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ABSTRACT
Common feedback strategies in multi-agent dynamic games require
all players’ state information to compute control strategies. How-
ever, in real-world scenarios, sensing and communication limita-
tions between agents make full state feedback expensive or imprac-
tical, and such strategies can become fragile when state information
from other agents is inaccurate. To this end, we propose a regular-
ized dynamic programming approach for finding sparse feedback
policies that selectively depend on the states of a subset of agents
in dynamic games. The proposed approach solves convex adaptive
group Lasso problems to compute sparse policies approximating
Nash equilibrium solutions. We prove the regularized solutions’
asymptotic convergence to a neighborhood of Nash equilibrium
policies in linear-quadratic (LQ) games. We extend the proposed
approach to general non-LQ games via an iterative algorithm. Em-
pirical results in multi-robot interaction scenarios show that the
proposed approach effectively computes feedback policies with
varying sparsity levels. When agents have noisy observations of
other agents’ states, simulation results indicate that the proposed
regularized policies consistently achieve lower costs than standard
Nash equilibrium policies by up to 77% for all interacting agents
whose costs are coupled with other agents’ states.
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1 INTRODUCTION
Dynamic game theory models the decisions of multiple interacting
agents over time. In such games, it is common to identify full state
feedback strategies that depend on all players’ states. For example,
in multi-robot formations, each robot typically plans its actions
based on the states of other robots. However, obtaining full states
is often impractical due to sensing and communication limitations.
Worse, “dense” strategies that require access to many other agents’
states can be brittle when such state information is inaccurate, e.g.,
in the presence of uncertainties. Consequently, it is desirable for
agents to find strategies that selectively depend on the states of a
subset of agents while still approximating equilibrium behavior.

We contribute an algorithm for finding sparse feedback policies
that depend on fewer influential agents’ states in dynamic games
while approximating Nash equilibrium strategies. We propose a
regularized dynamic programming (DP) scheme [1, 2] that approxi-
mately solves linear-quadratic (LQ) dynamic games, which are an
extension of the linear-quadratic regulator problem [7] to multi-
agent settings. The proposed approach solves a convex adaptive
group Lasso regularization problem [12] to encode sparsity within
each DP iteration. A user can choose a desired sparsity level based
on the available sensing or communication resources. We also em-
ploy an iterative linear-quadratic approximation technique [5, 9]
to extend the proposed approach to general non-LQ games.

2 NONCOOPERATIVE DYNAMIC GAMES
LQ Games.We study noncooperative dynamic games played by
𝑁 players in discrete time 𝑡 ∈ [𝑇 ]. First, we introduce LQ games:

Definition 1. An N-player, general-sum, discrete-time dynamic
game is a linear-quadratic (LQ) game if each player 𝑖 seeks to optimize
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Figure 1: (a) Snapshot of the navigation game. (b-c): Regularized and standard Nash equilibrium policy matrices.
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We use 𝑥 and 𝑢 to denote players’ states and controls. Super-
scripts denote players’ indices and subscripts are discrete time steps,
e.g.,𝑢𝑖𝑡 denotes player 𝑖’s control at time step 𝑡 . The absence of player
and time indices without additional definition denotes concatena-
tion. We require 𝑥𝑖𝑡 ∈ R𝑚

𝑖
, 𝑢𝑖𝑡 ∈ R𝑛𝑖 , and 𝑄𝑖

𝑡 ⪰ 0, 𝑅𝑖𝑖𝑡 ≻ 0,∀𝑖 ∈ [𝑁 ].
We let𝑚 =

∑
𝑖∈[𝑁 ]𝑚

𝑖 and 𝑛 =
∑
𝑖∈[𝑁 ] 𝑛

𝑖 . The initial state of the
game 𝑥1 is a given a priori.
Non-LQGames.When the cost functions are non-quadratic and/or
the dynamical system is non-linear, we have general non-LQ games.

This work seeks to find regularized feedback Nash equilibrium
strategies for the games above to approximate standard Nash equi-
librium [1, Def. 6.2] while being sparse.

