
ChatBDI: Think BDI, Talk LLM
Andrea Gatti

DIBRIS – University of Genoa
Genoa, Italy

andrea.gatti@edu.unige.it

Viviana Mascardi
DIBRIS – University of Genoa

Genoa, Italy
viviana.mascardi@unige.it

Angelo Ferrando
DSFIM – University of
Modena-Reggio Emilia

Modena, Italy
angelo.ferrando@unimore.it

ABSTRACT
This paper describes ChatBDI, a framework for extending Beliefs-
Desires-Intentions (BDI) agents with the ability to communicate
with humans exploiting Large Language Models (LLMs). The Chat-
BDI integration of BDI agents and LLMs relies on the Knowledge
Query and Manipulation Language (KQML) as the intermediary
language between humans and agents, and Jason – inside the Ja-
CaMo framework – as the implementation language. The purpose
of ChatBDI is not only to create brand new ‘BDI speakers’, but
also to add communication capabilities to existing BDI agents with-
out altering their source code. This ‘chattification’ serves a double
purpose: by exploiting the BDI model, it provides an ‘intentional
brain’ to LLMs, hence addressing one of their major limitations as
speakers - the lack of intentionality; by exploiting the generative
power of LLMs, it adds a creative and fluent ‘language actuator’ to
BDI agents.

KEYWORDS
ChatBDI, Beliefs-Desires-Intentions, BDI, Large Language Models,
LLM, Chattification, General purpose, Domain independent

ACM Reference Format:
Andrea Gatti, Viviana Mascardi, and Angelo Ferrando. 2025. ChatBDI: Think
BDI, Talk LLM. In Proc. of the 24th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May
19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
Large Language Models (LLMs) are excellent in generating sen-
tences in natural language, but they are neither a cognitive archi-
tecture nor reasoners and planners [16]. LLMs are not even speakers
because they lack goals and intentions [12, 19, 24].

Conversely, Rao and Georgeff’s Belief-Desire-Intention (BDI)
architecture [20] is by design a cognitive architecture, and is one
of the most well known implementations of strong agency [15].
Still, BDI agents are not speakers as well: they were not born with
communication with humans in mind, and works that extend them
with speaking capabilities are still few [2–7, 9, 10, 13, 17, 26].

In this paper we describe the design of ChatBDI and some pre-
liminary experiments. Driven by the vision ‘think BDI, talk LLM’,
ChatBDI allows a BDI agent to act as the intentional brain of an LLM
and the LLM to be the ‘language actuator’ of the BDI agent. The

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

ChatBDI working prototype1 uses Jason [?] inside JaCaMo [1] for
‘thinking’, and CodeGemma [28] as LLM for ‘talking’. CodeGemma
is also used with Nomic-embed-text [18] for ‘understanding’: em-
beddings of messages from humans are computed and compared
against embeddings of the agent’s context. The Knowledge Query
and Manipulation Language (KQML [8, 25]) plays a relevant role in
ChatBDI because it is the message format adopted by Jason.

ChatBDI allows multiagent systems (MAS) users to interact with
Jason BDI agents in natural language, via LLMs. Thanks to a general
purpose ‘chattification’ mechanism based onmeta-programming, with
the ‘plans to understand and talk’ injected in the MAS agents without
even accessing their source code, the ability to interact in natural
language is also available for legacy systems.

The work closest to ours is by Frering et al. [9], who integrate
Jason with an LLM to process natural language commands and
leverage BDI reasoning. However, our approach is open-source and
general-purpose, since it passes through KQML, whereas theirs is
closed-source and tailored to a specific, closed MAS with domain-
specific prompt engineering. In particular, their method only trans-
lates natural language sentences into a goto(X,Y) predefined com-
mand, while ChatBDI is meant to translate any kind of sentence
into the closest literal in the receiver’s code that might trigger a
plan execution upon reception, with no further constraints. Other
than [9], no works integrating LLMs and Jason agents exist. In
their AAMAS 2024 Blue Sky paper [22], Ricci et al. envision (but
neither design, nor develop) generative BDI architectures, namely
architectures based on the BDI model and integrating generative
AI technologies. Ichida et al. [14] exploit LLMs and reinforcement
learning to bootstrap the reasoning capabilities of NatBDI agents.
They target developers, while ChatBDI targets MAS users.

