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ABSTRACT
This paper explores the problem of fair assignment of disjoint paths

to agents onmulti-stage graphs. Wemotivate the problem by demon-

strating that an assignment minimizing the overall cost of all the

agents’ paths may lead to significant envy among the agents. Show-

ing NP-hardness of finding an envy-minimizing assignment, we

propose algorithms that achieve a desired degree of envy while

also providing a bound on the Cost of Fairness. Our algorithms run

several orders of magnitude faster than a suitably formulated ILP.

CCS CONCEPTS
• Theory of computation → Algorithmic game theory; Net-
work optimization; Shortest paths.
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1 INTRODUCTION
Resource assignment on graphs is essential for optimizing utiliza-

tion in domains like manufacturing, project management, operating

systems, parallel computing, and routing. In such graph represen-

tations, nodes represent tasks, resources, or processes, while edges

capture dependencies. One such type of graph is the fully-connected

multi-stage (FCMS) graph, where nodes are grouped into stages,

with each node connected to all nodes in the next stage. The fully-

connectedness is justifiable in applications where shortest path

algorithms are applicable. FCMS graphs are widely used in supply

chains [5], vehicle routing [24], project scheduling [41], and finan-

cial strategies [31]. While optimizing a utility objective, such as a
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function of cost and time, is well-studied for FCMS graphs, ensur-

ing fair assignment (where resources or workloads are equitably

assigned so that no agent is unfairly burdened or underutilized)

is equally important. It is also critical to ensure that fairness is

achieved without significantly increasing overall costs.

To understand the importance of fair assignment in FCMS graphs,

consider a multi-product, multi-stage supply chain network [5]. A

company like Bosch serves multiple clients (e.g., Toyota, Hyundai,

Honda, Ford, BMW) by producing automobile parts through a man-

ufacturing process using assembly lines available. Each stage rep-

resents a manufacturing phase, with nodes as workstations across

locations. Every automobile part must pass through all stages, using

one workstation per stage. Minimizing overall cost/time incurred

due to transportation and manufacturing is crucial, but ensuring

fair cost/time distribution across clients is equally important for fair

market competition; this corresponds to minimizing envy in the

assignment. Additionally, optimal production capacity utilization is

necessary, preventing workstation overload by ensuring each node

is assigned to not more than one agent. If a node has the capacity

to accommodate multiple agents at a time, multiple replicas of this

node can be created and treated as individual nodes.

This paper addresses the problem of fair assignment on FCMS

graphs. For ease of exposition, we focus on a subclass, balanced

FCMS (BFCMS) graphs, where the number of nodes in each stage is

equal to the number of agents. The problem requires assigning each

agent a non-overlapping path while mitigating envy (the difference

in the costs of paths assigned to any two agents) while keeping the

combined cost of all the paths within a certain bound.

Minimizing envy among agents has been studied in fair divi-

sion of divisible [4, 15, 39] and indivisible goods/tasks [3, 6, 7, 26],

as well as applications like group trip planning [38], vehicle rout-

ing [1, 29], bandwidth allocation [12], underwater network rout-

ing [14], ride-sharing cost allocation [27], load balancing [25], and

fair delivery [22]. Several works have empirically studied fairness

in delivery, without theoretical guarantees [17, 20, 28, 32]. Few

works on the vehicular routing problem use Integer Linear Pro-

gramming (ILP) for a fair solution [28]. Our focus is on efficient

algorithmic solutions with provable bounds, linking the problem

to fair route planning [21, 38]. Fairness in group trip planning has

been studied [37, 38], but it focuses on selecting a common path

for all agents, unlike our work. Supply chain optimization research

has primarily aimed at efficiency improvements across different
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segments [8, 18, 19, 33, 34], with fairness efforts mainly addressing

fair profit distribution among agents [11, 35, 36, 42], which differs

from our work. Fairness in the FCMS graph problem is similar to

fair allocation of items/tasks on graphs under ‘connected and equal

number of goods’ constraints [9, 30], where nodes represent tasks.

However, in FCMS, the cost of a task at one stage depends on the

allocated task in the previous stage, unlike fixed valuations in a

standard fair allocation. This also differentiates our problem from

repeated allocation models [2, 10, 16, 23], which do not account

for the dependency of the cost of a task allocated at a time on the

earlier allocated task.

2 THE MODEL
Consider a weighted graph G = (𝑉 , 𝐸), where𝑉 is the set of nodes,

𝐸 is the set of edges, and𝑤𝑒 is the weight of edge 𝑒 . Set 𝑉 is parti-

tioned into 𝐾 disjoint subsets, each containing 𝑛 nodes. A balanced

fully-connected multi-stage (BFCMS) graph is defined as a sequence

of 𝐾 such stages where a node from stage 𝑗 is linked to every node

in stage 𝑗 + 1. Let 𝑀 = max𝑒∈𝐸 𝑤𝑒 denote the maximum edge

weight in this graph. A valid solution 𝑆 to the assignment problem

in BFCMS graph comprises 𝑛 disjoint paths, each originating from

a node in stage 1 and terminating at a node in stage 𝐾 . The solution

is expressed as 𝑆 = (𝑃1, . . . , 𝑃𝑛), where each 𝑃𝑖 = (𝑝1
𝑖
, . . . , 𝑝𝐾−1

𝑖
)

signifies an individual path with edges 𝑝
𝑗
𝑖
from stage 𝑗 to 𝑗 +1 for an

agent 𝑖 . Let us denote the set of all valid solutions by F . Since each

agent 𝑖 is assigned a path 𝑃𝑖 , the path’s cost, say𝐶 (𝑃𝑖 ) =
∑
𝑒∈𝑃𝑖 𝑤𝑒 ,

represents the cost incurred by agent 𝑖 .