3 APPROACH
LQ Games. A standard feedback Nash equilibrium of the game in
Definition 1 can be computed via a DP procedure [1, 4], starting
from the game stage 𝑡 = 𝑇 and going backwards in time. A feedback
Nash equilibrium policy to the LQ game in Definition 1 takes a
linear form 𝑢𝑖∗𝑡 = 𝛾𝑖∗𝑡 (𝑥𝑡 ) = −𝑃𝑖𝑡𝑥𝑡 − 𝛼𝑖𝑡 ,∀𝑡 ∈ [𝑇 ]. We refer to 𝑃𝑖𝑡 as
a policy matrix, which maps players’ states to player 𝑖’s controls.

At each time step 𝑡 , the DP procedure involves solving a linear
system of equations: 𝑆𝑡𝑃𝑡 = 𝑌𝑡 , where 𝑃𝑡 = [𝑃1⊤𝑡 , . . . , 𝑃𝑁⊤

𝑡 ]⊤ is the
concatenation of all players’ policymatrices and 𝑆𝑡 , 𝑌𝑡 are quantities
related to the game parameters.
Regularization. Solving the system 𝑆𝑡𝑃𝑡 = 𝑌𝑡 exactly computes
the feedback parts of the standard Nash equilibrium strategies.
To compute sparse policies 𝑃𝑡 , we propose to solve a regularized
problem:

min
𝑃𝑡

1
2
∥𝑆𝑡𝑃𝑡 − 𝑌𝑡 ∥2𝐹 +

∑︁
𝑖, 𝑗

𝜆𝑖, 𝑗 ∥𝑃𝑖𝑡 [ 𝑗] ∥𝐹 , (1)

where ∥ · ∥𝐹 denotes matrix Frobenius norm and 𝑃𝑖𝑡 [ 𝑗] denotes a
block in the policy matrix that maps the 𝑗 th player’s states to the
𝑖th player’s controls. For example, in a 4-player game, a policy ma-
trix 𝑃𝑡 or 𝑃𝑡 shown via a heatmap in Fig. 1 is divided into 4×4 blocks.
𝜆𝑖, 𝑗 denotes a weighting constant that determines the regularization

strength for block (𝑖, 𝑗). We note that we choose 𝜆𝑖,𝑖 = 0,∀𝑖 ∈ [𝑁 ]
and 𝜆𝑖, 𝑗 = 𝜆,∀𝑖 ≠ 𝑗, 𝜆 ∈ R≥0, to not discourage the players’ strate-
gies from depending on their own states and to penalize other
blocks evenly.

Importantly, the problem in Eq. (1) encourages sparsity in the
solution at a group level, i.e., the entries in a group all remain
non-zero or get zeroed out. The problem in Eq. (1) is a convex
group Lasso problem [13] and can be solved using established algo-
rithms [3, 8, 11, 13] or cast as a conic program and solved via conic
optimization solvers [6].

At each dynamic programming iteration 𝑡 , we solve the problem
in Eq. (1) to compute regularized Nash equilibrium strategies. The
procedure maintains convexity at each step.
Non-LQ Games. For non-LQ games, we employ an iterative al-
gorithm [5] to repeatedly find LQ approximations of the original
dynamic game and compute sparse, approximate feedback Nash
equilibrium strategies.

4 RESULTS
We first test our approach in a multi-agent navigation game1. As
is shown in Fig. 1 (a), four agents start from the initial positions
and drive to their individual goals noncooperatively while avoid-
ing collisions. Agents need to compete and find underlying Nash
equilibrium strategies to reach their goals efficiently. As shown in
Fig. 1, the proposed approach computes a more sparse feedback
policy in Fig. 1 (b) than the standard Nash equilibrium in Fig. 1 (c).
The regularization selectively decouples agents’ policies from other
agents’ states, e.g., agent 2 has already passed by agent 1 and their
dependencies are zeroed out in the sparse policy.
More Results. For more theoretical results on the convergence of
the proposed DP approach and empirical results, please refer to our
technical report [10].
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1Supplementary video: https://xinjie-liu.github.io/projects/sparse-games
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