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ABSTRACT
We present a game theoretic analysis of a competitive search game

which clarifies the expected advantages and disadvantages of grant-

ing first innovators exclusive rights to enjoy subsequent discoveries.

We compare the theoretical predictions with actual behavior of play-

ers in the lab and find that the benefit of protection stems from

increasing exploration efficiency, rather than encouraging initial

exploration efforts. The latter, which contradicts theoretical pre-

dictions, can be explained by the cognitive bias of underweighting

rare events.
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1 INTRODUCTION
Stimulating innovation remains a key challenge for policymakers,

with debates between proponents of free competition and advo-

cates of rights protection. While competition generally enhances

incentives [4, 13, 19], innovation presents a unique case due to

the cumulative nature of discoveries [14]. Radical breakthroughs

create new research avenues, enabling incremental discoveries at

lower costs. However, if knowledge is publicly shared, only the

original inventor bears the full cost, making discoveries akin to a

public good that may suffer from underinvestment in a compet-

itive environment [8]. A common solution is granting exclusive

rights to initial inventors, as seen in patents protecting technolog-

ical breakthroughs. This type of protection prevent competitors

from leveraging the discovery, enhancing incentives for radical

innovation [10]. In academia, policies allowing researchers to keep

data private increase the reward for data collection. Protection can

also promote specialization, as teams refining their own discover-

ies learn which research directions are most promising. Addition-

ally, preventing redundant parallel discoveries can improve overall

search efficiency [1, 6]. However, restricting access may slow down
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innovation [3, 5, 7, 12]. For example, academic journals increas-

ingly require open data sharing to foster new insights and error

detection [15, 20], and open-source platforms thrive by enabling

developers to build on shared code [11]. Yet, open policies might

lead to insufficient investment in radical innovation and inefficient

exploration. This work examines the trade-offs between protection

and open knowledge sharing, focusing on how economic competi-

tion, with and without protection, shapes exploration behaviors,

discovery rates, and efficiency. To this end, we present an abstract

theoretical model of sequential discoveries with and without pro-

tection, confirming that protection encourages initial discoveries

but inhibits followup discoveries. In Section 3 we present a concrete

game that simulates such an environment and compare theoretical

with behavioral predictions. For proofs and details of the experi-

ment see the full version on https://arxiv.org/abs/2502.14112.

2 A THEORETICAL MODEL
There are n players, each of which chooses how much to invest in

exploration for novel knowledge (or research), and how much to

invest in exploitation of existing knowledge towards application.
The strategy of each agent is thus composed of two real num-

bers, ri ,xi ≥ 0, representing the effort i invests in research and in

exploitation of knowledge provided the opportunity, respectively.

We call the aggregated research product knowledge,K :=
∑n
i=1 ri ,

which can in turn be exploited for applications. As xi is the effort
i invests in applying knowledge, the overall work i invests in ex-

ploiting knowledge iswi := K · xi .
The generated knowledge K can be applied by the competing

agents, proportionally to their exploitation efforts: ai :=
xi∑
j x j

K .

Costs and utilities. We associate a fixed reward Rr ,Ra ≥ 0 with

research andwith application, respectively, as well as a single convex
cost function c : R+ → R+.

We further assume that ceteris paribus, exploitation is more

rewarding than exploration per invested effort, and hence Ra ≥ Rr .

• The total knowledge generated is K :=
∑
i ri ;

• The exploitation work of i iswi := xi · K ;
• The knowledge applied by i is ai :=

xi∑
j xi

K , or just ai = xiK

if there is no competition (i.e. if

∑
j x j < K );

• the overall utility of i isui (r ,x) := riRr +aiRa −c(ri )−c(wi ).

When initial research is protected (e.g. by patents), there is no

interaction between players. In our model, this essentially means

that there is a single player i = 0, and K = r0. The optimal strategy

then becomes a simple optimization problem.
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Proposition 2.1. The optimal strategy in the protected condition
is to play x∗

0
= 1, and r∗

0
is the unique r s.t. c ′(r ) = Rr+Ra

2
.

When there are multiple players with access to the generated

knowledge, we have that K =
∑
i ri , and the applications ai each

agent generates depend both on K and the exploitation strategies

x1, . . . ,xn , as explained above.

Proposition 2.2. There is a symmetric equilibrium, where for
every agent i , (a) c ′(r∗i ) = Rr +

Ra
n2

; and (b) x∗i c
′(n · r∗i x

∗
i ) =

n−1
n2

Ra .

