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ABSTRACT
Offline reinforcement learning (RL) methods harness previous expe-
riences to derive an optimal policy, forming the foundation for pre-
trained large-scale models (PLMs). When adapting to novel tasks,
PLMs leverage expert trajectories as prompts to accelerate adap-
tation. While various prompt-tuning techniques aim to improve
prompt quality, their effectiveness is often limited by initialization
constraints, restricting exploration and potentially leading to sub-
optimal solutions. To eliminate dependence on the initial prompt,
we reframe prompt-tuning as conditional generative modeling,
where prompts are generated from random noise. Our proposed
Prompt Diffuser employs a conditional diffusion model to generate
high-quality prompts. Central to our framework is trajectory recon-
struction and the seamless integration of downstream task guidance
during training. Experimental results validate Prompt Diffuser’s
effectiveness, demonstrating strong performance in meta-RL tasks.
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1 INTRODUCTION
In RL, offline decision-making is crucial for deriving optimal poli-
cies from behavior-policy-generated trajectories without real-time
environmental interactions. Recent advances [4, 5, 8, 11] leverage
transformer-based architectures and sequence modeling to tackle
multi-task offline RL. By employing prompt-tuning, these methods
achieve efficient adaptation to target tasks while fine-tuning only a
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small subset of parameters. Despite its efficiency, prompt-tuning
is highly sensitive to initialization [6, 9]. When initialized with a
random prompt, the PLMs may explore only a constrained region,
causing optimization to converge to a suboptimal prompt [7].

To mitigate reliance on the quality of initial prompts, we re-
frame prompt-tuning as a conditional generative modeling problem,
where prompts are generated from random noise. This approach
eliminates the need for expert-curated prompts, with the quality
of generated prompts governed by the generative model’s parame-
ters, which may incorporate prior knowledge via pre-training on a
fixed dataset. However, in few-shot meta-learning settings, the lim-
ited availability of offline target-task data necessitates rapid model
adaptability. Additionally, these offline datasets often lack expert-
level quality, requiring the generative model to produce prompts
that surpass the fine-tuning data rather than merely replicating its
distribution. Given the semantic sensitivity of trajectory prompts,
even minor perturbations can induce significant shifts in meaning
[6], underscoring the need for precision in prompt generation.

To tackle these challenges, we propose Prompt Diffuser (see
Figure 1), a novel algorithm that employs a conditional diffusion
model to generate high-quality prompts. Our framework establishes
a trajectory representation and conditions the generative model on
returns, ensuring precision and facilitating rapid adaptation to new
tasks. However, optimizing Prompt Diffuser solely with the DDPM
loss yields performance comparable to the original dataset [10, 13].
To enhance prompt quality, we integrate downstream task guidance
into the reverse diffusion process. By applying gradient projection
techniques, we incorporate this guidance without compromising
the diffusion model’s overall performance, achieved by projecting
the guidance loss gradient onto the orthogonal complement of the
diffusion loss subspace. This paper provides a preliminary view of
the problem, please see [7] for a more extensive study.

2 METHODS
We formulate prompt-tuning as a standard conditional generative
modeling (GM) problem:

max
𝜃

E𝑠0∼𝑑0

[
𝑇∑︁
𝑡=1

R(𝑠𝑡 , PLM(𝜏∗prompt, 𝑠0:𝑡 , 𝑎0:𝑡−1, ))
]
, (1)

s.t. 𝜏∗prompt ∼ GM𝜃 (𝜏∗initial | 𝐶), (2)
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Figure 1: Overall architecture of Prompt Diffuser. Diffuser samples transitions conditioned on the return-to-go and timestep
tokens, which construct a prompt for the PLM. The loss between predicted and actual actions guides the denoising process,
enhancing the quality of the generated prompts.

where 𝑇 denotes the maximum number of interactions, and 𝐶 rep-
resents conditioning factors such as return, constraints, or demon-
strated skills. We adopt Prompt-DT [15] as the PLM and an MLP-
based diffusion model [2, 12] as GM.

The trajectory is constructed via a conditional diffusion process:

𝑞(𝑥𝑛+1 (𝜏∗) | 𝑥𝑛 (𝜏∗)), 𝑝𝜃 (𝑥𝑛−1 (𝜏∗) |𝑥𝑛 (𝜏∗), 𝑦 (𝜏∗)), (3)

where 𝑞 denotes the forward noising process, while 𝑝𝜃 represents
the reverse denoising process. The initial 𝑥0 (𝜏∗) encodes states,
actions, and rewards:

𝑥0 (𝜏∗) :=

𝑠∗𝑡 𝑠∗

𝑡+1 · · · 𝑠∗
𝑡+𝐾∗−1

𝑎∗𝑡 𝑎∗
𝑡+1 · · · 𝑎∗

𝑡+𝐾∗−1
𝑟∗𝑡 𝑟∗

𝑡+1 · · · 𝑟∗
𝑡+𝐾∗−1

 , (4)

with the condition:

𝑦 (𝜏∗) :=
[
𝑟∗𝑡 𝑟∗

𝑡+1 · · · 𝑟∗
𝑡+𝐾∗−1

𝑡 𝑡 + 1 · · · 𝑡 + 𝐾∗ − 1

]
, (5)

where𝑦 (𝜏∗) contains the returns-to-go 𝑟∗𝑡 =
∑𝑇
𝑡 ′=𝑡 𝑟

∗
𝑡 ′ and timesteps.

