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ABSTRACT
A divisible budget must be allocated to several projects, and agents

are asked for their opinion on how much they would give to each

project. We consider that an agent is satisfied by a division of the

budget if, for at least a certain predefined number τ of projects, the

part of the budget actually allocated to each project is at least as

large as the amount the agent requested. The objective is to find

a budget division that “best satisfies” the agents. In this context,

different problems can be stated and we address the following ones.

We study (i) the largest proportion of agents that can be satisfied for
any instance, (ii) classes of instances admitting a budget division

that satisfies all agents, (iii) the complexity of deciding if, for a

given instance, every agent can be satisfied, and finally (iv) the
question of finding, for a given instance, the smallest total budget

to satisfy all agents. We provide answers to these complementary

questions for several natural values of the parameter τ , capturing
scenarios where we seek to satisfy for each agent all; almost all;

half; or at least one of her requests.
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1 INTRODUCTION
For many years, social choice has concerned the AI community, par-

ticularly for the computational questions that it generates [6, 14, 20].

The central question in computational social choice is to take into

account the individual preferences of several agents when develop-

ing a compromise solution. The main topics of this field are voting

methods to elect representatives (e.g., committees), fair allocation of

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

(possibly indivisible) goods and chores, or the partitioning of agents

into stable subgroups (e.g., matchings, hedonic games). In addition

to these fundamental topics which are now widely discussed in the

literature, significant interest has recently arisen around collective

budget issues [1–5, 7, 9–11, 13, 15, 16, 18, 19, 21]. Numerous models

have been proposed and studied, including the now famous and

well-studied participatory budgeting [8, 12]. Budgeting problems

address the recurring question of how to properly use a common

budget for funding a given set of projects. This article is part of this

vibrant trend. Its aim is to contribute, using a new concept of agent

satisfaction, to our knowledge on the existence and computation

of an acceptable collective budget.
1

2 THE MODEL
We are given a perfectly divisible budget of (normalized) value 1,

m projects, and a set of agents N = [n].2 Each agent i ∈ N has

reported a demand dij ∈ [0, 1] for every project j ∈ [m]. These

quantities are opinions on how to spend the budget, i.e., agent i
would devote dij to the project j if she was the only decision maker.

Let us clarify the semantics of the demands: a small (resp., large)

demand does not mean that the agent considers the associated

project to be of no (resp., great) interest. On the contrary, a demand

of dij means that after an investment of (at least) dij on project j,

agent i judges the status of the project j to be satisfactory. Therefore,
a small (resp., large) demand from an agent means that she is quite

satisfied (resp., not very satisfied) with the current state of the

project and that a small (resp., large) part of the budget would make

it acceptable.

A solution (a.k.a. budget division) x is an element of [0, 1]m , and

x is said to be budget-feasible if
∑m
j=1 x j ≤ 1. Here, x j is the j-th

coordinate of x and it indicates how much of the common budget

is actually spent on project j. We assume that

∑m
j=1 d

i
j ≤ 1 holds

for all i ∈ N in order to express that the demands of every fixed

agent are compatible with a feasible division of the budget.

This model has many applications. It captures situations where

an organization (e.g., a library, a city council, a company, a univer-

sity, etc.) invests in different projects (or activities, topics, facilities,

1
See [17] for a full version of the present work.

2
For every positive integer k , [k ] denotes the set {1, . . . , k }.
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etc.) and the goal is to divide the budget in a way that satisfies as

much as possible the members of the organization.

Our approach is to consider that an agent i is locally satisfied
by x for a given project j if x j ≥ dij , i.e., enough resources are put

on the project from the agent’s perspective (and investing more

than the agent’s demand is not harmful). More globally, an agent

is said to be satisfied by x if she is locally satisfied for at least τ
projects, where the threshold τ ∈ [1,m] is a parameter belonging

to the problem’s input. Thus, a solution can satisfy several agents

by satisfying them locally, possibly for different projects. Let us

illustrate the setting with an instance in which the demands are

gathered in an n ×m matrix D where the entry at line i and column

j is equal to dij .

Instance 1. Amultimedia library has 3 kinds of documents (book,
DVD, and record), and 4 employees (Alice, Bob, Carl, and Diana) who
have the following demands concerning the purchase of new items.