2 DEVELOPMENT AND USE OF CHATBDI
In order to operate, ChatBDI relies upon (i) a graphical ‘chat-like’
user interface to allow interaction with human users; (ii) a kqml2nl
function from KQML messages produced by agents to sentences in
natural language to be shared with human users; (iii) an nl2kqml
function from users’ sentences in natural language to KQML, for
allowing humans to be understood by agents; (iv) one intermediary
BDI agent that acts as an interpreter between natural and KQML
languages, and hence between humans and BDI agents. The Chat-
BDI interpreter agent, ChatBDInt for short, is not tailored for any
specific MAS domain and purpose. It is able to call the nl2kqml
function, obtain the KQML message, and – being ChatBDInt a
Jason agent itself – send it to the right receiver in the MAS. In the
same way, ChatBDInt can receive KQML messages from the agents
in the MAS, call the kqml2nl function on them, get sentences as

1https://github.com/VEsNA-ToolKit/chatbdi.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2541

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/VEsNA-ToolKit/chatbdi

Agent 𝐴 ChatBDInt LLM Human 𝐻

via Chat
1. tellHow, Chattify

2. Msg in NL from 𝐻 to 𝐴

5.nl2kqml: LLM transl.
Msg and CNTX in KQML
6. Perf, Cnt in KQML

7. Perf, Cnt (sender 𝐻)

8. Perf, Cnt (receiv. 𝐻)
9. kqml2nl: LLM transl.
Perf & Cnt in NL
10. Perf and Cnt in NL

11. Perf and Cnt in
NL from 𝐴 to 𝐻

alt

loop

alt
3. achieve, ShareCntx
4. tell, cntx(CNTX)

Figure 1: Human-agent interaction via ChatBDInt: Msg (user
message), NL (natural language), Perf (KQML performative),
Cnt (KQML content), CNTX (context). Figure 2: Example of use of ChatBDI.

result, and display them on the chat interface, in order for human
users to read and understand them.

From KQML to natural language. In the LLM era, a very
natural and coherent approach to implement kqml2nl, and generate
fluent sentences from structuredmessages, is via an LLM. The kqml2nl
function feeds the LLM with a carefully engineered - but domain-
independent - prompt that provides the LLM the means to elaborate
the request, and with the KQML message to be translated. The
return value is the sentence generated by the LLM.

From natural language to KQML. This direction of the trans-
lation is much more complex and can be faced using different ap-
proaches. For example, the Natural Language Understanding (NLU)
black box component available in intent-based chatbots like Rasa
[21] and Dialogflow [11] may serve the purpose, as well as ad hoc
trained classifiers. In the ChatBDI prototype, LLMs are employed
also for tackling this second problem, in cascade after the embed-
ding creation step. The nl2kqml function needs the LLM to under-
stand the illocutionary force (or ‘speech act’, or ‘communicative
act’, or ‘performative’; examples are tell, achieve, askOne) of the
user’s sentence first. Then, based on the recognized performative,
the message content is translated into a logical atom, to serve as
proper content to a KQML message. A context consisting of the
current beliefs and other useful information about the chattified
agents, stored by ChatBDInt, is added to the prompt to the LLM.
The context is not hard-wired: rather, it is asked to the agents in
the MAS at execution time, for the sake of generality.

From humans to agents, and back. Figure 1 outlines the inter-
action between the human 𝐻 , ChatBDInt, the LLM, and the agents
(𝐴 represents one among all the agents in the MAS). First, ChatB-
DInt ‘chattifies’ the agents by teaching them how to provide the
context and to handle unrecognized messages via tellHow (mes-
sage 1). Once chattified, agents and users can start communicating
bidirectionally: user messages are processed (arrow 2), enriched
with the context on the domain that chattified agents can provide
(arrows 3 and 4), and are translated by the LLM into KQML (arrows
5 and 6); the KQML message is sent to the intended receiver 𝐴 as if

it came from the human𝐻 . Conversely, agent messages for humans
(arrow 8) are converted into natural language (arrows 9 and 10),
and sent by ChatBDInt to 𝐻 as if they came from 𝐴 (arrow 11).

Implementation. ChatBDI is designed for flexibility and adapt-
ability across diverse MAS. To ensure modularity, ChatBDInt is
decoupled from the translation process, which is managed via
CArtAgO artifacts [23]. This allows seamless replacement of the
translation implemented by kqml2nl an nl2kqml without modifying
the core framework, accommodating the evolving nature of MAS.

