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ABSTRACT
Graph Neural Networks (GNNs), developed by the graph learning
community, have been adopted and shown to be highly effective in
multi-robot and multi-agent learning. Inspired by this successful
cross-pollination, we investigate and characterize the suitability
of existing GNN explanation methods for explaining multi-agent
coordination. We find that these methods have the potential to iden-
tify the most-influential communication channels that impact the
team’s behavior. Informed by our initial analyses, we propose an
attention entropy regularization term that renders GAT-based poli-
cies more amenable to existing graph-based explainers. Intuitively,
minimizing attention entropy incentivizes agents to limit their at-
tention to the most influential or impactful agents, thereby easing
the challenge faced by the explainer. We theoretically ground this
intuition by showing that minimizing attention entropy increases
the disparity between the explainer-generated subgraph and its
complement. Evaluations across three tasks and three team sizes
i) provides insights into the effectiveness of existing explainers,
and ii) demonstrates that our proposed regularization consistently
improves explanation quality without sacrificing task performance.
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1 INTRODUCTION
Graph neural networks (GNNs) were originally developed to an-
alyze complex relational data [15]. However, they were quickly
adopted by various other communities due to their ability to cap-
ture structural information and reason over non-euclidean spaces
while remaining invariant to certain distractors. The fields of multi-
agent and multi-robot learning were among the beneficiaries of
these powerful techniques, enabling scalable policies that encode
team size-invariant strategies for inter-robot communication and
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coordination. This has instantiated into adoption of RL trainedGNN-
based policies with overall similar design choices in the multi-robot
community to tackle practical applications such as cooperative nav-
igation [11, 12], coverage control [9], autonomous driving [7], and
real-world multi-robot coordination [5].

In this work, we explore whether one could adopt existing post-
hoc (agnostic) GNN explanation methods to explain multi-agent
coordination. We study GNN explainers since they estimate parsi-
monious yet representative subgraphs as a means to explain com-
plex decisions. We systematically investigate and characterize the
suitability of existing GNN explanation methods for graph atten-
tion network (GAT) based policies in multi-agent coordination. If
we could explain GNN-based coordination policies via salient sub-
graphs, then users could identify the most influential inter-agent
interactions that can effectively approximate and distill coordina-
tion strategies learned across the entire team. This could be useful
to effectively debug the learning algorithm by comparing observed
coordination strategies against their expectations. Further, explana-
tions would help non-experts gain insights into learned coordina-
tion policies. In fact, identifying such influential interactions was
found to be a key challenge in explaining coordination strategies
by a recent user study focused on multi-agent navigation [6].

2 EVALUATING GRAPH EXPLAINERS
We investigate the following state-of-the-art post-hoc GNN ex-
plainers in terms of their ability to explain GNN-based coordi-
nation policies: Graph Mask [14], GNN-Explainer [16], Atten-
tion Explainer [8]. We evaluate the three graph-based explainers
introduced above on three multi-agent coordination tasks from
BenchMARL [4] implemented using the VMAS simulator [3] across
three team sizes. We force the agents to be blind, so agents can-
not sense one another and require effective communication to
solve each task. Blind Navigation: a team of agents must co-
operatively navigate from assigned start locations to goal loca-
tions without colliding. Blind Passage: a team of agents starts on
one side of a wall and needs to reach a destination on the other
side after traversing a narrow corridor/passage while minimizing
collisions. Blind Discovery: a team of agents must explore the
environment to discover a single landmark and converge on its
position. We consider four metrics to quantify both the fidelity [2]
and faithfulness [1] of generated explanations. Positive Fidelity
(↑) at timestep 𝑡 is 𝐹𝑖𝑑𝑡+ ≜ |𝐹 (𝐺𝑡 ) − 𝐹 (𝐺 \ 𝐺𝑡

𝑆
) |, and measures

the necessity of the explanation subgraph. Negative Fidelity (↓)
at timestep 𝑡 is 𝐹𝑖𝑑𝑡− ≜ |𝐹 (𝐺𝑡 ) − 𝐹 (𝐺𝑡

𝑆
) |, and measures the suffi-

ciency of the explanation subgraph. Delta Fidelity (↑) at timestep
𝑡 is defined as 𝐹𝑖𝑑Δ ≜ 𝐹𝑖𝑑+ − 𝐹𝑖𝑑− to measure the explanation’s
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Figure 1: (Left) We systematically evaluate existing graph-based explainers when used to explain multi-agent coordination,
and propose a regularizer to improve the explainability of GNN-based policies. (Middle) Delta Fidelity (↑, section 4) and
(Right) Unfaithfulness (↓, section 4) of explanations generated by three explainers without (blue) and with (orange) proposed
regularization across three tasks (rows) and three team sizes (columns). See [10] for the full-resolution and additional figures.

joint necessity and sufficiency. Unfaithfulness (↓) at timestep
𝑡 is 𝐺𝐸𝐹 𝑡 ≜ 1 − exp (−𝐾𝐿(𝐹 (𝐺𝑡 ) | |𝐹 (𝐺𝑡

𝑆
))), where 𝐾𝐿(·| |·) is the

Kullback–Leibler divergence.

