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ABSTRACT
The development of a generalist agent capable of solving a wide
range of sequential decision-making tasks remains a significant
challenge. We address this problem in a cross-agent setup where
agents share the same observation space but differ in their action
spaces. Our approach builds on the universal policy framework,
which decouples policy learning into two stages: a diffusion-based
planner that generates observation sequences and an inverse dy-
namics model that assigns actions to these plans. We propose a
method for training the planner on a joint dataset composed of tra-
jectories from all agents. This method offers the benefit of positive
transfer by pooling data from different agents, while the primary
challenge lies in adapting shared plans to each agent’s unique con-
straints. We evaluate our approach on the BabyAI environment,
covering tasks of varying complexity, and demonstrate positive
transfer across agents. Additionally, we examine the planner’s abil-
ity to generalise to unseen agents and show that our method out-
performs traditional imitation learning approaches1.
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1 INTRODUCTION
Developing a generalist agent capable of addressing diverse sequen-
tial decision-making tasks remains a significant challenge [10, 13].
Solving this problem would eliminate the need for task-specific en-
gineering and retraining while enabling positive transfer between
tasks. A common ground for many tasks lies in image-based obser-
vations, which are prevalent in gameplay [5], robotics [12], and web
interfaces [2]. Especially in robotics, learning across different em-
bodiments with differing action and observation space has gathered
interest as it allows to train on large mixture datasets and leverage
positive transfer for more robust control policies [3, 8, 12]. Creating
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policies that can be trained on mixture datasets of different agents
is an essential step towards a generalist agent.

Universal policies [4] use text-guided video generation to train
policies. This involves a two-step process: first, a diffusion model
translates task descriptions into observation sequences; second,
an inverse dynamics model maps these sequences to actions. This
approach enables pretraining on vast instruction-video datasets [7,
11]. While universal policies have been used for individual agents,
their potential to handle multiple agents with shared planners and
agent-specific inverse dynamics models remains unexplored.

Our study examines this problem in a cross-agent setting where
multiple agents share a common observation space but differ in
their action spaces. Each agent has limited instruction-trajectory
data, insufficient for training robust, agent-specific policies through
imitation learning. We extend the universal policy framework to
learn a policy applicable across agents that can be trained on the
joint dataset obtained by pooling the agent-specific data. The main
challenge is ensuring the diffusion-based planner accommodates
varying agent capabilities. Without conditioning, the planner risks
generating sequences incompatible with an agent’s type, leading
to errors. However, leveraging combined data provides an oppor-
tunity for positive transfer, exposing the planner to a broader set
of examples and potentially improving performance across agents.
We explore methods to condition the planner on agent-specific
information and evaluate its generalisation to unseen agents.

2 UNIVERSAL CROSS AGENT POLICIES
In our setup each agent 𝑛 ∈ 𝑁 has a dataset 𝐷𝑛 of𝑀𝑛 instruction-
trajectory pairs: 𝐷𝑛 = {(𝑐𝑖 , 𝑥1:𝑡𝑖 , 𝑎𝑖:𝑡𝑖 )}

𝑀𝑛

𝑖=1, where 𝑐𝑖 ∈ 𝐶 is the
instruction, 𝑎𝑖:𝑡𝑖 is the action sequence, and 𝑥1:𝑡𝑖 ∈ 𝑋 𝑡𝑖 is the ob-
servation sequence. We consider the case where all agents share
the same observation space. The datasets 𝐷𝑛 are pooled into a
mixed dataset 𝐷 = {(𝑐𝑖 , 𝑥1:𝑡𝑖 , 𝑎𝑖:𝑡𝑖 , 𝑛𝑖 )}𝑀𝑖=1, where 𝑛𝑖 ∈ 𝑁 is the
agent ID and 𝑀 =

∑𝑁
𝑛=1𝑀𝑛 is the total number of trajectories.

The goal is to train a conditional observation sequence generator
𝑝 (·|𝑥0, 𝑐, 𝑘) on the mixture dataset 𝐷 , leading to a Univeral Cross
Agent Policy (UCAP). Instead of generating full sequences 𝑥1:𝑡𝑖 , we
sample random windows of size 4, using the first timestep as the
starting observation 𝑥0. The model 𝑝 (·|𝑥0, 𝑐, 𝑘) plans the next three
timesteps for agent 𝑘 following instruction 𝑐 .

Diffusion Model Formulation: Diffusion models perturb data
by adding noise to the data and learn to reverse this process to
approximate the data distribution. Following the ODE formulation
from Karras et al. [6], let 𝑝data (𝑥) be the data distribution and
𝑝 (𝑥 ;𝜎) the perturbed distribution with Gaussian noise of standard
deviation 𝜎 . The probabilistic flow ODE is:

𝑑𝑥 = −¤𝜎 (𝑡)𝜎 (𝑡)∇𝑥 log𝑝 (𝑥 ;𝜎 (𝑡))𝑑𝑡,
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Figure 1: Mean task completion rate of a standard action
space agent for various universal policy models in GoToDis-
tractor (left) and GoToDistractorLarge (right). Some variants
were not trained on the large environment due to compute
limits. Results are averaged over 4 seeds, with error bars
showing standard error.

where 𝑥𝑡 ∼ 𝑝 (𝑥𝑡 , 𝜎 (𝑡)). The denoising function 𝐷𝜃 is trained via:

𝐿(𝜃 ) = E𝑥∼𝑝dataE𝑛∼𝑁 (0,𝜎𝐼 ) ∥𝐷𝜃 (𝑥 + 𝑛;𝜎) − 𝑥 ∥22,

with∇𝑥 log𝑝 (𝑥 ;𝜎) = (𝐷 (𝑥 ;𝜎)−𝑥)/𝜎2. At test time, Heun’s method
is used to generate samples.

