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ABSTRACT
Money laundering (ML) facilitates the cross-border movement of
illicit funds, enabling organized crime by disguising the origins
of illegal money. Financial institutions face significant challenges
in combating it, primarily due to barriers in adopting advanced
technologies such as machine learning, caused by restricted access
to sensitive transaction data. Existing synthetic datasets often lack
critical customer information and realism, reducing their utility for
ML detection. This study presents Truman, an innovative data gen-
erator that leverages Large Language Model (LLM) based agents to
create realistic financial transaction data, incorporating simulation
of ML patterns. Expert validation confirms the dataset’s quality and
applicability for anti-money laundering research.
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1 INTRODUCTION
Money laundering (ML) has been a transnational crime and global
issue for decades. The United Nations Office on Drugs and Crime
(UNODC) estimates that 2% to 5% of global Gross Domestic Prod-
uct (GDP) is laundered annually, amounting to over a trillion dol-
lars [15]. This poses a substantial threat to social security and
economic prosperity of nations. In response, governments have im-
plemented Anti-Money Laundering (AML) and Counter-Terrorism
Financing (CTF) policies, requiring regulated entities involved in
financial services to ensure compliance by detecting and reporting
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suspicious transactional behavior of customers. Financial institu-
tions (FIs) often face significant penalties for non-compliance due
to inadequate AML controls. In 2022, global FIs incurred over $8
billion in AML-related fines, raising the total AML fines since the
2007-2008 financial crisis to $56.1 billion [5]. In 2024, the historic
$3.1 billion settlement by TD Bank highlights the increasing en-
forcement of AML regulations worldwide [13].

To combat ML, FIs have setup AML programs and AML controls
that rely on rule-based systems to monitor and identify suspicious
transactions. However, these systems suffer from high false posi-
tive rates, estimated between 70% to 99% [10]. A major challenge
in developing and training machine learning models is the limited
availability of labeled financial transaction data with ML transac-
tions because such data is highly sensitive and protected [2]. This
restriction constrains the research in the AML domain, despite the
suitability of machine learning for analyzing transaction flows to
detect illicit activities.

To address the issue of a lack of data for training models, several
attempts have been made in the past to create synthetic ML transac-
tion data [1, 9, 14], however they suffer from inadequate attributes,
semantic incorrectness and data quality issues. To fill these gaps,
this research introduces a synthetic financial transaction data gen-
erator, Truman 1. Truman aims to produce financial transactions
and ML transactions data for a bank and its customers.

2 DATA GENERATOR DESIGN
This section covers the design of Truman as shown in Figure 1, con-
sisting of two components: financial transaction data generation
and the simulation of ML patterns to generate ML transactions. Tru-
man is implemented by extending the AgentVerse [4] framework.

Figure 1.a shows the workflow used to generate the financial
transaction data. It involves four steps. First step generates the user
profile containing attributes such as age, gender, profession and ad-
dress etc. Subsequent data generation relies on these demographic
patterns and characteristics. The Retrieval-Augmented Generation
(RAG) technique [8] facilitates this functionality and is used in
prompt design to extract relevant information from generated data.

1The name Truman is inspired by themovie “The Truman Show”, where the protagonist
believes he is living a real life, but is actually part of a television show. Similarly, the
agents in Truman’s generated data think they are real persons performing transactions.
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Figure 1: Overview of Truman’s Design
Table 1: A Sample Dataset Summary

S. No. Data Entity Records Remarks

1. Customers 50 Retail customers
2. Saving accounts 50 1 per customer
3. Legitimate transactions 33041 40-80 txn per month
4. ML transactions 648 10 instances per pattern.

The second step generates the customer profile using user data
and attributes like enrollment date and risk status. The third step
creates a savings account, and the fourth step generates its monthly
transactions. To fully simulate real-world scenarios, a single LLM
agent is used to impersonate a user and generate the transactions
iteratively for each customer. This flexibility is a key advantage
of using LLM agents compared to previous studies [1]. To ensure
adherence to the output format, we utilize few-shot prompts [3] to
guide the LLM’s output, with feedback from the Truman parser to
report errors and enhance the prompt with error information.

Figure 1.b shows the simulation of ML patterns. The following
foundational ML patterns [14] are simulated - Fan In, Fan Out,
Scatter-Gather, Gather-Scatter, Simple Cycle, Random Cycle, Bi-
partite, Stack and Peel Chain pattern. The multi-agent simulation
comprises a facilitator, a broker, and multiple agents that helps to
reduce the task complexity by having a distinct responsibilities for

each role. Assigning excessive instructions to a single role com-
plicates task comprehension and correct execution. The facilitator
comprehends the plan using the chain-of-thought [16] technique.

The quality of prompts plays a crucial role in determining the
final quality of generated data. Our prompt design philosophy is
based on three key principles: conciseness, relevance with high
information density, and clear directionality. Truman utilizes the
capabilities of the OpenAI GPT-4 Turbo APIs [12] to implement
these principles effectively. Detailed explanation of Truman frame-
work along with the patterns and prompts can be found here [7].

3 DATASET
The data generation using Truman is a two step run process. In
first step, the base data containing customers, accounts and regular
transactions are generated as per the input configuration param-
eters. The second step runs the ML simulation framework and
generates the transactions as per the ML pattern and other con-
figuration parameters. Table 1 shows the sample dataset summary
and figure 2 shows the data distribution. It is observed that the
generated data approximately follows the power-law distribution
(alpha 2.29), aligning with real-world distribution [6].

3.1 Key Findings
The LLM model generates new values for some attributes beyond
those in the prompt, which are mostly accurate but occasionally
include invalid data. The LLMs tend to generate multiples of 5 and
10s for transaction amount, even though the prompt examples show
otherwise. In ML simulation, if there is feedback from too many
agents, the Broker cannot comprehend and synthesize them to gen-
erate complex ML patterns (example Stack pattern). Likewise, if the
instructions contain too many goals, LLMs fail to complete multiple
tasks as expected unless clear guidelines are given. In addition to
the prompts, empirical rules based on observations of the generator
output are used to improve the data quality. It is recommended
that LLM instructions be explicitly aligned with detailed rules or
examples rather than allowing the LLM to determine how to utilize
range of values. This is because LLMs may lack genuine reason-
ing capabilities and instead replicate reasoning steps based on the
training data as demonstrated in [11].

4 LIMITATIONS AND FUTUREWORK
A key limitation is that LLMs often create biased data despite in-
structions for randomization, so wemanually randomized attributes
before input; full automation would be ideal. The Truman is LLM-
agnostic, with output quality and cost dependent on the capability
and API pricing of the LLM used. Future work includes modeling
transactions for additional account types; simulating transactions
for small, medium, and large business customers; developing ma-
chine learning models to detect injected ML transactions as a data
validation method; and simulating transactions associated with
other financial crimes, such as fraud and cybercrime.
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