3 IMPROVING EXPLANATIONS
After analyzing the quality of explanations generated by existing
explanation results (see Sec. 4), we observed that they could be
improved by modifying how we train GNNs – by minimizing the
entropy of the attention values. Attention entropyminimization can
be motivated from two perspectives. First, from a multi-agent coor-
dination perspective, an agent who collaborates with other agents
will intuitively desire to (1) filter out useless information and (2)
focus on the information that is most crucial to the task at hand,
similar to selective attention in humans [13]. Attention in GNNs
serves a similar purpose when the nodes are agents and the edges
are communication channels. From a graph learning perspective,
minimizing attention entropy in conjunction with task objective
can be seen as a form of denoising for node-level learning tasks.
By incentivizing a set of attention values that have lower entropy,
the model is likely to learn a stronger filter that starts removing
extraneous or noisy information. The intuition behind minimiz-
ing attention entropy can be connected to more formal notions
of information bottleneck over graphs [18]. But, optimizing such
objectives tends to be computationally intensive and challenging,
which will likely be exacerbated when combined with multi-agent
learning. In contrast, integrating attention entropy minimization
into learning GNNs is much simpler, especially within MARL frame-
works like MAPPO [17] by defining the new regularized loss as
L𝑃𝑃𝑂+𝐴𝑇𝑇𝑁
𝑡 = E𝑡 [L𝑃𝑃𝑂

𝑡 (𝜃 ) + 𝜆H(𝛼𝑡 (𝜃 ))].

4 EMPIRICAL RESULTS AND DISCUSSION
Without Regularization: We observe that GraphMask tends to
have the lowest explanation quality (lowest fidelity and highest
unfaithfulness) likely due to its hard binary masks constraining the
space of possible subgraph explanations. Consequently, GraphMask
struggles to capture more diffuse inter-agent influences, which are
more likely without attention regularization. In contrast, both GN-
NExplainer and AttentionExplainer employ soft edge masks and
thus tend to produce subgraph explanations that are more expres-
sive than those of GraphMask, especially when the attention values

are diffuse. Unlike AttentionExplainer, GNNExplainer is compatible
with any GNN (i.e. GCN, GAT, etc) and does not rely on the model
being self-interpretable. As a result, GNNExplainer provides the
best explanations when employed out-of-the-box without attention
regularization.

Impact of Regularization: We observe that the attention regu-
larization has had no discernible impact on delta fidelity for Graph-
Mask, but consistently reduces GraphMask’s unfaithfulness. This
is likely due to the regularization making the attention distribution
sparser, resulting in explanations that contain a larger subset of
the salient edges but do not capture all the salient edges due to the
restriction of hard binary masks. As such, GraphMask can capture
more of the salient edges even when employing a hard mask. This
yields a gain in negative fidelity and faithfulness, but also incurs a
deterioration in positive fidelity. However, despite this boost from
regularization, GNNExplainer and AttentionExplainer continue to
perform better than GraphMask after the regularization.

Notably, attention regularization helps AttentionExplainer con-
sistently outperform GNNExplainer across all team sizes and tasks.
This is likely because this regularization boosts the correlation be-
tween the attention values (which can be interpreted as a subgraph)
and the GNN model behavior (i.e., the inter-agent influences con-
sidered by the model), in line with the insights from our theoretical
analysis. In contrast, entropy minimization likely obtains mixed
results for GNNExplainer since the original objective of GNNEx-
plainer is intractable to solve and requires assumptions (originally
tailored for graph datasets [16]) that might be compatible with
multi-agent coordination. Thus, the inclusion of attention entropy
minimization may not inherently improve the optimization land-
scape that GNNExplainer attempts to solve despite the fact that
the subgraphs induced by the attention values themselves better
represent the underlying model.

Impact on Task Performance: We also measured the impact of
attention entropy minimization on task performance. Reassuringly,
we found little to no degradation in task performance [10].
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