©«
0.5 0.5 0

0 0.5 0.5

0.6 0.1 0.3

0.3 0.1 0.6

ª®®®¬
Alice and Bob agree that at least half of the budget should be devoted
to new DVDs. Alice thinks that the other 50% should be spent on new
books, and nothing for records because there are enough albums on
the shelves. However, Bob believes that the rest should be invested on
new records, and nothing for books because there are quite enough
books. Carl’s opinion is to spend 60% of the budget on new books,
10% on new DVDs, and 30% on new records. Finally, Diana prefers to
devote 30% of the budget on new books, 10% on new DVDs, and 60%
on new records.

Suppose τ = 2 and x = (0.3, 0.6, 0.1). Alice is satisfied by x because
after the purchase of new items, the outcome meets her expectations
concerning the DVD and record sections. Bob and Diana are also
satisfied because enough money is invested on new books and DVDs.
However Carl is not satisfied by x because even after the purchase of
new items, the sections of books and records are below his expectations.

A typical instance of the proposed budget division problem con-

tains multiple agents who have heterogeneous demands for the

projects. Then, what solution should we decide to implement, seek-

ing to best satisfy agents? The aim of this article is to provide several

complementary approaches to address this question.

It is often impossible to satisfy all agents, as in Instance 1 when

τ = 2. Of course, the parameter τ plays a central role in this matter:

the larger τ is, the more constraints we impose on x so that it satis-

fies an agent. We mainly consider four values of τ corresponding to

four scenarios: 1,m/2,m − 1, andm. These values of τ range from

1 (very undemanding) tom (very demanding). The value τ =m/2

corresponds to an intermediate case where an agent is globally sat-

isfied if she is locally satisfied for a majority of projects. A positive

result for the demanding case τ =m is valuable, but if it is out of

reach, then maybe the problem is amenable to a small relaxation;

that is why we also consider τ =m − c where c is constant.

3 CONTRIBUTIONS
We address the following complementary questions and provide

the indicated answers.

• What proportion ρ of agents can be satisfied for any instance?

Our findings, summarized in the following table, are bounds on the

largest fraction of agents that can be satisfied for any instance, in

every scenario (specified by a certain value of τ ).

τ 1 m/2 m − 1 m

ρ 1 [ 1
2
+ 1

2n ,
2

3
+ 1

n ] Θ(1/n) 1/n

• Which classes of instances admit a solution that satisfies all

agents? For every scenario we characterize the values of (n,m)

for which every instance with n agents andm projects admits a

budget-feasible solution satisfying all agents. The results are sum-

marized in the following two tables for τ ∈ {m/2,m − 1}.

(case τ =m/2) m = 2 m = 3 m ≥ 4

n ∈ {2, 3} ✓ ✓ ✓

n ≥ 4 ✓ ✗

(case τ =m − 1) m = 2 m = 3 m = 4 m = 5

n = 2 ✓ ✓ ✓ ✗

n = 3 ✓ ✓ ✗

n = 4 ✓ ✗

• For a given instance, what is the difficulty of deciding whether

all agents can be satisfied? We show that the problem’s complexity

has a somewhat counterintuitive behavior. If we allow

∑
j ∈[m] d

i
j <

1, then the problem is strongly NP-complete for τ = m − 1, but

if we have

∑
j ∈[m] d

i
j = 1, then the problem can be resolved in

pseudopolynomial time. Surprisingly, the subtle distinction only

plays a role when τ =m − 1 because the problem is shown strongly

NP-complete for τ =m − c and all constant c ≥ 2.

• What is the smallest total budget (possibly smaller or larger than

1) needed to satisfy all agents? Our results, summarized in the table

below, follow two approaches: answering the question for a single

instance or for an entire class of instances (specified by τ ).

τ 1 m/2 m − 1 m

Single instance complexity NP-hard NP-hard NP-hard P

(first approach)

Total budget upper bound 1 2 m/2 m
(second approach)

In the future, it would be interesting to answer the aforemen-

tioned questions for all possible values of τ . In particular, what is

the exact largest fraction ρ of agents that can be satisfied for any

instance when τ =m/2? What is the largest value of τ such that a

constant fraction of agents ρ is satisfied?
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