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ABSTRACT
This paper describes ChatBDI, a framework for extending Beliefs-
Desires-Intentions (BDI) agents with the ability to communicate
with humans exploiting Large Language Models (LLMs). The Chat-
BDI integration of BDI agents and LLMs relies on the Knowledge
Query and Manipulation Language (KQML) as the intermediary
language between humans and agents, and Jason – inside the Ja-
CaMo framework – as the implementation language. The purpose
of ChatBDI is not only to create brand new ‘BDI speakers’, but
also to add communication capabilities to existing BDI agents with-
out altering their source code. This ‘chattification’ serves a double
purpose: by exploiting the BDI model, it provides an ‘intentional
brain’ to LLMs, hence addressing one of their major limitations as
speakers - the lack of intentionality; by exploiting the generative
power of LLMs, it adds a creative and fluent ‘language actuator’ to
BDI agents.
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1 INTRODUCTION
Large Language Models (LLMs) are excellent in generating sen-
tences in natural language, but they are neither a cognitive archi-
tecture nor reasoners and planners [16]. LLMs are not even speakers
because they lack goals and intentions [12, 19, 24].

Conversely, Rao and Georgeff’s Belief-Desire-Intention (BDI)
architecture [20] is by design a cognitive architecture, and is one
of the most well known implementations of strong agency [15].
Still, BDI agents are not speakers as well: they were not born with
communication with humans in mind, and works that extend them
with speaking capabilities are still few [2–7, 9, 10, 13, 17, 26].

In this paper we describe the design of ChatBDI and some pre-
liminary experiments. Driven by the vision ‘think BDI, talk LLM’,
ChatBDI allows a BDI agent to act as the intentional brain of an LLM
and the LLM to be the ‘language actuator’ of the BDI agent. The
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ChatBDI working prototype1 uses Jason [? ] inside JaCaMo [1] for
‘thinking’, and CodeGemma [28] as LLM for ‘talking’. CodeGemma
is also used with Nomic-embed-text [18] for ‘understanding’: em-
beddings of messages from humans are computed and compared
against embeddings of the agent’s context. The Knowledge Query
and Manipulation Language (KQML [8, 25]) plays a relevant role in
ChatBDI because it is the message format adopted by Jason.

ChatBDI allows multiagent systems (MAS) users to interact with
Jason BDI agents in natural language, via LLMs. Thanks to a general
purpose ‘chattification’ mechanism based onmeta-programming, with
the ‘plans to understand and talk’ injected in the MAS agents without
even accessing their source code, the ability to interact in natural
language is also available for legacy systems.

The work closest to ours is by Frering et al. [9], who integrate
Jason with an LLM to process natural language commands and
leverage BDI reasoning. However, our approach is open-source and
general-purpose, since it passes through KQML, whereas theirs is
closed-source and tailored to a specific, closed MAS with domain-
specific prompt engineering. In particular, their method only trans-
lates natural language sentences into a goto(X,Y) predefined com-
mand, while ChatBDI is meant to translate any kind of sentence
into the closest literal in the receiver’s code that might trigger a
plan execution upon reception, with no further constraints. Other
than [9], no works integrating LLMs and Jason agents exist. In
their AAMAS 2024 Blue Sky paper [22], Ricci et al. envision (but
neither design, nor develop) generative BDI architectures, namely
architectures based on the BDI model and integrating generative
AI technologies. Ichida et al. [14] exploit LLMs and reinforcement
learning to bootstrap the reasoning capabilities of NatBDI agents.
They target developers, while ChatBDI targets MAS users.

2 DEVELOPMENT AND USE OF CHATBDI
In order to operate, ChatBDI relies upon (i) a graphical ‘chat-like’
user interface to allow interaction with human users; (ii) a kqml2nl
function from KQML messages produced by agents to sentences in
natural language to be shared with human users; (iii) an nl2kqml
function from users’ sentences in natural language to KQML, for
allowing humans to be understood by agents; (iv) one intermediary
BDI agent that acts as an interpreter between natural and KQML
languages, and hence between humans and BDI agents. The Chat-
BDI interpreter agent, ChatBDInt for short, is not tailored for any
specific MAS domain and purpose. It is able to call the nl2kqml
function, obtain the KQML message, and – being ChatBDInt a
Jason agent itself – send it to the right receiver in the MAS. In the
same way, ChatBDInt can receive KQML messages from the agents
in the MAS, call the kqml2nl function on them, get sentences as

