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ABSTRACT
Understanding how individual traits influence team performance is
valuable, but these traits are not always directly observable. Prior
research has inferred traits like trust from behavioral data. We ana-
lyze conversational data to identify team traits and their correlation
with teaming outcomes. Using transcripts from a Minecraft-based
search-and-rescue experiment, we apply topic modeling and clus-
tering to uncover key interaction patterns. Our findings show that
variations in teaming outcomes can be explained through these
inferences, with different levels of predictive power derived from
individual traits and team dynamics.
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1 INTRODUCTION
Autonomous agents have begun leveraging artificial intelligence
to improve human teamwork through automated assessment and
assistance during task performance [8, 10, 12]. However, their use-
fulness is limited by an agent’s ability to understand the people it
wants to help. When interacting with a team of humans, the agent
must model not only the multiple individuals but also their rela-
tionships and interactions. When multiple people work together,
communication becomes integral to their behavior across domains
[2, 7, 9]. This communication provides valuable information about
team characteristics and performance [11]. However, the value de-
pends on the agent’s ability to understand this naturally occurring
communication, which isn’t oriented toward AI systems.

2 EXPERIMENTAL TESTBED DATA
We analyze data from Study 3 of DARPA’s Artificial Social Intelli-
gence for Successful Teams (ASIST) program [4]. The study used a
Minecraft-based urban search and rescue task [1, 3, 5] where teams
of three participants worked together. Team members had distinct
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roles: the medic treats victims, the engineer clears obstacles, and
the transporter efficiently moves victims.

We use the following components in our study
• Communication transcripts: teams communicated via au-
dio, which was transcribed. Our analysis uses only these
transcripts, ignoring simulation logs and AI advisor data.

• Pre-trial team profiles: The dataset includes eight Background
of Experience, Affect, and Resources Diagnostic (BEARD)
variables such as anger, anxiety, etc. The BEARD variables
measure the team characteristics before trials.

• Dynamic effectiveness Diagnostic (TED)measures: TheASIST
testbed also contains variables that measure different aspects
of team effectiveness throughout the trials, without any inter-
actions with the team. The TED variables generate a dynamic
stream of team processes measures.

3 METHODOLOGY AND RESULTS
Our analysis aims to identify teams needing intervention and deter-
mine how early to intervene based on the communication patterns.

3.1 BEARD Profiles
Linear regression of BEARD variables against performance revealed
several significant relationships

• anger: showed a strong negative correlation.
• social perceptiveness: demonstrated a positive correlation.
• transporting skill: showed an unexpected negative correla-
tion, though this may be due to overconfidence effects.

3.2 TED Measures
Once we had the impact of the pre-trial variables, we turned our
focus to the variables that measure different aspects of team ef-
fectiveness throughout the trials, without any interactions with
the team members. Since some of these measures inform other
ones, e.g., process-effort-s informs process-effort-agg, to exclude
all inter-dependencies of TED variables, we only included variables
that are aggregates, time measures, and communication-based.

A linear regression of TED variables and scores indicates
• process-effort-agg: has a positive coefficient.
• comms-total-words: has a positive coefficient.
• process-skill-use-agg: has a negative coefficient.

3.3 Pre-Processing of Transcripts
Each transcript contains text for a complete experimental session
with teams performing the task twice (two trials). We removed
administrative text, split files into individual trials, and eliminated
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Table 1: Most probable words for the 12 topics.

Topic Top Most Probable Words

1 one, critical, see, right, go
2 meeting, one, critical, two, management
3 need, come, go, yeah, okay
4 patient, one, critical, engineer, patients
5 green, blue, hallway, victims, red
6 yeah, okay, oh, just, right
7 transporter, engineer, medic, victim, victims
8 go, one, okay, ahead, think
9 victim, room, victims, critical, see
10 engineer, one, just, get, right
11 critical, victim, engineer, victims, type
12 right, critical, just, like, going

redundant trials, resulting in 222 unique trial transcripts.We created
document-term matrices using standard preprocessing: lowercase
conversion, punctuation/number removal, and stopword filtering.

3.4 Intra-team Communication Analysis
After pre-processing, we investigated the content of the conversa-
tions to inform our process about the team’s performance. Topic
modeling is an unsupervised method of extracting potential topics
from the text, where such topics are representative of the main
content of a document. But first we need to find the best number of
topics.We applied Latent Dirichlet Allocation (LDA) topic modeling
using textmineR [6]. For each topic count (2-20), we ran LDA 100
times per count, evaluating the average probabilistic coherences;
based on which, we selected 12 as the topic count. Table 1 shows
the most probable words per topic. While some topics share terms
due to the common search-and-rescue context, others (like topics 2,
3, and 5) are distinct, revealing different communication patterns.

3.5 Categorization Abstraction
In order to have an abstraction over the categories that may be
present among the trial conversations and to find potential sub-
groups that could indicate various performances, we can perform
a clustering over the topic probability distributions for the trials
using theta matrix as the variables. Using gap statistics, we de-
termined 8 as the optimal number of clusters. K-means clustering
revealed strong differentiation between first and second trials (Table
2), despite not using performance data.

To investigate how these clusters relate to performance, we ex-
amined the score distributions per cluster. Linear regression showed
significant relationships between cluster assignment and perfor-
mance (p=0.0008), indicating a strong relation between cluster as-
signment and trial outcomes. The analysis revealed

• Cluster 5: Lowest performance (coefficient: -196.30)
• Cluster 2: Second-lowest (coefficient: -147.753)
• Cluster 3: Third-lowest (coefficient: -115.095)

BEARD logistic regression for cluster 5 showed:
• Negative correlation with social perceptiveness
• Positive correlations with spatial ability and game skills

Table 2: Trial-one vs. trial-two separation using clustering

Cluster Trial One Trial Two

1 29% 71%
2 84% 16%
3 84% 16%
4 14% 86%
5 53% 47%
6 11% 89%
7 91% 9%
8 29% 71%

Team Effectiveness Diagnostic (TED) variables revealed distinc-
tive patterns across clusters

• Cluster 5 (lowest performing): high inaction rates, low pro-
cess effort/coverage/triaging, minimal workload distribution,
poor communication balance.

• Cluster 2: negative correlation with communication equity,
moderate process coverage, uneven task distribution.

• Cluster 3: negative correlation with process workload, incon-
sistent team coordination, mixed communication patterns.

These patterns suggest that effective teams maintain balanced
communication and workload distribution, while struggling teams
show more fragmented interaction patterns.

3.6 Early Prediction and Intervention Pipeline
For early predictions, we analyzed transcripts portions

• with the first 1/10 of each transcript, we can predict which
cluster the trial belongs with 47% accuracy.

• at 1/3 of each transcript, the accuracy reaches 76%.
The analysis and processes above is used in this pipeline for an
autonomous agent to identify the low performing trials

(1) with 10% of the trial, the agent predicts trial’s cluster.
(2) if the cluster is low-performing, the agent uses the BEARD

variables to decide to intervene.
(3) at 30% of the trial, the agent predicts the trial’s cluster again.
(4) if the cluster is still low performing and the TED measures

have not improved since the 10%, the agent intervenes again.
(5) repeat steps 3-4 at 50% and 70% if the team needs more help.
Our pipeline allows an agent to predict the team performance

early on and take appropriate action, which is quite effective to
have a system that allows for such predictions to happen as early
as 10 to 30 percentage of the trial.
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