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ABSTRACT
Learning in games discusses the processes where multiple players

learn their optimal strategies through the repetition of game plays.

The dynamics of learning between two players in zero-sum games,

such as Matching Pennies, where their benefits are competitive,

have already been well analyzed. However, it is still unexplored and

challenging to analyze the dynamics of learning among three play-

ers. In this study, we formulate a minimalistic game where three

players compete to match their actions with one another. Although

interaction among three players diversifies and complicates the

Nash equilibria, we fully analyze the equilibria. We also discuss

the dynamics of learning based on some famous algorithms catego-

rized into Follow the Regularized Leader. From both theoretical and

experimental aspects, we characterize the dynamics by categoriz-

ing three-player interactions into three forces to synchronize their

actions, switch their actions rotationally, and seek competition.
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1 INTRODUCTION
Dynamical systems approach is often taken for analyzing learning

in games [1, 2, 27, 28]. This is because gradient-based algorithms fail

to converge to the Nash equilibrium in zero-sum games, where the

utility functions of two agents conflict. Indeed, a representative class

of learning algorithms, Follow the Regularized Leader (FTRL) [17,

18, 22], which is tied to replicator dynamics [3, 7, 12, 12, 21, 26]

and gradient ascent [6, 11, 24, 29], cannot stop a cycling behavior

even in a simple game like Matching Pennies [2, 3]. This cycling

behavior is understood based on the Bregman divergence [1, 17, 20],

which corresponds to the distance from the equilibrium. Dynamical

systems are also pivotal to discuss convergent algorithms to the
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equilibrium [4, 8]. This convergence is understood based on some

Lyapunov functions, which globally decrease with time.

Despite such a thorough understanding of two-player games,

three-player games are difficult to understand in general. Classically,

this difficulty is seen in Jordan’s game [13], which is a three-player

version of Matching Pennies. In this game, the divergence from

the equilibrium is observed [9, 15, 16, 23]; the distance from the

equilibrium is no longer conserved. This divergence is not seen

in Matching Pennies. Thus, the motivation to study complex dy-

namics in learning in three-player games is established [14, 19]. In

addition, the Nash equilibria of three-player games are hard to fully

analyze [5], even when the games are zero-sum.

Our contribution: This study proposes Three-Player Matching𝑚-

Action (𝑚-3MA) game as an extension of Matching Pennies. Despite

the Nash equilibrium becomes complex, we fully analyze it. We

further introduce the continuous-time FTRL, characterize it by a

Lyapunov function𝑉 and the Bregman divergence𝐺 , and interpret

it based on three parameters, 𝛼 , 𝛽 , and 𝛾 .

2 PRELIMINARY
We now formulate𝑚-3MA games (see Fig. 1). Let X, Y, and Z denote

three players. Every round, they independently determine their

actions from the same𝑚-action set,A = {𝑎1, · · · , 𝑎𝑚}. Players who
choose the same action interact with each other. This interaction

follows a three-way deadlock relationship among them: X wins Y,

Y wins Z, but Z wins X. They receive their scores. When only two

of them interact, the winner and loser are determined following

the three-way deadlock relationship, and the winner’s and loser’s

scores are 𝑎 and 𝑏, respectively. Players who chose a different action

from the others receive the default payoff of 𝑐 . If all three players

Figure 1: Illustration of𝑚-3MA games.
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Figure 2: Learning dynamics in𝑚-3MA game for𝑚 = 2. The color indicates the value of 𝑉 .

take the same action, they commonly receive the scores of 𝜖 . Here,

we assume that the winner’s and loser’s scores are highest and

lowest, respectively, i.e., 𝑏 < 𝑐 < 𝑎 and 𝑏 < 𝜖 < 𝑎.

Let 𝒙 := (𝑥1, · · · , 𝑥𝑚) ∈ Δ𝑚−1
(the𝑚 − 1 dimensional simplex)

denote X’s strategy, where 𝑥𝑖 is the probability that X chooses

action 𝑎𝑖 . Similarly, Y’s and Z’s strategies are denoted by 𝒚 ∈ Δ𝑚−1

and 𝒛 ∈ Δ𝑚−1
, respectively. When players follow such strategies,

X’s expected payoff is given by

𝑢 (𝒙,𝒚, 𝒛) = 𝜖
∑︁
𝑖

𝑥𝑖𝑦𝑖𝑧𝑖 + 𝑎
∑︁
𝑖

𝑥𝑖𝑦𝑖𝑧𝑖 + 𝑏
∑︁
𝑖

𝑥𝑖𝑦𝑖𝑧𝑖 + 𝑐
∑︁
𝑖

𝑥𝑖𝑦𝑖𝑧𝑖 ,

where we defined
¯X := 1 − X for arbitrary variable X. Y’s and

Z’s expected payoffs are also described as 𝑢 (𝒚, 𝒛, 𝒙) and 𝑢 (𝒛, 𝒙,𝒚),
respectively. These𝑚-3MA games are characterized by three pa-

rameters, 𝛼 := 𝜖 − 𝑐 , 𝛽 := 𝑎 − 𝑏 > 0, and 𝛾 := 𝑎 + 𝑏 − 2𝑐 .