Example. To show the generality of our approach, we chattified
the house building JaCaMo MAS available at https://github.com/
jacamo-lang/jacamo/tree/main/examples/house-building (Figure
2). We only added two plans to the giacomo code, to make it able
to receive and answer requests to build a house. Via the Chat-
BDI interface, the human user may ask giacomo (note the @ in
@giacomo to address a specific agent) to build a house. Following the
original JaCaMo code, giacomo starts an auction, that successfully
completes with the house being built. The human user may also
directly ask the building companies for the price of their services.

3 CONCLUSIONS
A key advantage of ChatBDI’s chattification, besides letting the
user enter the MAS, is improved MAS inspectability: developers can
track agent interactions in natural language via chat, aiding debug-
ging. Messages can also be customized per user [27]. A drawback of
ChatBDInt’s plan injection into legacy agents - instead - is potential
security risks in sensitive domains: MAS owners should approve
this process before deployment. In our prototype, CodeGemma is
used as one possible instantiation for natural language translation,
leveraging LLMs for flexibility and reusability. However, in high-
security environments, frameworks like Rasa and Dialogflow may
be preferred. Finally, the kqml2nl and nl2kqml translations may
be wrong or inaccurate, due to the big challenge of their domain-
independency: fail-safe mechanisms must be foreseen.

Credits. This work was supported by the ENGINES project
funded by the Italian MUR program PRIN 2022, grant 20229ZXBZM.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2542

https://github.com/jacamo-lang/jacamo/tree/main/examples/house-building
https://github.com/jacamo-lang/jacamo/tree/main/examples/house-building

REFERENCES
[1] Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, and Alessandro Ricci. 2020.

Multi-agent oriented programming: programming multi-agent systems using Ja-
CaMo. MIT Press.

[2] Louise A. Dennis and Nir Oren. 2022. Explaining BDI Agent Behaviour through
Dialogue. Auton. Agents Multi Agent Syst. 36, 1 (2022), 29.

[3] Débora C. Engelmann, Lucca Dornelles Cezar, Alison R. Panisson, and Rafael H.
Bordini. 2021. A Conversational Agent to Support Hospital Bed Allocation. In
BRACIS (1) (Lecture Notes in Computer Science, Vol. 13073). Springer, 3–17.

[4] Débora C. Engelmann, Juliana Damasio, Tabajara Krausburg, Olimar Teixeira
Borges, Lucca Dornelles Cezar, Alison R. Panisson, and Rafael H. Bordini. 2021.
Dial4JaCa - A Demonstration. In PAAMS (Lecture Notes in Computer Science,
Vol. 12946). Springer, 346–350.

[5] Débora C. Engelmann, Juliana Damasio, Tabajara Krausburg, Olimar Teixeira
Borges, Mateus da Silveira Colissi, Alison R. Panisson, and Rafael H. Bordini.
2021. Dial4JaCa - A Communication Interface Between Multi-agent Systems and
Chatbots. In PAAMS (Lecture Notes in Computer Science, Vol. 12946). Springer,
77–88.

[6] Débora C. Engelmann, Alison R. Panisson, Renata Vieira, Jomi Fred Hübner,
Viviana Mascardi, and Rafael H. Bordini. 2023. MAIDS - A Framework for the
Development of Multi-Agent Intentional Dialogue Systems. In AAMAS. ACM,
1209–1217.

[7] Zeinab Namakizadeh Esfahani, Débora Cristina Engelmann, Angelo Ferrando,
Massimiliano Margarone, and Viviana Mascardi. 2023. Integrating Ontologies
and Cognitive Conversational Agents in On2Conv. In EUMAS (Lecture Notes in
Computer Science, Vol. 14282). Springer, 66–82.

[8] Timothy W. Finin, Richard Fritzson, Donald P. McKay, and Robin McEntire. 1994.
KQML As An Agent Communication Language. In CIKM. ACM, 456–463.

[9] Laurent Frering, Gerald Steinbauer-Wagner, and Andreas Holzinger. 2025. Inte-
grating Belief-Desire-Intention Agents with Large Language Models for Reliable
Human-Robot Interaction and Explainable Artificial Intelligence. Eng. Appl. Artif.
Intell. 141 (2025), 109771.

[10] Andrea Gatti and Viviana Mascardi. 2023. VEsNA, a Framework for Virtual
Environments via Natural Language Agents and Its Application to Factory Au-
tomation. Robotics 12, 2 (2023), 46.

[11] Google. 2025. Dialogflow web site. https://cloud.google.com/dialogflow Accessed
on February 14, 2025.

[12] Reto Gubelmann. 2024. Large Language Models, Agency, and why Speech Acts
Are Beyond them (for Now)– a Kantian-Cum-Pragmatist Case. Philosophy &
Technology 37, 1 (2024), 32.

