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ABSTRACT
We demonstrate the advantages of learning an interim model for
Bayesian game families through an in-depth study of empirical
mechanism design for a dynamic sponsored search auction scenario.
A full version of this paper, with additional background, methods,
and results, is available at: https://arxiv.org/pdf/2502.14078.
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1 INTRODUCTION
Many real-world strategic interactions can be modeled as Bayesian
games, where payoffs depend on players’ actions as well as their
private information, or types. Outcomes may also depend on param-
eters of the environment, such that each parameter setting induces a
different Bayesian game. Given limitedmodeling resources, analysts
must decide in advance the range of parameter settings to consider
and the granularity of that range. While domain knowledge of the
interaction may guide this selection, there is no guarantee that
the most salient parameter settings are covered. What the analyst
would ideally have is a model of the entire Bayesian game family,
from which they could reason about any relevant parameter setting.

A motivating application for Bayesian game families is mecha-
nism design, where a designer sets or influences an environment
parameter that affects strategic incentives in the multi-agent in-
teraction. Each value of this parameter results in a different game
instance. The mechanism designer’s goal is to find the parameter
setting that optimizes a relevant objective function, such as social
welfare or revenue. In empirical mechanism design (EMD), game
model instances are induced from simulation data. In past EMD
studies [1, 3, 6], researchers selected a limited set of mechanism
settings, separately modeling and analyzing each game instance.

Gatchel and Wiedenbeck [2] demonstrated that learning a single
parameterized payoff model for families of related normal-form
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games is more data-efficient than training separate models for each
game instance. We extend this approach to Bayesian game fam-
ilies, exploiting the type-conditional form of strategies for these
games. Specifically, we investigate the learning of interim payoff
functions, which explicitly condition on a single player’s type. By
marginalizing out this type, we obtain the ex ante payoff func-
tions, which are essentially the payoffs learned in a normal-form
model. We also explore learning ex ante payoff functions directly,
and compare this approach with that of learning interim models.

We validate our method through an EMD case study in the do-
main of sponsored search, where the publisher sets an auction
reserve requirement in order to maximize revenue in equilibrium.
Our search auction model is designed to capture the dynamic nature
of bidding, where advertisers can revise their bids based on provi-
sional results of earlier bidding rounds. We do so in a two-stage
scenario, in which the bidders can attempt tomodify their bids given
the state of bidding after the first round. These attempts succeed
probabilistically, thus providing an incentive for the players to sub-
mit meaningful first-round bids. The scenario is simple to describe
and design heuristic strategies, yet too complex for straightfor-
ward analytic solution. We implement an agent-based simulation
model of the scenario, and from the simulation-generated data learn
Bayesian game family models to support empirical game-theoretic
analysis and mechanism design.

2 LEARNING BAYESIAN GAME FAMILIES
Simulator queries are costly, and the results are noisy due to ran-
domness in strategies or in the game environment. We assume a
fixed budget of simulator queries for learning and validation, so we
must allocate queries across the parameter space, strategy space,
and type space. This simulation data is used to train a model rep-
resenting the deviation payoff function for a symmetric Bayesian
game family. We experimentally compare ex ante and interim game-
family learning methods. The ex ante method becomes equivalent
to the normal-form approach developed by Gatchel and Wieden-
beck [2] once types are abstracted away, and thus serves as the
baseline in the Bayesian setting.

We first train a neural network representing the ex ante devi-
ation payoff function, which takes a symmetric mixed strategy
and parameter setting as input and outputs, for each strategy, the
expected payoff a symmetric player would receive by deviating to
that strategy, given that all other players follow the mixed strat-
egy. In Bayesian games, sampling over types represents a distinct
source of noise in payoff estimates. By conditioning estimates on
the deviator’s type, we can leverage type-specific information in
each sample. We therefore also learn the interim deviation payoff
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function, which gives the vector of deviation payoffs conditional
on the symmetric deviator’s type.