1https://github.com/VEsNA-ToolKit/chatbdi.
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Agent 𝐴 ChatBDInt LLM Human 𝐻

via Chat
1. tellHow, Chattify

2. Msg in NL from 𝐻 to 𝐴

5.nl2kqml: LLM transl.
Msg and CNTX in KQML
6. Perf, Cnt in KQML

7. Perf, Cnt (sender 𝐻 )

8. Perf, Cnt (receiv. 𝐻 )
9. kqml2nl: LLM transl.
Perf & Cnt in NL
10. Perf and Cnt in NL

11. Perf and Cnt in
NL from 𝐴 to 𝐻

alt

loop

alt
3. achieve, ShareCntx
4. tell, cntx(CNTX)

Figure 1: Human-agent interaction via ChatBDInt: Msg (user
message), NL (natural language), Perf (KQML performative),
Cnt (KQML content), CNTX (context). Figure 2: Example of use of ChatBDI.

result, and display them on the chat interface, in order for human
users to read and understand them.

From KQML to natural language. In the LLM era, a very
natural and coherent approach to implement kqml2nl, and generate
fluent sentences from structuredmessages, is via an LLM. The kqml2nl
function feeds the LLM with a carefully engineered - but domain-
independent - prompt that provides the LLM the means to elaborate
the request, and with the KQML message to be translated. The
return value is the sentence generated by the LLM.

From natural language to KQML. This direction of the trans-
lation is much more complex and can be faced using different ap-
proaches. For example, the Natural Language Understanding (NLU)
black box component available in intent-based chatbots like Rasa
[21] and Dialogflow [11] may serve the purpose, as well as ad hoc
trained classifiers. In the ChatBDI prototype, LLMs are employed
also for tackling this second problem, in cascade after the embed-
ding creation step. The nl2kqml function needs the LLM to under-
stand the illocutionary force (or ‘speech act’, or ‘communicative
act’, or ‘performative’; examples are tell, achieve, askOne) of the
user’s sentence first. Then, based on the recognized performative,
the message content is translated into a logical atom, to serve as
proper content to a KQML message. A context consisting of the
current beliefs and other useful information about the chattified
agents, stored by ChatBDInt, is added to the prompt to the LLM.
The context is not hard-wired: rather, it is asked to the agents in
the MAS at execution time, for the sake of generality.

From humans to agents, and back. Figure 1 outlines the inter-
action between the human 𝐻 , ChatBDInt, the LLM, and the agents
(𝐴 represents one among all the agents in the MAS). First, ChatB-
DInt ‘chattifies’ the agents by teaching them how to provide the
context and to handle unrecognized messages via tellHow (mes-
sage 1). Once chattified, agents and users can start communicating
bidirectionally: user messages are processed (arrow 2), enriched
with the context on the domain that chattified agents can provide
(arrows 3 and 4), and are translated by the LLM into KQML (arrows
5 and 6); the KQML message is sent to the intended receiver 𝐴 as if

it came from the human𝐻 . Conversely, agent messages for humans
(arrow 8) are converted into natural language (arrows 9 and 10),
and sent by ChatBDInt to 𝐻 as if they came from 𝐴 (arrow 11).

Implementation. ChatBDI is designed for flexibility and adapt-
ability across diverse MAS. To ensure modularity, ChatBDInt is
decoupled from the translation process, which is managed via
CArtAgO artifacts [23]. This allows seamless replacement of the
translation implemented by kqml2nl an nl2kqml without modifying
the core framework, accommodating the evolving nature of MAS.

Example. To show the generality of our approach, we chattified
the house building JaCaMo MAS available at https://github.com/
jacamo-lang/jacamo/tree/main/examples/house-building (Figure
2). We only added two plans to the giacomo code, to make it able
to receive and answer requests to build a house. Via the Chat-
BDI interface, the human user may ask giacomo (note the @ in
@giacomo to address a specific agent) to build a house. Following the
original JaCaMo code, giacomo starts an auction, that successfully
completes with the house being built. The human user may also
directly ask the building companies for the price of their services.

3 CONCLUSIONS
A key advantage of ChatBDI’s chattification, besides letting the
user enter the MAS, is improved MAS inspectability: developers can
track agent interactions in natural language via chat, aiding debug-
ging. Messages can also be customized per user [27]. A drawback of
ChatBDInt’s plan injection into legacy agents - instead - is potential
security risks in sensitive domains: MAS owners should approve
this process before deployment. In our prototype, CodeGemma is
used as one possible instantiation for natural language translation,
leveraging LLMs for flexibility and reusability. However, in high-
security environments, frameworks like Rasa and Dialogflow may
be preferred. Finally, the kqml2nl and nl2kqml translations may
be wrong or inaccurate, due to the big challenge of their domain-
independency: fail-safe mechanisms must be foreseen.

Credits. This work was supported by the ENGINES project
funded by the Italian MUR program PRIN 2022, grant 20229ZXBZM.
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