which
specific agents are available until runtime, or want to account for
individual capabilities changing during runtime. This motivates
the need for a single policy to readily adapt to changing team com-
positions and capabilities, without requiring retraining. Moreover,
such scenarios require a decentralized solution since centralized
coordination might not be possible.
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Learning-based approaches to this decentralized heterogeneous
coordination problem span between two extremes. The dominant
approach has been to append a unique ID to each individual agent [10,
14, 21, 23], preserving the sample-efficiency and scalability benefits
of shared-parameter multi-agent policy learning [8, 20] while en-
abling agents to exhibit diverse behavior. The opposite extreme is
to learn an independent policy for each agent, improving diversity
in agent behavior but sacrificing efficiency and scalability [4, 5, 12].
Selective parameter sharing, in which subsets of agents are given
unique IDs, has proven to be a useful compromise between the two
extremes [7, 19, 22]. However, none of these approaches reason
over the impact of agent capabilities on behavior, and thus cannot
effectively generalize to unseen agents or teams.

In this work, we present Capability-Aware Shared Hypernet-
works (CASH), a novel middle-ground approach to decentralized
heterogeneous coordination: soft weight sharing using hypernet-
works [9]. Motivated by robotics, we are interested in efficiently
learning decentralized coordination strategies that can zero-shot
generalize to changes in team composition and capabilities.

2 CAPABILITY-AWARE SHARED
HYPERNETWORKS

Inspired by prior work in trait-based task allocation, we start with
the assumption that agent capabilities can be represented with a
single vector of scalars [10, 15]. To best adapt agent behavior to ca-
pabilities, we employ hypernetworks, or networks which generate
the parameters of another “target” network [9]. Hypernetworks can
be seen as soft weight sharing [6, 9], as one hypernetwork can ap-
proximate an ensemble of individually trained target networks, and
indeed there are multiple recent examples of hypernetworks flexi-
bly adapting network behavior for continual learning [11], transfer
learning [16], and meta-RL [2, 3].

CASHhas three components: the RNNEncoder, theHyper Adapter,
and the Adaptive Decoder (Fig. 1). First, the RNN Encoder generates
a latent embedding from observations. Then, the Hyper Adapter,
conditioned on both local observations and individual and team
capabilities, produces the parameters of the Adaptive Decoder. Em-
pirically, we found that adding LayerNorm [1] before each acti-
vation in the Hyper Adapter was critical for stabilizing training.
Finally, the Adaptive Decoder, given the latent embedding of the
RNN Encoder, produces an action (or value, depending on the learn-
ing paradigm). Since the RNN Encoder and Hyper Adapter are
both fully shared-parameter, CASH retains many of the efficiency
benefits of shared-parameter approaches. However, the Adaptive
Decoder’s parameters are dynamically modified for each agent at
each timestep, enabling diverse and adaptive behaviors.

3 RESULTS
We evaluate CASH on two novel heterogeneous coordination tasks
implemented with JaxMARL’s MPE [13, 18] (Firefighting and
Transport) and three learning paradigms: DAgger [17], repre-
senting imitation learning, MAPPO [23], for on-policy RL, and
QMIX [14], for off-policy RL.We compare CASH against two shared-
parameter baseline approaches that do not leverage hypernetworks:
RNN-IMP, which does not have access to capabilities and must in-
fer them from observations alone, and RNN-EXP, where capability

Figure 2: Success rates (↑, top) and learnable parameters (↓,
bottom) across two tasks and three learning paradigms. Solid
curves/shaded area are mean/stdev when evaluated on un-
seen teams & agents (OOD), while dotted curves are when
evaluated on training teams (ID). CASH outperforms both
RNN-IMP and RNN-EXP on unseen teams & agents with
60-80% fewer learnable parameters, even when RNN-EXP
matches CASH’s performance on training teams. Results are
with 10 seeds for QMIX/MAPPO, 3 for DAgger.

vectors are explicitly concatenated to inputs. We do not compare
against independent learning approaches as it is not possible to
apply those methods to unseen agents.

Despite having 60%-80% fewer learnable parameters to work
with, CASH outperforms the baselines in both final success rate
and sample efficiency when generalizing to unseen team compo-
sitions and out-of-distribution capabilities, even when CASH and
RNN-EXP both perform well on training teams (Fig. 2). Our results
show that Capability-Aware Shared Hypernetworks are a powerful
architecture for sample-efficient heterogeneous multi-agent learn-
ing. This is an extended abstract; for more detailedmethodology and
results, please see our full paper at http://arxiv.org/abs/2501.06058.
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