3 NASH EQUILIBRIUM
The Nash equilibrium of𝑚-3MA is defined as the set of strategies

(𝒙∗,𝒚∗, 𝒛∗) which maximize their expected payoffs, respectively.

It is difficult to derive equilibrium in three-player games [5],

and indeed, there are few successful studies [10, 25]. Nevertheless,

we can fully analyze all the Nash equilibria and interpret them as

follows.

Theorem 1 (Main properties of the Nash eqilibria). First,
the following property always holds.

• (Player symmetry) For any Nash equilibrium, all three play-
ers take the same strategy, i.e., 𝒙∗ = 𝒚∗ = 𝒛∗.

Furthermore, the region of the Nash equilibria has the following prop-
erties.

• (Neutral equilibria) When 𝛼 = 𝛾 = 0, all the strategies in
the simplex Δ𝑚−1 can be the Nash equilibria.

• (Pure-strategy equilibria) NP (𝑚) = {𝒆1, · · · , 𝒆𝑚} are the
Nash equilibrium strategies, if and only if 𝛼 ≥ 0.

• (Uniform-choice equilibrium) NU (𝑚) = {1/𝑚} is always
the Nash equilibrium strategy.

4 LEARNING DYNAMICS
We introduce the continuous-time FTRL;

𝒙 = 𝒒(𝒙†), ¤𝒙† =
𝜕𝑢

𝜕𝒙
, 𝒒(𝒙†) = arg max

𝒙

{
𝒙† · 𝒙 − ℎ(𝒙)

}
.

Here, ℎ(𝒙) is “regularizer”, a penalty term in projecting the updated

strategy back to its strategy space. Several representative examples

are the entropic regularizer ℎ(𝒙) = 𝒙 · log 𝒙 and the Euclidean

regularizer ℎ(𝒙) = ∥𝒙 ∥2

2
/2.

To investigate learning dynamics given by the continuous-time

FTRL, we introduce 𝐺 and 𝑉 as

𝐺 (𝒙†,𝒚†, 𝒛†) := Σcyc max

𝒙
{𝒙† · 𝒙 − ℎ(𝒙)} − 𝒙† · 1/𝑚,

𝑉 (𝒙,𝒚, 𝒛) := Σ𝑖 𝑥𝑖𝑦𝑖𝑧𝑖 − 1/𝑚2 .

Here, Σcyc indicates the cyclic sum for three players. In other words,

Σcyc F (𝒙) = F (𝒙) + F (𝒚) + F (𝒛) holds for arbitrary function F .

We now explain the meanings of 𝐺 and 𝑉 . First, 𝐺 is known to

be conserved under zero-sum games [17] and corresponds to the

Bregman divergence from the uniform-choice equilibrium. Next,

𝑉 means the probability that all three players choose the same

action, in other words, the degree of synchronization of their action

choices.

We now consider𝑚-3MA with the case of𝑚 = 2. Since𝑚 = 2

holds, 𝑥2 = 1 − 𝑥1, 𝑦2 = 1 − 𝑦1, and 𝑧2 = 1 − 𝑧1 hold so that we

can describe the learning dynamics by only the three variables of

(𝑥1, 𝑦1, 𝑧1). The continuous-time FTRL are independent of 𝛾 and

interpreted as follows.

Theorem 2 (Global behavior of dynamics). In𝑚-3MA with
𝑚 = 2, the continuous-time FTRL with the entropic and Euclidean
regularizers gives the following properties in general.

• When 𝛼 = 0, both 𝐺 and 𝑉 are conserved in the trajectory.
• When 𝛼 > 0, the trajectory asymptotically converges to the
states of maximum 𝑉 , i.e., either of the fixed points.

• When 𝛼 < 0, the trajectory asymptotically converges to the
states of minimum 𝑉 , i.e., the heteroclinic cycle.

For general𝑚, we capture the intuitions of 𝛼 , 𝛽 , and 𝛾 as follows.

• 𝛼 contributes to synchronization. When 𝛼 > 0 (resp. 𝛼 <

0), the players learn to synchronize (desynchronize) their

actions.

• 𝛽 contributes to rotation. The larger 𝛽 is, the faster the cy-

cling behavior of the learning is.

• 𝛾 matters only for𝑚 > 2 and contributes to the frequency

of competition. When 𝛾 > 0, the players prune their action

choices to two. When 𝛾 < 0, they decentralize their action

choices.
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