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ABSTRACT
We present and analyze a simple model for medical care in which
patients may take relatively low-cost medical tests in order to up-
date their beliefs about the probability that they have a particular
disease. At any point, patients may leave the testing domain and
either risk the effects of the disease or seek expensive treatment.
We explore the question of when patients should stop getting tested.
In particular, we study two variants of this game in which patients
may take an infinite or finite number of tests. We numerically solve
for optimal strategies in both the finite and infinite cases, and an-
alytically derive optimal behavior for well-behaved subcases in
the infinite setting. We also experimentally explore variants of our
basic medical testing model.
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1 INTRODUCTION
Modernmedicine is advancing at an unprecedented pace, and recent
developments demonstrate significant promise to both catch and
combat diseases more effectively. However, medicine is only as
helpful as patients’ abilities to seek and accept care, ideally as early
as possible. Especially for patients who live in remote, low-income
areas of the world with few medical professionals, the first major
hurdle is seeking out a specific diagnosis for an ailment.

There have been significant pushes to streamline and democra-
tize medical testing, and advancements in computer science and
artificial intelligence have enabled the use of machine learning al-
gorithms as diagnostic screening tools, supercharging the reach of
decentralized medical testing. One particularly promising applica-
tion is a website, parktest.net, that screens for Parkinson’s disease
based on audio and visual responses to basic commands [1–6].

However, although these tests drastically improve access to di-
agnostic screening tools, there is still one major consideration left
unaddressed: After receiving results from the test, what should
patients now do with this information?
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1.1 Model
We propose a formal model of patient care based on a one-player
repeated game. Patients have access to a set of diagnostic tests,
and they know the specificity (true positive rate), sensitivity (true
negative rate), and cost of each test. In each stage game, a patient
has three choices: (1) test: take a test, (2) risk: exit the system and
risk the effects of disease, or (3) treat: seek expensive treatment. We
assume two knowledge models for patients: in one model, patients
know their initial probability of having the disease, and in the other,
patients are unaware of this initial value. In both models, we ask:
When should a patient stop getting tested and either seek treatment
or exit the system?

Throughout, we assume that patients are capable of making
perfect Bayesian updates given the results of diagnostic tests. Let
us discuss the reasonableness of this assumption. While our results
hold for patients who are capable of performing perfect Bayesian
updates, we do not necessarily require rationality on the part of
users. Indeed, we may think of the model as a decision support tool
that itself performs Bayesian updates and, based on these updates,
advises patients to seek treatment, take additional tests, or do exit
the system. Importantly, even in this reframing, it is still up to the
patient to accept or reject the mechanism’s advice, i.e., they do not
completely relinquish their decision-making power to an algorithm.

1.2 Our Contributions
We propose a simple model for medical testing in which patients
play a repeated game before making a decision to either leave the
system (i.e., take the risk) or seek treatment. We establish many
structural lemmas about optimal behavior in this model, particu-
larly for the infinite setting in which patients receive independent
results from tests. In the infinite setting, we identify two subcases in
which the optimal solution exactly converges in finite time, which
we term the simple and semi-simple settings. We also present exper-
imental results in the finite setting where patients do not receive
independent results from tests. Lastly, we explore some extensions
of the model that account for smoothed risk and treatment curves,
thresholds for treatment, and disease progression over time.

2 EMPIRICAL RESULTS
Our experimental results in the finite setting show a marked im-
provement over real-world baselines such as “believe the negative,”
“believe the positive,” or taking one test.

In our simulations, we generate a population of 1,000,000 patients
whose probability of disease is drawn from one of two distribu-
tions, one with a lower mean and variance representing a low-risk
population, and one with a higher mean and variance represent-
ing a subpopulation with a higher risk of having the disease. The
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high-mean distribution is drawn from one sixth of the time, and
the low-mean distribution is drawn from otherwise. Additionally,
to model factors that affect how much the treatment costs for each
patient and how much the disease would affect them, we give each
patient different payoffs for risk and treat drawn from a distribution.

A patient may choose to take any test, risk, or treat according to
their strategy, but they may not take the same test more than once.
We compare the performance of the optimal (finite) strategy (OPT)
and a simpler probability threshold strategy (THRESH) against
a set of baselines. OPT enumerates all possible decision trees and
executes the one with the least expected harm. We also examine the
performance of OPT restricted to only one of the three tests, labeled
T1-OPT and T2-OPT when restricted to the weak or strong test
respectively (tests with identical sensitivity, specificity, and cost are
combined). THRESH takes a lower bound probability and an upper
bound probability and takes a random remaining test as long as
the current probability of disease is in the middle. It will risk if its
probability drops below the lower bound and test if it reaches above
the upper bound. Finding the optimal thresholds for this strategy is
analytically difficult, so we choose as our lower bound the smallest
probability at which taking any of the tests is useful assuming it
is the only test to be taken, and our upper bound is similarly the
greatest probability at which taking any test is useful.

In practice, a patient may not have full knowledge of all the
factors affecting their probability of disease. Therefore, we compare
the performance of these strategies with different levels of knowl-
edge, which we call full, group, and mean. In the full knowledge
scenario, patients know their exact probability of disease. In the
group scenario, patients only know whether they were drawn from
the low or high risk population, and thus the mean of their sub-
population becomes their expected probability of disease. In the
mean scenario, patients only know the entire population’s mean
probability of disease, and so this becomes their probability.

We compare our strategies with several baselines. One of our
baselines is the option of simply taking one of the tests, risking
if it comes back negative, and treating if it comes back positive.
These are listed as T1 and T2 for the weak and strong test. The
“Believe Positive” (BP) strategy takes a predetermined sequence
of tests and seeks treatment if any come back positive, and only
risks if all are negative. “Believe Negative” (BN) is similar but re-
versed. We consider these as part of our "no knowledge" scenario
as these strategies do not depend on the patients’ individual risk
cost 𝑅, treatment cost 𝑇 , and probability of disease. Because the
performance of BP and BN is greatly affected by which set of tests
is taken and in what order, we assume each patient chooses the
optimal subset and sequence of tests despite the fact that in the no
knowledge scenario they would not have access to the information
that lets them make this choice. This has the effect of making these
baselines as strong as possible.

Our results are presented in Figure 1. In our first scenario in Fig-
ure 1a, patients have access to two different weak but inexpensive
tests, and a strong but expensive test. The second scenario in Fig-
ure 1b consists of three different weak and inexpensive tests. In both
scenarios, OPTwith full knowledge outperforms all other strategies,
while the threshold strategy with full knowledge is not far behind.
As expected, performance degrades with less information. BN per-
forms quite well as a baseline while BP performs somewhat poorly.

This is because the population overall has a rather low probability
of disease, so it makes more sense to perform a riskier strategy.
In the scenario with only weak tests, neither baseline performs as
well. The improvements from using multiple tests is greater in the
second scenario with multiple weak tests.
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(a) Three tests, two with sensitivity and specificity 0.65 and cost
0.5, and one with sensitivity and specificity 0.9 and cost 6.
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(b) Three tests: sensitivity and specificity 0.65, cost 0.5.

Figure 1: Expected harm of various strategies under different
information conditions. Black dots are baselines.

3 DISCUSSION
We view our model as a first step toward a more comprehensive
and useful theory of diagnostic testing in a new age of widely-
available, low-cost distributed medical testing made possible by
advances in technology. Please see the full version of the paper for
our theoretical contributions (including useful structural lemmas
for optimal solutions and closed-form solutions in special cases)
and proofs, as well as additional experimental results.
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