3 EMPIRICAL MECHANISM DESIGN
Deriving Equilibria. We use the learned game-family model to

derive approximate Bayes-Nash equilibria (BNE) in game instances
corresponding to various settings of the environment parameter.
Our method adapts existing techniques for deviation payoffs [2, 5]
to the Bayesian case. For a given game instance, we run a Nash-
finding algorithm using ex ante deviation payoffs that are either
predicted directly by an ex ante model or computed via marginal-
izing an interim model’s predictions. The output mixed-strategy
profile is a candidate 𝜖-BNE if the predicted regret is at most 𝜀. We
validate the candidate with a modest number of additional simula-
tor queries to compute the true regret of the candidate approximate
equilibrium. If the true regret is at most 𝜀, the approximate equilib-
rium is confirmed.

Parameter Optimization. Once trained, the game-family model
can evaluate any game instance within the trained range (and plau-
sibly beyond), supporting a more granular parameter search than
previous EMD approaches.When used in an optimization algorithm,
it eliminates the need to train separate models at each iteration,
reducing the algorithm’s dependence on the sampling budget.

Iterative EMD with Piecewise Strategies. Analysis of Bayesian
games typically focuses on identifying ex ante equilibria. In a BNE
no player can gain by deviating to any other strategy in the strategy
set, in expectation over player types. If the strategy set includes all
mappings from type to action, then in an ex ante equilibrium the
player would also not wish to deviate conditional on its own type;
that is, the ex ante BNE would also be an interim equilibrium. Given
a restricted set strategy set, however—the norm for empirical game
models—a player can often benefit by deviating to an alternative
strategy in the restricted strategy set once its own type is revealed.
We consider a particular form of higher-order strategy that exploits
such opportunities by selecting a base-level atomic strategy from
the restricted strategy set conditional on revealed type. Given a set
of contiguous type intervals which collectively partition the type
space, a piecewise-conditional strategymaps each type interval to
an atomic strategy from the base set. We can further integrate these
strategies into an expanded model trained without requiring any
additional simulation samples. These operations enable an iterative
procedure that expands the game family model from an initial set
of atomic strategies through a double oracle [4] approach: repeated
generation of new (piecewise) strategies that best-respond to an
equilibrium of the previous configuration. By choosing an equilib-
rium from the game instance that optimizes the design parameter,
this becomes an iterative method for EMD.

4 OVERVIEW OF RESULTS
Fig. 1 shows that both ex ante and interim models achieve low
payoff error across the trained parameter range. The interim model
is able to maintain low error well beyond the trained range. More-
over, we find that equilibria approximated using the interim model
consistently have equal or lower regret absolute error compared to
ex ante, both within and beyond the trained parameter range (Fig 2).

These improvements in extrapolation and equilibrium identifica-
tion provide compelling evidence that exploiting type structure by
learning an interim model is advantageous for Bayesian games.

Figure 1: With enough marginalization samples, interim
model accuracy matches ex ante on the trained range, (0, 8].
Interim, but not ex ante, models extrapolate well.

Figure 2: Candidate equilibria from the interim approach
have equal or lower regret error compared to the ex ante
approach.

In our application to mechanism design, we demonstrate that
the learned models support effective EMD procedures. Analysis
of a fine-grained grid over the game family reveals the benefit
of learning multiple models from separate datasets, and further
demonstrates the relative robustness of interim over ex ante. Local
search methods reliably produce approximately optimal reserve
settings, requiring only a modest number of restarts.

A final feature of the interim model is that it enables us to gener-
ate new strategies that outperform those in the original set. In ap-
plying this method to the dynamic search auction, we demonstrate
that even a couple of iterations of piecewise strategy generation
refines the model to produce decisions that improve revenue.

5 CONCLUSION
Our investigation produces new insights about alternative model
forms for Bayesian game families, with compelling experimental
evidence in favor of learning interim payoff functions. The interim
model enables generation and integration of new strategies, based
on optimal piecewise constructions. Overall, the methods devel-
oped here support an automated approach to empirical mechanism
design, given an agent-based simulator and a seed set of strategies.
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