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ABSTRACT
The fair division of chores, as well as mixed manna (goods and

chores), has received substantial recent attention in the fair division

literature; however, ours is the first paper to extend this research to

matching markets. Indeed, our contention is that matching markets

are a natural setting for this purpose, since the manna that fit into

the limited number of hours available in a day can be viewed as one

unit of allocation. We extend several well-known results that hold

for goods to the settings of chores and mixed manna. In addition,

we show that the natural notion of an earnings-based equilibrium,

which is more natural in the case of all chores, is equivalent to the

pricing-based equilibrium given by Hylland and Zeckhauser for the

case of goods.
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1 INTRODUCTION
In a one-sided matching market, we are given a set 𝐴 of agents and
a set𝐺 of items (traditionally goods). Each agent has preferences

over the items. We assume that |𝐴| = |𝐺 | = 𝑛 and the goal is then

to find a perfect matching between items and agents which satisfies

certain desirable properties including fairness and efficiency.

Markets of this kind arise in various situations in which we

want to fairly allocate items/entities among people but in which

payments would be considered immoral or impractical. For example,

consider assigning students to schools (or to individual courses),

assigning organ donations to recipients, or doctors to hospitals.

In this paper, we focus on cardinal utilities, i.e. each agent 𝑖 sub-

mits numerical utilities (𝑢𝑖 𝑗 ) 𝑗∈𝐺 for the items. Whereas ordinal

preferences are easier to elicit, cardinal preferences are more ex-

pressive, thereby producing higher quality allocations and leading

to significant gain in efficiency; see [18].
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Integral allocations in matching markets cannot achieve any

reasonable measure of fairness. Hence, it is customary to allow

lotteries over matchings, i.e. fractional perfect matchings. In this

setting, the classic mechanism is due to Hylland and Zeckhauser

(HZ) [17] based on competitive equilibrium. It finds lotteries which

are Pareto-optimal (PO) and envy-free (EF). Moreover, it is asymp-

totically incentive compatible [15]. However, the problem of ap-

proximating the HZ equilibrium is PPAD-complete [9, 21], and so is

the more general problem of finding any EF+PO allocation [7, 20].

In the HZmechanism, all utilities are assumed to be non-negative,
i.e. 𝐺 consists exclusively of goods. While considering chores as

well, three types of settings need to be studied:

(1) In the goods setting, we have 𝑢𝑖 𝑗 ≥ 0 for all 𝑖, 𝑗 .

(2) In the chores setting, we have 𝑢𝑖 𝑗 ≤ 0 for all 𝑖, 𝑗 .

(3) The mixed setting, also called mixed manna.
For a motivating example, consider the division of various tasks

or activities among people. For any given agent, an activity might

be enjoyable (𝑢𝑖 𝑗 > 0) or it might be a chore (𝑢𝑖 𝑗 < 0). The matching

constraints on the agents enforce the fact that each agent has only

a limited number of hours available in a day to do both enjoyable

and displeasing activities.

The fair division of chores as well as mixed manna has received

substantial recent attention in the fair division literature [2, 14, 19].

Ours is the first paper to extend this research to the area of matching

markets. In the rest of this extended abstract we will outline the

core contributions of our paper.

2 EQUILIBRIUM NOTIONS
The core idea behind the HZ mechanism is to implement a pseudo-
market, i.e. to introduce some amount of fake money to create a

market with money and then to use a market equilibrium in order

to find our desirable allocations. In order for this to be fair, in the HZ

mechanism, each agent gets exactly one unit of fake money. The

corresponding equilibrium notion (HZ equilibrium) was shown

by Hylland and Zeckhauser to always exist [17]. Moreover, HZ

equilibria are Pareto-optimal and envy-free.

Inspired by recent work on fair division and market equilibria

with chores [6–8], we define an analogous equilibrium notion (HZ

earnings equilibrium) in which agents need to earn money rather

than spend it. This is amore natural equilibrium in the chores setting

since we would want to compensate agents for doing chores.

3 SHIFTING UTILITIES
Our first observation is that due to the fact that we are considering

only fractional perfect matchings, most interesting properties will

be preserved by a simple shifting operation.
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Definition 3.1. Let (𝑢𝑖 𝑗 )𝑖∈𝐴,𝑗∈𝐺 and (𝑐𝑖 )𝑖∈𝐴 be rational numbers.

Then we define (𝑢 + 𝑐)𝑖 𝑗 := 𝑢𝑖 𝑗 + 𝑐𝑖 .

Lemma 3.2. Let 𝑥 be a fractional perfect matching which is envy-
free wrt. utilities 𝑢. Then 𝑥 is also envy-free wrt. utilities 𝑢 + 𝑐 .

Lemma 3.3. Let 𝑥 be a fractional perfect matching which is Pareto-
optimal wrt. utilities 𝑢. Then 𝑥 is also Pareto-optimal wrt. utilities
𝑢 + 𝑐 .

Lemma 3.4. Let (𝑥, 𝑝) be an HZ equilibrium wrt. utilities 𝑢. Then
(𝑥, 𝑝) is also an HZ equilibrium wrt. utilities 𝑢 + 𝑐 .