Corollary 2.3. The rate of exploration is higher with protection

as long as Ra
Rr >

n2

n2−2
; and the rate of exploiting available knowledge

is lower with protection as long as Ra
Rr >

n2

n2−n−1 .

Note that the condition on
Ra
Rr becomes trivial for large n.

3 COMPETITIVE TREASURE HUNT GAME
In the “Competitive Treasure Hunt" game, each group of 4 players

is presented with a hive of hexagons and need to find treasures.

5% of the hexagons are hidden treasures that simulate discoveries

in the real world. Every three treasures are arranged in clusters

which form a tight triangle. Thus, discovering the first treasure

in a cluster increases the probability of finding the next two trea-

sures from 0.05 to at least 0.33. Finding a first treasure simulates

a breakthrough discovery and its value is set to 320. The other

two treasures simulate sequential discoveries and their value is 80

each. The costs of exploration are distributed between 5 and 35,

and are sampled independently for every player in each round. In

the “Protection" setting, whenever a player finds the first treasure

in a cluster, only he can explore the adjacent hexagons. In the “No

Protection" setting, when a player finds a treasure, this does not

restrict future searches of other players.

3.1 Simulation Results
We programmed artificial Fully Informed Bayesian Players (FIBP) in

both game conditions. In our simulations, the optimal/equilibrium

initial search threshold increases from 15 to 20 when applying pro-

tection (compared to ∼ 20% increase expected from the theoretical

model), and sequential search threshold decreased from 25 to 20

(compared to an expected theoretical decrease of 5% − 20%). This

qualitatively confirms the results expected from the abstract model

with the appropriate parameters set.

3.2 Theoretical Predictions
Following the theoretical analysis and simulations, we get two

clear theoretical predictions under profit maximization and full

information assumptions:

Theoretical Prediction 1: Under the Protection condition, ini-

tial and sequential search activities should be at a similar rate.

Theoretical Prediction 2: Protection increases exploration ac-

tivity for first treasures.

Theoretical Prediction 3: Protection decreases exploration ac-

tivity for subsequent treasures.

3.3 Behavioral predictions
Unlike the assumptions underlying FIBS, in real life (and also in our

lab experiment), the a-priori probability of making a new discovery

is unknown to the competing players in advance, and they can

learn it only throughout ongoing experiences. Learning takes time,

but once consistent exploration threshold is formed, under the

assumption of rationality, it should be close to the optimal one.

However, the Decisions from Experience (DfE) literature suggests

that in repeated choice settings, people tend to underweight rare

events [2, 9, 16–18], which yields the following predictions:

Behavioral Prediction 1: Sequential search activity should be

higher than initial search activity, under both conditions.

Behavioral Prediction 2: we should not expect a difference in

initial search activity between the two conditions.

Note that each of these behavioral predictions 1,2 directly con-

tradicts its theoretical counterpart, while theoretical prediction 3 is

not affected by the above discussion.

4 EXPERIMENTAL RESULTS
4.1 Initial vs. Sequential search
In contrast to Theoretical Prediction 1 and in line with Behavioral

Prediction 1, under protection, search rates for sequential discover-

ies were significantly higher than search rates for initial discoveries

(0.72 vs. 0.6, p<0.05). This result was consistent across search costs.

4.2 How protection affects initial search
In line with Behavioral Prediction 2 there was no significant differ-

ence between search rates for initial discoveries in the two condi-

tions. Yet, the direction was in line with Theoretical Prediction 2,

with higher search rates for initial discoveries under protection

than under no-protection (0.6 vs. 0.53, ns). This result is consistent

over search costs. An additional analysis supported the behavioral

account, by revealing under-sensitity to the reward level, in line

with underweighting of rare events in decisions from experience.

4.3 How protection affects sequential search
In line with Theoretical Prediction 3, sequential search rates were

lower under protection than under the no-protection condition

(0.78 vs. 0.9). This difference becomes more significant for search

costs ≤ 15 due to ceiling effect under low search costs.

4.4 Search Efficiency
Despite lower overall search rates under protection, When com-

paring the number of searches to treasures found, we see a sharp

drop from 8.4 searches-per-treasure without protection, to about 7

one protection is applied. Additional analyses suggest this is due

to players ‘wasting’ some of their searches on treasures eventually

picked by others. Thus, regardless of its effect on search behavior,

protection has the added benefit of coordinating players’ effort.

5 CONCLUSIONS
The experimental results show that the benefit of protecting sub-

sequent searches around initial discoveries stems from increas-

ing exploration efficiency, rather than encouraging exploration

intensity—an insight to consider in the design of IP systems.
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