[13] Alexandre Yukio Ichida and Felipe Meneguzzi. 2023. Modeling a Conversational
Agent using BDI Framework. In SAC. ACM, 856–863.

[14] Alexandre Yukio Ichida, Felipe Meneguzzi, and Rafael C. Cardoso. 2024. BDI
Agents in Natural Language Environments. In AAMAS. International Foundation
for Autonomous Agents and Multiagent Systems / ACM, 880–888.

[15] Nicholas R. Jennings, Katia P. Sycara, andMichael J.Wooldridge. 1998. A Roadmap
of Agent Research and Development. Auton. Agents Multi Agent Syst. 1, 1 (1998),
7–38.

[16] Subbarao Kambhampati. 2024. Can Large Language Models reason and plan?
Annals of the New York Academy of Sciences 1534, 1 (March 2024), 15–18. https:
//doi.org/10.1111/nyas.15125

[17] Aida Mustapha, Mohd Sharifuddin Ahmad, and Azhana Ahmad. 2013. Conver-
sational Agents as Full-Pledged BDI Agents for Ambient Intelligence. In ISAmI
(Advances in Intelligent Systems and Computing, Vol. 219). Springer, 221–228.

[18] Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar.
2024. Nomic Embed: Training a Reproducible Long Context Text Embedder.
arXiv:2402.01613 [cs.CL]

[19] Paul Piwek. 2024. Are Conversational Large Language Models Speakers?. In
Proc. of the 28th Workshop on the Semantics and Pragmatics of Dialogue - Poster
Abstracts.

[20] Anand S. Rao andMichael P. Georgeff. 1995. BDI Agents: From Theory to Practice.
In ICMAS. The MIT Press, 312–319.

[21] Rasa technologies. 2025. Rasa web site. https://rasa.com/ Accessed on February
14, 2025.

[22] Alessandro Ricci, Stefano Mariani, Franco Zambonelli, Samuele Burattini, and
Cristiano Castelfranchi. 2024. The Cognitive Hourglass: Agent Abstractions in
the Large Models Era. In AAMAS. International Foundation for Autonomous
Agents and Multiagent Systems / ACM, 2706–2711.

[23] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. 2005. Programming MAS
with Artifacts. In PROMAS (Lecture Notes in Computer Science, Vol. 3862). Springer,
206–221.

[24] Zachary P. Rosen and Rick Dale. 2024. LLMs Don’t “Do Things with Words” but
their Lack of Illocution Can Inform the Study of Human Discourse. In Proceedings
of the 46th Annual Meeting of the Cognitive Science Society. 2870–2876.

[25] Renata Vieira, Álvaro F. Moreira, Michael J. Wooldridge, and Rafael H. Bordini.
2007. On the Formal Semantics of Speech-Act Based Communication in an
Agent-Oriented Programming Language. J. Artif. Intell. Res. 29 (2007), 221–267.

[26] Wilson Wong, Lawrence Cavedon, John Thangarajah, and Lin Padgham. 2012.
Flexible Conversation Management Using a BDI Agent Approach. In IVA (Lecture
Notes in Computer Science, Vol. 7502). Springer, 464–470.

[27] Elena Yan, Samuele Burattini, Jomi Fred Hübner, and Alessandro Ricci. 2023.
Towards a Multi-Level Explainability Framework for Engineering and Under-
standing BDI Agent Systems. InWOA (CEUR Workshop Proceedings, Vol. 3579).
CEUR-WS.org, 216–231.

[28] Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,
Christopher A. Choquette-Choo, Jingyue Shen, Joe Kelley, Kshitij Bansal, Luke
Vilnis, Mateo Wirth, Paul Michel, Peter Choy, Pratik Joshi, Ravin Kumar, Sarmad
Hashmi, Shubham Agrawal, Zhitao Gong, Jane Fine, Tris Warkentin, Ale Jakse
Hartman, Bin Ni, Kathy Korevec, Kelly Schaefer, and Scott Huffman. 2024.
CodeGemma: Open Code Models Based on Gemma. CoRR abs/2406.11409 (2024).

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2543

https://cloud.google.com/dialogflow
https://doi.org/10.1111/nyas.15125
https://doi.org/10.1111/nyas.15125
https://arxiv.org/abs/2402.01613
https://rasa.com/

	Abstract
	1 Introduction
	2 Development and use of ChatBDI
	3 Conclusions
	References

