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ABSTRACT
We are interested in planning problems where the agent is aware of
the presence of an observer, and where this observer is in a partial
observability situation. The agent has to choose its strategy so as to
optimize the information transmitted by observations. Building on
observer-aware Markov decision processes (OAMDPs), we propose
a framework to handle this type of problems and thus formalize
properties such as legibility, explicability and predictability. This
extension of OAMDPs to partial observability can not only han-
dle more realistic problems, but also permits considering dynamic
hidden variables of interest. We discuss theoretical properties of
PO-OAMDPs and, experimenting with benchmark problems, we
analyze HSVI’s convergence behavior with dedicated initializations
and study the resulting strategies.
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1 INTRODUCTION
As explained by Klein et al. [9], efficient and safe human-agent
collaboration requires behaviors that carry information such as
intentions, abilities, current status or upcoming actions (see also
[1, 3, 6–8, 14, 15]).

Here we consider an agent (robot or otherwise) observed by a
passive human, as in Figure 1 (left). In this setting, Chakraborti
et al. [4, 5] derive a taxonomy of the concepts behind such infor-
mation communication through the behavior. In particular, they
distinguish between (1) transmitting information, with properties
such as legibility (legible behaviors convey intentions, i.e., actual
task at hand, via action choices), explicability (explicable behaviors
conform to observers’ expectations, i.e., they appear to have some
purpose), and predictability (a behavior is predictable if it is easy
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Figure 1: An OAMDP agent (3) assumes that the observer
expects (2) the agent to behave so as to achieve some task (1).

to guess the end of an on-going trajectory); or (2) hiding informa-
tion, as through obfuscation, when the agent tries to hide its actual
goal. They propose a general framework for such problems while
assuming deterministic dynamics, and work mostly with plans (a
sequence of actions, which induces a sequence of states). In their
approach, the human is modeled by the robot as having a model
of the robot+environment system (including the robot’s possible
tasks), and is thus able to predict the robot’s behavior.

Adopting a similar approach as Chakraborti et al. [5], Miura
and Zilberstein [12] build a unifying framework while assuming
stochastic transitions, namely observer-aware Markov decision pro-
cesses (OAMDPs), illustrated in Figure 1. Among other things, their
work also covers legibility, explicability, and predictability. The
present paper proposes a formalism that can handle problems with
partial observability. The observer has only access to a transition-
dependent observation, while the agent has access to all informa-
tion, including the observer’s observation. The PO-OAMDP formal-
ism is introduced in Sec. 2, before discussing theoretical properties
of PO-OAMDPs and an example solving algorithm in Sec. 3.

2 OAMDPS WITH PARTIAL OBSERVABILITY
This section introduces the PO-OAMDP formalism, shows how the
observer’s belief about the target variable is maintained, and looks
at some typical use cases.

Formalism. We describe the key ingredients of the PO-OAMDP
framework before providing a formal definition. (1) Within the
PO-OAMDP framework, a set of observations and an observation
function are added to the OAMDP formalism. (2) A generic target
variable is introduced whose value at each time step is a function
of the transition followed by the system. (3) The agent has access
not only to the complete state of the system, but also to the obser-
vations received by the observer (this is realistic in particular if the
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observation process is deterministic). The agent can thus build the
mental state of the observer during the execution of its behavior.

Formally, a PO-OAMDP is defined by a tuple ⟨S, 𝑠0, A, 𝑇 , 𝛾 ,
S𝑓 , Ψ, Ω, 𝑂 , 𝐵, 𝑅ag, 𝜙⟩, where: ⟨S, 𝑠0,A,𝑇 ,𝛾,S𝑓 ⟩ is an MDP with
initial state 𝑠0 but no reward function; Ψ denotes both the (dynamic)
target variable and the finite set of values it can take; 𝜙 : S ×
A × S → Ψ returns the value of the target variable given the
transition: 𝜓𝑡 = 𝜙 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1); Ω is the finite set of observations;
𝑂 : A × S × Ω → R is the observation function; 𝑂 (𝑎, 𝑠′, 𝑜) is the
probability of emitting observation 𝑜 if state 𝑠′ is reached while
performing 𝑎; 𝐵 : Ω∗ → Δ |S | gives the observer’s belief on the state
given an observation history; the belief on the target variable can
be deduced from that state belief, denoted 𝑏; 𝑅ag : S × Δ |Ψ | × A ×
S×Δ |Ψ | → R is the agent’s reward function under its most general
form: 𝑅ag (𝑠𝑡 , 𝛽𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝛽𝑡+1), where 𝛽 denotes a target belief.

BST belief state update & target belief computation. Following
Miura and Zilberstein, we employ the BST Bayesian belief update
rule [2], thus introduce a reward function 𝑅obs : S × A × S → R
assumed to be the agent’s reward function according to the observer.
Then, the observer models the agent’s behavior for a given task
through an MDP by: (1) solving the MDP with 𝑅obs; and (2) deriving
a softmax policy 𝜋obs. Given the dynamics of the PO-OAMDP and
presumed policy 𝜋obs of the agent, the observer faces a hidden
Markov model (HMM) [13] and solves a filtering problem, using
observation history 𝑜1:𝑡 to estimate her belief on the state 𝑠𝑡 . One
can then easily derive (1) the belief 𝛽 on the value that will be taken
by target variable Ψ𝑡 , and (2) the expected reward.