Conditioning the Diffusion Model: The denoising network
𝐷𝜃 is conditioned on 𝑥0, instruction 𝑐 , and agent information 𝑘 .
The instruction is embedded using a T5 variant [9], and 𝑥0 is con-
catenated along the channel dimension. Classifier-free guidance is
not used. Agent conditioning is implemented in three ways:

1. Agent ID: A random embedding for each agent type is added
to the noise embedding. This does not generalise to unseen agents.

2. Action Space Representation: A binary vector 𝑣 ∈ {0, 1} |𝐴 |

represents the agent’s action space. The vector is embedded and
added to the noise embedding.

3. Example Trajectory: Example observation sequences illus-
trating the capability of the agent. Each valid action the agent can
take is demonstrated once in the conditioning trajectory.

For each agent 𝑛 ∈ 𝑁 , an inverse dynamics model IVD𝑛 : 𝑋 ×
𝑋 → 𝐴𝑛 maps consecutive observations to actions. These models
are trained on agent-specific datasets 𝐷𝑛 using cross-entropy loss.

3 EXPERIMENTS & RESULTS
The experiments evaluate whether UCAPs exhibit positive trans-
fer, i.e., if training on a pooled dataset leads to higher instruction-
following accuracy than single policies trained on agent-specific
datasets. We also compare UCAPs to imitation learning baselines
adapted to our data setup. Experiments are conducted in the BabyAI
environment [1], where agents with varying action spaces (6 in-
distribution (ID) agent types for training, 2 out-of distribution
(OOD) agent types for testing) navigate gridworlds to objects spec-
ified by natural language instructions. We test our method in two
BabyAI instances (GoToDistractor, GoToDistractorLarge), differing
in size (8x8, 22x22) and number of distractor objects (3, 7).

To test if positive transfer occurs we train a universal policy
on the agent specific datasets of different sizes and compare them
with UCAP trained on the mixture dataset. The large agent-specific
datasets have the same size as the sum of all small agent-specific
datasets, so the same size as the mixture datasets. Training on the

Table 1: Average task completion rate of imitation learning
(IL) baselines in comparison to UCAP conditioned on an en-
coding of the action space. Results are averaged over four
random seeds and standard errors are in brackets. Bold indi-
cates the best performing model without access to the large
agent-specific datasets (SA=Single Agent, CA=Cross Agent).

Model GoToDistractor-Env
ID-Agents OOD-Agents

IL - SA - Small 0.504(0.006) 0.514(0.018)
IL - CA - Union 0.812(0.005) 0.026(0.002)
IL - CA - Union Finetuned 0.803(0.029) 0.7028(0.031)
IL - CA - AH 0.801(0.018) 0.016(0.005)
IL - CA - AH + Finetuned 0.811(0.037) 0.742(0.044)
UCAP 0.892(0.053) 0.541(0.034)
UCAP - Finetuned 0.872(0.046) 0.904(0.039)
IL - SA - Large 0.953(0.006) 0.944(0.001)

large agent-specific datasets serves as an upper bound of howmuch
positive transfer we can expect.

Figure 1 shows that UCAP exhibits positive transfer, as training
on the mixture dataset outperforms training a universal policy only
on the small agent-specific dataset in case of the standard action
space. Optimal performance for UCAP is achieved when condition-
ing on the action space representation. The mean performance of
the universal policies trained on the small agent-specific datasets
is 0.672 ± 0.003 averaged over 4 random seeds and all agent types
compared to 0.892± 0.053 achieved by UCAP when conditioned on
the action space encoding in the GoToDistractor environment.

We compare universal policies to imitation learning (IL) base-
lines adapted for cross-agent datasets, using a convolutional stack
followed by an MLP to predict actions from expert demonstrations.
Baselines include standard IL, IL with a union of action spaces, and
IL with agent-specific MLP heads but a shared convolutional stack.
We additionally compare finetuned versions of both IL baselines
and universal cross-agent policies. Both IL variants trained on the
cross-agent dataset show positive transfer, but none generalise to
OOD agents without fine-tuning (see Table 1). UCAP outperforms
IL baselines, in both settings with and without finetuning.

4 CONCLUSION
We showed that a diffusion-based planner operating in the shared
observation space of agents, combined with agent-specific inverse
dynamics models, effectively learns a universal policy for all agents.
UCAP outperforms agent-specific policies and imitation learning
baselines. Future work should explore scaling the approach to larger
datasets with potentially heterogenous observation spaces [8, 10].
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