The training objective consists of two parts. First, we adopt de-
noising diffusion probabilistic modeling (DDPM) [2], incorporating
additional conditions into the reverse diffusion process 𝑝𝜃 , parame-
terized by the noise model 𝜖𝜃 :

𝐿𝐷𝑀 =E𝑛∼U,𝜏∗∼D∗,𝜖𝑛∼N(0,𝐼 ) [| |𝜖𝑛 − 𝜖𝜃 (
√
𝛼𝑛𝑥

0 (𝜏∗)
+
√

1 − 𝛼𝑛𝜖𝑛, 𝑦 (𝜏∗), 𝑛) | |2], (6)

whereU is a uniform distribution over the discrete set as {1, . . . , 𝑁 }
and D∗ is the dataset collected by behavior policy 𝜋𝛽 .

To enhance prompt quality, we integrate downstream task guid-
ance into the reverse diffusion chain, optimizing prompts for im-
proved performance in downstream tasks. The downstream task
loss [1, 3] is defined as:

𝐿𝐷𝑇 = E
𝜏
𝑖𝑛𝑝𝑢𝑡

𝑖
∼D𝑖

[
1
𝐾

𝐾∑︁
𝑘=1

(𝑎+
𝑖,𝑘

− PLM(𝑥0 (𝜏∗𝑖 ), 𝑦 (𝜏
∗
𝑖 ), 𝜏

+
𝑖,𝑘
))2

]
, (7)

where 𝜏+ represents the most recent historical trajectory.
To balance diffusion loss 𝐿𝐷𝑀 and downstream task loss 𝐿𝐷𝑇 ,

we analyze their correlation using gradient projection. Let 𝑆⊥
𝐷𝑀

=

span{𝐵} = span{[𝑢1, . . . , 𝑢𝑀 ]} represent the subspace spanned by
∇𝐿⊥

𝐷𝑀
, where 𝐵 constitutes the bases for 𝑆⊥

𝐷𝑀
and (·)⊥ denotes the

orthogonal space (consisting of a total of 𝑀 bases extracted from

∇𝐿⊥
𝐷𝑀

). The projection of any matrix 𝐴 onto 𝑆⊥
𝐷𝑀

is given by:

Proj𝑆⊥
𝐷𝑀

(𝐴) = 𝐴𝐵𝐵⊤, (8)

where (·)⊤ is the matrix transpose. Using this projection„ the final
update gradient can be:

∇𝐿 =

{
g𝐷𝑀 + 𝜆 · Proj𝑆⊥

𝐷𝑀
(g𝐷𝑇 ), g𝐷𝑀 · g𝐷𝑇 < 0,

g𝐷𝑀 + 𝜆 · g𝐷𝑇 , else,
(9)

where g𝐷𝑀 and g𝐷𝑇 denote the gradients ∇𝐿𝐷𝑀 and ∇𝐿𝐷𝑇 , re-
spectively, and the hyper-parameter 𝜆 is employed to balance the
downstream guidance (∇𝐿𝐷𝑇 ) and the diffusion loss (∇𝐿𝐷𝑀 ).

3 EXPERIMENTS
We evaluate our method and baseline approaches across four dis-
tinct meta-RL control tasks, following the dataset construction
and experimental settings of Hu et al. [6]. Experimental results
demonstrate that our approach significantly outperforms other
parameter-efficient fine-tuning methods [14, 15], achieving per-
formance levels close to the upper bound established by full-data
fine-tuning. These findings highlight the distinct advantages of our
proposed prompt-tuning technique in meta-RL settings.

4 DISCUSSION
Prompt Initialization. Unlike conventional prompt-tuning meth-
ods, which depend on high-quality prompts, Prompt Diffuser is
robust to variations in training data and initialization. By model-
ing prompt-tuning as a conditional generative process, it refines
prompts through downstream task guidance, enabling high-quality
generation even from suboptimal initializations, and demonstrating
its effectiveness without reliance on expert datasets.
GenerativeModels.Our approach’s superiority stems from the dif-
fusion model’s ability to generate precise, in-distribution prompts,
crucial for performance. While conditional generative modeling
eliminates reliance on expert-curated prompts, it demands high
precision. Leveraging the expressiveness of diffusion models, our
method significantly outperforms other parameter-efficient ap-
proaches in prompt-tuning.
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