Thus, we need not restrict HZ equilibria to the all goods setting

as is commonly done. In order to show existence of HZ equilibria

for arbitrary utilities, simply shift everything into the non-negative,

get an HZ equilibrium, and then use Lemma 3.4 to show that said

equilibrium is also an HZ equilibrium under the original, mixed

utilities. The same observation holds for HZ earnings equilibria.

4 EQUIVALENCE OF EQUILIBRIA
Next, we show that HZ equilibria and HZ earnings equilibria are,

rather surprisingly, the same thing.

Theorem 4.1. Let 𝑥 be some fractional perfect matching. If there
exist prices (𝑝 𝑗 ) 𝑗∈𝐺 making (𝑥, 𝑝) an HZ equilibrium, then there also
exist earnings (𝑞 𝑗 ) 𝑗∈𝐺 making (𝑥, 𝑞) an HZ earnings equilibrium
and vice versa.

As a corollary, we of course get that HZ earnings equilibria

always exist.

Theorem 4.2. An HZ earnings equilibrium always exists.

5 BI-VALUED UTILITIES
An interesting special case in the all-goods setting is that in which

𝑢𝑖 𝑗 ∈ {0, 1} for all 𝑖, 𝑗 . Utilities of this type represent the only special
case (with unbounded agents / goods) in which HZ equilibria are

known to be polynomial time computable [21]. Moreover, due to a

result of Bogomolnaia and Moulin [5], the HZ mechanism is also

incentive compatible in the dichotomous setting.

We can easily extend these results to more generalized bi-valued

utilities, including chores. Such utilities have been extensively stud-

ied (see, e.g., [4, 5, 10, 11, 21]) due to their practical relevance.

Theorem 5.1. If the utilities are of the form 𝑢𝑖 𝑗 ∈ {𝑎𝑖 , 𝑏𝑖 } with
(𝑎𝑖 )𝑖∈𝐴 and (𝑏𝑖 )𝑖∈𝐵 rational, we can compute HZ equilibria in poly-
nomial time. Moreover, the resulting mechanism is strategy-proof.

Due to Theorem 4.1, we can also compute HZ earnings equilibria

in polynomial time for bi-valued instances.

6 CONSTANTLY MANY AGENT TYPES
Another interesting special case is the setting in which there are

constantly many types of agents. Here, we are given a small set 𝐴

of agents and a set𝐺 of goods or chores. Each agent 𝑖 ∈ 𝐴 has some

demand 𝑑𝑖 such that

∑
𝑖∈𝐴 𝑑𝑖 = |𝐺 | = 𝑛. The goal is to fractionally

assign 𝐺 to 𝐴 such that every agent 𝑖 gets exactly 𝑑𝑖 units of goods

and chores.

The setting with constantly many agents can be approached

in two different ways. First, there are algorithms that compute

(approximate) HZ equilibria with a constant number of agents.

[1, 13] However, these algorithms are intractable in practice for all

but the smallest instances.

On the other hand, if the entire instance has constant size, i.e.

both the types of agents and of goods are constant, then we show

how to use a polyhedral approach [20] to efficiently find EF+PO

allocations.

Lastly, let us consider an even more special case in which there

are only two types of agents. This scenario has been extensively

studied across various related contexts (see, e.g., [3, 12]) In this

setting, we show that is possible to find an EF+PO allocation in

polynomial time via linear programming and the following lemma.

Lemma 6.1. Assume there are only two types of agents with differ-
ent demands, i.e. |𝐴| = 2, and let 𝑥 be an envy-free fractional perfect
matching. Moreover, let 𝑦 be another fractional perfect matching
which is Pareto-better than 𝑥 . Then 𝑦 is also envy-free.

7 NASH BARGAINING
Tröbst and Vazirani [20] recently showed that in fact finding any

allocation which is envy-free and Pareto-optimal is already PPAD

hard. However, they also show that the alternative, Nash-bargaining-

based mechanism proposed by Hosseini and Vazirani [16] is 2-

approximately envy-free and 2-approximately incentive compatible.

The idea behind this mechanism is to maximize Nash welfare, i.e.

the product of agents’ utilities.

The attractive game theoretic properties together with the poly-

nomial time computability make Nash bargaining a promising al-

ternative to HZ for the all goods setting. We therefore pose the

question: is there an analogous mechanism for the chores or even

mixed settings?

There are two natural ways in which the Nash-bargaining-based

mechanism can be generalized to the chores setting:

(1) We can minimize the product of agents’ disutilities, i.e. the
negation of their utilities.

(2) We can maximize the product of agent’s disutilities over

the set of Pareto-optimal fractional perfect matchings. This

generalization is inspired by the work of Bogomolnaia et

al. [6] who showed that this is the right generalization of

Nash bargaining to the chores setting without matching

constraints.

In both cases, the resulting allocations are obviously Pareto-

optimal. We provide counter-examples to show that neither gener-

alization results in bounded envy.

8 DISCUSSION
In this paper, we initiated the study of matching markets involving

chores. Many results from the goods setting can be extended to

mixed or chores settings via utility shifting. However, our work

also leads to a very natural and exciting open problem:

Question 8.1. Is there a polynomial time algorithm that finds ap-
proximately fair and efficient allocations in a cardinal-utility match-
ing market with chores?
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