The PO-OAMDP model allows us to generate different behaviors
by changing Ψ and 𝑅, and to work with different types of problems.
An important property, formally demonstrated by Lepers et al. [10],
shows that PO-OAMDPs are at least as expressive as OAMDPs.

Proposition 2.1. Any OAMDP M with BST belief update can be
turned into an equivalent PO-OAMDP M′, i.e., such that an optimal
solution to one problem is optimal for the other problem.

The proof relies on turning the static type of an OAMDP into a
(hidden) target state variable. For illustrative purposes, [10] show
how to formulate legibility, explicability, and predictability.

3 RESOLUTION
Sequential Decision-Making Problem. Similar to OAMDPs [11,

12], a PO-OAMDP can be turned into an equivalent MDP using
the state-action-observation history ⟨𝑠0:𝑡 , 𝑎1:𝑡 , 𝑜1:𝑡 ⟩ (i.e., all the raw
information available to the agent at 𝑡 ) as information state, or
the state-belief (over target) pair ⟨𝑠, 𝑏⟩ when using the BST update.
Formally, we obtain an MDP ⟨I, 𝑖0,A,𝑇 ′, 𝑅′, 𝛾,I𝑓 ⟩, and Bellman’s
optimality operator is thus written

𝑉 ∗ (𝑖) =max
𝑎

∑︁
𝑖′∈nxt(𝑖,𝑎)

𝑇 ′ (𝑖, 𝑎, 𝑖′) · [𝑅′ (𝑖, 𝑎, 𝑖′) + 𝛾𝑉 ∗ (𝑖′)],

with nxt(𝑖, 𝑎) the (finite) set of next state-belief pairs under (𝑖, 𝑎).

SSPs. When setting 𝛾 = 1, The following proposition ensures the
problem is a valid SSP while infinitely many states are reachable
from initial state ⟨𝑠0,−⟩, where − denotes the empty history.

Proposition 3.1. Assuming that 𝑅ag is bounded from above by
𝑅max
ag < 0 (in non-terminal states), the PO-OASSP is a valid SSP.
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Figure 2: Two PO-OAMDP trajectories for legibility tasks,
with hidden cells in blue, 𝑝obs = 1 (left) and 𝑝obs = 0.5 (right).

A simple trick to retrieve a valid SSP is to combine the invalid
𝑅ag with a valid 𝑅 using 𝑅′

ag = 𝑅ag + 𝜆 · 𝑅 for some 𝜆 > 0.

Complexity. Proposition 2.1 tells us that PO-OAMDPs cover a
larger class of problems than OAMDPs. We establish that PO-
OAMDPs inherit the same main complexity results as OAMDPs,
results which require assuming Bayesian updates for the observer’s
belief, what we denote by PO-OAMDP𝐵𝑈 . Such results are obtained
considering the value problem, i.e., determining whether a policy
exists that can achieve some pre-defined value.

HSVI. We propose solving discounted PO-OAMDPs (𝛾 < 1) us-
ing a variant of Smith and Simmons’s heuristic search value iteration
(HSVI) algorithm [16–18]. HSVI is generally used to solve POMDPs,
maintaining an upper and a lower bound of 𝑉 ∗, respectively de-
noted 𝑉 and 𝑉 , and whose representations exploit 𝑉 ∗’s convexity
in belief space. Differences between POMDPs and PO-OAMDPs
lead to several differences in HSVI. (1) 𝑉 and 𝑉 are expressed in
information space I ≡ S×Δ |S | , not in Δ |S | alone. (2) PO-OAMDPs
inherit local discontinuities in Δ |S | from OAMDPs [11, Sec. 3.2], so
that we only rely on pointwise representations. (3) Usual bound
initializations do not apply.

Initializing Bounds. In [10], we propose dedicated bound initial-
izations (significantly speeding up convergence compared to trivial
values) that rely on (1) separating the reward in two terms: one
belief-dependent and one belief-independent; and (2) bounding the
belief-dependent term using the minimum number of time steps to
a terminal state.

4 CONCLUSION
PO-OAMDPs allow formalizing planning problems where an agent
accounts for an external observer with partial and noisy observ-
ability, allowing to model legibility, explainability and predictibility
tasks in a wider class of scenarios than previously. We demonstrate
how to solve such problems by turning them into abstract MDPs
and adapting a standard algorithm such as HSVI. Experiments [10]
(source code available here: https://gitlab.inria.fr/po-oamdp/po-
oamdp_aamas25) illustrate resulting non-trivial behaviors, such as
avoiding cell (𝐷, 3) in Fig. 2 (left) to lower the probability of goal
𝜓2, or taking a longer, but more visible path, in Fig. 2 (right).
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