Definition 2.1 (Cost of a Solution). The cost of a solution 𝑆 ∈ F ,

where 𝑆 = (𝑃1, . . . , 𝑃𝑛), is defined as the sum of the weights of all

the edges in the solution, expressed as 𝐶 (𝑆) = ∑𝑛
𝑖=1

∑
𝑒∈𝑃𝑖 𝑤𝑒 .

A minimum-cost solution can be obtained using a simple adap-

tation of Suurballe’s algorithm [40], which finds 𝑛 node-disjoint

paths of the minimum total length from a source to a terminal node.

Definition 2.2 (Envy of a Solution). The envy of a solution 𝑆 ∈ F
is defined as the maximum difference between the costs of any two

agents in the solution, given by E(𝑆) = max𝑃𝑖 ,𝑃 𝑗 ∈𝑆
(
𝐶 (𝑃𝑖 ) −𝐶 (𝑃 𝑗 )

)
.

The envy of a minimum-cost solution could be significantly high.

Figure 1a depicts such a scenario with 𝑛 = 2 agents and 𝐾 stages;

the unique minimum-cost assignment is marked with blue and

red paths. Here, the total cost, as well as envy of the solution, is

(𝐾 − 1) (𝑀 − 𝛿). With an arbitrarily high value of 𝐾 and especially

if 𝛿 << 𝑀 , the envy is arbitrarily high. Now, if we swap the nodes

allocated to the two agents from stage ⌊𝐾/2⌋+1 onwards, we obtain
a new solution (Figure 1b), which has an envy that is lower than

𝑀 . However, additional cost is incurred as a result of this swap

due to considering suboptimal edges. Here, the total cost rises to

(𝐾 − 2) (𝑀 − 𝛿) + 2𝑀 .

Definition 2.3 (Cost of Fairness). The Cost of Fairness (CoF) for a
fair algorithm A is defined as the ratio of the cost of the solution

𝑆A produced by A to the cost of the minimum-cost solution 𝑆∗ =
argmin𝑆∈F 𝐶 (𝑆), given by 𝐶𝑜𝐹 (A) = 𝐶 (𝑆A )

𝐶 (𝑆∗ ) .

This definition of CoF is in line with [13]. Note that it differs

from Price of Fairness (PoF), which quantifies the worst-case ratio

of the optimal ‘fair’ solution to that of the optimal solution.

(a) (b)

Figure 1: Illustration of (a) a minimum-cost solution being
highly unfair and (b) a possible workaround.

3 FAIR ASSIGNMENT
Our work provides an algorithmic solution to the assignment prob-

lem on BFCMS, that results in low envy with a bound on CoF.

Theorem 3.1. Finding an envy-minimizing assignment on an
arbitrary BFCMS graph with a given 𝐾 ≥ 4 is NP-hard, and so is that
with a given 𝑛 ≥ 2.

For the case of 𝑛 = 2 agents, if E(𝑆∗) > 2𝑀 , we identify a stage 𝑖

in 𝑆∗ as the minimum stage where the cost difference between the

agents’ subpaths becomes greater than
E(𝑆∗ )

2
, and swap the nodes

allocated to the agents from this stage onwards. We term this, the

Cost-Balance (C-Balance) algorithm.

Theorem 3.2. Consider a BFCMS graph with 2 agents, 𝐾 stages,
and the maximum edge weight𝑀 . Then, C-Balance achieves an envy
of at most 2𝑀 , and its CoF is bounded by 2. Further, the envy bound
of 2𝑀 is tight, i.e., there exists an instance where envy is 2𝑀 .

For𝑛 > 2 agents, we iteratively choose agents with the minimum

and maximum path costs and perform a swap of assignments be-

tween them using the C-Balance algorithm. This process is repeated

until the overall envy is bounded by (2 + 𝛼)𝑀 , for any given 𝛼 > 0.

We term this, the Dynamic Cost-Balance (DC-Balance) algorithm.

Theorem 3.3. Consider a BFCMS graph with 𝑛 > 2 agents, 𝐾
stages, and the maximum edge weight 𝑀 , such that the minimum-
cost solution results in an envy of E(𝑆∗). Then, for achieving an envy
of at most (2 +𝛼)𝑀 for any 𝛼 > 0, the CoF of DC-Balance is bounded

by 1 +
2𝑀 ⌊ 𝑛

2
⌋
⌈
log

2

(
E(𝑆∗ )−2𝑀

𝛼𝑀

)⌉
𝐶 (𝑆∗ ) , which is 𝑂

(
𝑛 log

(
𝐾
𝛼

))
.

With the help of example instances, it can be shown that for

minimizing envy, it is infeasible to provide a constant instance-

independent bound on CoF. It is also easy to see that our approach

and results are directly applicable to general FCMS graphs wherein

there may exist stages with more nodes than the number of agents,

by applying our algorithm on the BFCMS graph that is induced by

the 𝑛 node-disjoint paths in the minimum-cost solution.

We observe that our algorithms run several orders of magnitude

faster than an ILP formulated to minimize the total cost with the

constraint that envy is bounded by 2𝑀 . For instance, for 20 agents

and 40 stages, ILP (solved using Gurobi Optimizer v11) is observed

to be slower by a factor of ∼3 × 10
5
as compared to DC-Balance.

With the ILP approach being computationally exorbitant, a primary

advantage of our approach is its low computational cost while still

providing bounds on relevant measures such as envy and CoF.
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